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Abstract: Liver diseases are the primary reason for morbidity and mortality in the world. Owing to a
shortage of organ donors and postoperative immune rejection, patients routinely suffer from liver
failure. Unlike 2D cell models, animal models, and organoids, 3D bioprinting can be successfully em-
ployed to print living tissues and organs that contain blood vessels, bone, and kidney, heart, and liver
tissues and so on. 3D bioprinting is mainly classified into four types: inkjet 3D bioprinting, extrusion-
based 3D bioprinting, laser-assisted bioprinting (LAB), and vat photopolymerization. Bioinks for
3D bioprinting are composed of hydrogels and cells. For liver 3D bioprinting, hepatic parenchy-
mal cells (hepatocytes) and liver nonparenchymal cells (hepatic stellate cells, hepatic sinusoidal
endothelial cells, and Kupffer cells) are commonly used. Compared to conventional scaffold-based
approaches, marked by limited functionality and complexity, 3D bioprinting can achieve accurate
cell settlement, a high resolution, and more efficient usage of biomaterials, better mimicking the
complex microstructures of native tissues. This method will make contributions to disease modeling,
drug discovery, and even regenerative medicine. However, the limitations and challenges of this
method cannot be ignored. Limitation include the requirement of diverse fabrication technologies,
observation of drug dynamic response under perfusion culture, the resolution to reproduce complex
hepatic microenvironment, and so on. Despite this, 3D bioprinting is still a promising and innovative
biofabrication strategy for the creation of artificial multi-cellular tissues/organs.

Keywords: liver diseases; 3D bioprinting; biofabrication strategy; artificial multi-cellular tissues/organs

1. Introduction

The liver is a pivotal organ that balances biochemical environments and participates
in various biochemical reactions in the human body. It is responsible for blood protein
synthesis, glucose metabolism, and detoxification of metabolites [1]. Liver diseases are
a major cause of morbidity and mortality across the globe; however, there is little to no
progress in treatment options [2]. Liver cancer, a pivotal contributor to cancer mortality
around the world [3], exhibits an obvious annual increase in occurrence rates [4], and it has
been demonstrated to be the sixth most frequently diagnosed cancer and the fourth highest
reason of cancer-caused death [5]. Currently, there are diverse risk factors that lead to liver
cancer. These include bad diets, hepatitis B/C virus, alcohol, tobacco, smoking, obesity, and
fatty liver disease [6,7]. Most patients with liver cancer are diagnosed at an advanced stage
as a result of the lack of highly sensitive and effective detection tools [8]. The prognosis
of patients at advanced stages is worse. Early-stage patients are eligible for surgical
resection, transplantation, and ablative techniques, though they may suffer recurrence
and metastasis owing to malignant tissue remaining in situ [9,10]. Patients at advanced
stages could be treated with trans-arterial chemoembolization (TACE) and oral dosing with
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sorafenib. These patients always suffer from liver failure, and a shortage of organ donors
or postoperative immune rejection are problems that remain to be solved [11,12]. High
demand for liver transplantation exceeds the availability of suitable donor organs and,
thus, the hope of patients with serious liver disease is small. New approaches for treating
liver diseases, liver cancer included, are required.

From studies on NCBI, we see that researchers in this field are restricted by the lack
of suitable models. Currently available models include 2D cell models, animal models,
organoids, and Liver-Chip models. The testing of newly developed drugs in 2D mono-
layer cells and animals are time-consuming and expensive [13]. 2D cell models cannot
truly mimic the real metabolic microenvironment of drugs and, thus, fail to reflect in vivo
situations [14,15]. In addition, traditional animal experiments are uncontrollable and pos-
sess interspecific and metabolic differences, as well as suffering from ethical disputes [16].
Organoids present significant heterogeneity and reproducibility, but lack vascular, im-
munological, and stromal components, and the morphogenesis is poorly controlled during
self-assembly process [17]. Liver-Chip models provide a more physiologically relevant
environment when compared to traditional cell culture systems. These models usually
consist of microfluidic devices that incorporate living liver cells and recreate the complex
microarchitecture and functionality of the liver. This allows for better mimicry of the
in vivo conditions, providing a more accurate representation of liver function and drug
metabolism [18].

3D printing was first introduced as “stereolithography” by Charles W. Hull in 1986;
this technique prints thin layers of a material in layers to form solid 3D structures during
photochemical processes. The next generation was “3D bioprinting”, or additive manu-
facturing (AM) technology. Mironov et al. first proposed the concept of “3D bioprinting”
in 2003 [19]. This technique aims to make contributions to tissue engineering and organ
fabrication [20]. Currently, 3D bioprinting is the most promising technique for organ
manufacturing. 3D bioprinting can be successfully employed to print living tissues and
organs, containing blood vessel, skin, bone, cartilage, and kidney, heart, and liver tis-
sue [21]. It has great potential in tissue and organ construction due to its precise control
of the spatial distribution of cells and the surrounding microenvironment [22]. Usually,
3D bioprinting accurately set biologics in a layer-by-layer fashion in order to construct
artificial multi-cellular tissues/organs [23,24]. 3D bioprinting can mainly be classified into
inkjet 3D bioprinting, extrusion-based 3D bioprinting, laser-assisted bioprinting (LAB), vat
photopolymerization, Freeform Reversible Embedding of Suspended Hydrogels (FRESH),
and sacrificial printing. Materials, containing hydrogels and cells, are arranged for the 3D
bioprinting of biological tissues and organs. 3D bioprinting is commonly employed for
disease modeling, drug screening, and organ regeneration. In conclusion, although 3D
bioprinting holds great promise for treatment of liver diseases, we still have much work to
do prior to routine treatment by 3D bioprinting.

2. 3D Bioprinting Methods

Inkjet technology mainly includes two categories: continuous and drop-on-demand
inkjet printings. Inkjet-based 3D bioprinting can generate droplets in the picoliter volume
range, fire in a few seconds, and print in a noncontact manner [25], as demonstrated in
Figure 1A. The inkjet technique can fabricate high-resolution structures with more precise
modulation of the droplet size [26]. It has become a practical method in medicine in
respect to scaffolding, cell deposition, and drug development. In 2003, Prof. Thomas
Boland of Clemson University proposed the concept of “cellular inkjet bioprinting” and
successfully realized live cell printing with PBS buffer containing Chinese hamster ovary
cells (CHO) and mouse embryonic motor neuron cells as “bioink”, thereby laying the
foundation for the development of cell inkjet bioprinting [27–29]. Arai et al. fabricated a 3D
culture system by applying an artificial scaffold and inkjet 3D bioprinter for investigating
liver-specific functions of hepatocytes through interaction of galactosylated alginate gel
with asialoglycoprotein receptor [30]. Moya et al. also employed inkjet-based printing
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to construct electrochemical dissolved oxygen sensors along the microfluidic channel in
liver-on-a-chip for monitoring oxygen concentrations [31].

Owing to its compatibility and ease of operation, extrusion-based 3D bioprinting is the
most broadly applied technique for establishing scaffolds of liver tissue [32], as presented
in Figure 1B. It is a cheap and easy-to-use manufacturing technique and is capable of
producing precision medicines [33]. In extrusion-based 3D bioprinting, bioinks sustained a
continuous layer-by-layer process to extrude filaments for production of 3D structures. The
versatility of extrusion methodology introduces a novel avenue for generating biomimetic
tissues and organs. Bouwmeester et al. generated porous constructs utilizing human
hepatocyte-like cells gained from organoids upon extrusion-based printing to construct
hepatic in vitro models [34]. Cuvellier et al. implemented a liver model via extrusion-based
3D bioprinting with hepatic cells, opening new perspectives in the molecular and cellular
study of fibrosis [35].

LAB attaches the bioink to a layer of energy absorbing material and emits a laser to
engender pulses, thereby ejecting the ink to the receiving platform below [36]. LAB can
avoid direct contact between dispenser and bioinks without adding mechanical stress to
cells, and thus cell viability is higher than 95% [37], as demonstrated in Figure 1C. Laser-
assisted printing can also print highly viscous materials and use more types of bioinks.
Touya et al. [38] offered a bone repair method through LAB-printed solidifying tricalcium
silicate-based bioink. Nakielski et al. [39] elucidated LAB-generated injectable electrospun
nanofibers that were highly biocompatible with bone and cartilage tissues, providing a
mechanical environment.

Vat photopolymerization is the earliest and, relatively, the most mature type of 3D
bioprinting. It employs the superposition molding of materials to establish several plane
layers of a 3D target and scans the liquid photosensitive resin with a beam. Eventually,
each layer is accumulated on the scaffold [40]. It makes stereolithography (SLA) and digital
light processing (DLP). Vat photopolymerization outperforms other methods in relation to
the speed and complexity of bioprinted structures, dimensional accuracy, and high surface
quality, though it requires light-curing inks with photosensitivity and shear dilution, and
material types are limited [41], as demonstrated in Figure 1D. In addition, there is no
concern about cell damage resulting from nozzle blockage and shear force. Mahdavi et al.
printed human corneal stroma equivalents using SLA [42]. Choi et al. established full-
thickness wound models with DLP utilizing silk fibroin bioink [43].

FRESH is an embedded printing method that tackles this problem by extruding bioinks
into a yield-stress support bath, which holds the bioinks in place until they are cured [44].
This technology is particularly well suited for the creation of high-fidelity complex tissue
structures. It enables the creation of complex, fine, and structurally precise tissues. During
the printing process, the support gel temporarily supports the bioink, minimizing distortion
and maintaining the fidelity of the printed structure. This technique allows the creation of
blood vessel-like channels, hollow structures, and complex tissue structures that closely
resemble native tissues [45]. Eman et al. demonstrated the ability of FRESH bioprinting to
produce patient-specific anatomical models using adjustable alginate bio-inks at full adult
size [46].

Sacrificial printing has been widely used in recent years in the field of biotissue
engineering and organ printing, which utilizes soluble support materials to create complex
structures or achieve specific functions [47]. Sacrificial printing can be used to create
bioprinted tissues with internal channels or vascular systems. In this case, the bioink
material is printed as the main tissue structure while the soluble scaffold material is used
to create the vascular network [48]. Compared to other 3D bioprinting methods, this
type of printing becomes more demanding in terms of printing time and cost budget as
sacrificial printing requires the preparation of additional scaffold structures and removal
of scaffold materials. Hölken et al. synthesized novel 3D hollow aerospace silicon nano
and microstructures using the sacrificial template method [49]. Cheng et al. investigated
a strategy for the rapid preparation of bionic tissue models based on bacterial cellulose
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matrices using sacrificial 3D printing, further contributing to the potential scalability of
sacrificial 3D printing technology [50].

These four technologies are the main categories of applied 3D bioprinting and their
characteristics are summarized in Table 1. The data mentioned above are provided in order
to offer a general understanding of the various techniques involved and may not represent
exact values. The actual values may vary slightly depending on different experimental
conditions and parameter settings.

Table 1. Characteristics of four 3D bioprinting techniques.

Inkjet Extrusion LAB Vat Photopolymerization References

Speed Fast Slow Medium Fast [51–54]
Cost Low Moderate High Low [51–54]

Resolution 50 µm 100 µm 10 µm 1 µm [55–58]
Cell viability ~80% >90% <85% >85% [59–62]
Cell density <106 cells/mL Cell spheroids <108 cells/mL 108 Cells/mL [63–66]

Structural Integrity Low High Low High [67–70]
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permission [71].

3. Bioinks for 3D Bioprinting
3.1. Hydrogels

Bioinks are composed of a hydrogel pre-polymer solution and cells. Hydrogels,
natural or synthetic polymer networks with high ability to absorb water, are the most
suitable materials matching the mechanical, physical, and chemical properties with a
natural extracellular matrix (ECM) [72,73]. Hydrogels, with printability, crosslinkability,
biocompatibility, and mechanical properties, can directly provide structural support for
cells to provoke differentiation, proliferation, and adhesion [74,75]. Printability means the
relationship of bioinks with substrates, deciding the printing of accurate and high-quality
patterns [76]. Printability is also affected by the crosslinkability of materials. Hydrogels
should be in a liquid or a paste-like form, and the hydrogel pre-polymer solutions with
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controllable viscosity over a wide range are suitable in view of diverse cell densities and
printing methods [77]. Biocompatibility refers to the appropriate host response of ma-
terials under specific condition, which requires harmless materials to cell proliferation
that provide proper binding with cells for in vitro applications [78,79]. Applicable hy-
drogels can maintain sufficient mechanical properties, such as shear stress, strain, and
compressive modulus post polymerization, in order to offer a stable environment to cells
for proliferation, attachment, and differentiation [80].

Synthetic polymers are produced by chemical synthesis with more controllable chem-
ical and mechanical characteristics [81,82]. Natural hydrogels contain polymers in ECM
components such as collagen, fibronectin, gelatin, as well as others such as silk fibroin,
chitosan, and alginate [83]. Alginate (most commonly used), collagen, decellularized ECM
(dECM), and gelatin are employed in constructed liver models [84]. Alginate is isolated
from seaweed, and it possesses the advantages of low cost, sufficient biocompatibility,
and excellent formability [85]. Collagen is an ECM and an ideal natural biomaterial to
encapsulate hepatocytes; however, it has poor mechanical strength, which causes the easy
collapse of scaffolds [86]. Relative to natural and synthetic polymers with limited repair ca-
pacity, dECMs mimic a non-immune environment with native 3D structures and bioactive
components [87]. Gelatin and relative derivatives are another category of hydrogel in liver
3D bioprinting [88]. Gelatin methacrylamide (GelMA), a photosensitive gelatin, is popular
due to its excellent formability and biocompatibility. Hiller et al. describe the application of
a bioink consisting of gelatin, alginate, and human ECM (hECM) in the printing of human
HepaRG liver cells with a pneumatic extrusion printer [89]. Xu et al. fabricated a novel 3D
breast tumor model through a bioink consisting of porcine liver-derived dECM with gelatin
and sodium alginate [90]. Mazzocchi et al. designed a printable bioink by combining
methacrylated collagen type I and thiolated hyaluronic acid to keep hepatocytes viable [91].
To maintain the shape and structure of collagen, Lee et al. applied polycaprolactone to
build a framework and mixed collagen and cells in the canals [92]. Kim et al. developed a
new dECM bio-ink by loading the dECM micro-particles into a gelatin compound, with
enhanced 3D printability and mechanical properties [93]. In 2014, Pati et al. indicated that
dECMs extracted from tissues were solubilized into bioinks for bioprinting [94]. Extrusion-
based bioprinting is the most widely used method for constructing liver tissue scaffolds.
Using extrusion-based bioprinting, a larger variety of materials with a wide range of vis-
cosities can be constructed [95]. Extrusion-based bioprinting has advantages in terms of
material printing flexibility and can be used to print major portions of liver units containing
hepatocytes; when embedding microvascular systems is required, high-resolution digital
light processing (DLP) technology would be a better choice to create complex scaffolds
at a higher resolution. In addition, the experimental environment required for extrusion
bioprinting is simple and easy to set up, and is sufficient for most application scenarios.
Among them, to address the vascularization issue, coaxial extrusion bioprinting can be used
to create large amounts of liver tissue with an adequate vascular system [96]. Digital Light
Processing (DLP) bioprinting technology utilizes light irradiation to heal photosensitive
hydrogels at specified locations. When compared to extrusion bioprinting, the digital light
processing (DLP) bioprinting method has higher precision and allows for the construction
of more complex structures [97]. However, this method requires a more complex laboratory
environment and possible phototoxicity to cells in the construction of microstructures
within the liver lobules using light-curing-based bioprinting [98]. Therefore, extrusion-
based bioprinting is the dominant approach for the time being. Hydrogels applied for 3D
bioprinting of livers from 2016 to 2022 are summarized in Table 2.
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Table 2. Summary of hydrogels and cell sources in 3D bioprinting of livers from 2016 to 2022.

Cell Sources Biomaterials Techniques References

HepG2 cells Decellularized liver matrix, gelatin and
polyethylene glycol Extrusion [99]

HepG2 and NIH/3T3 cells Alginate, GelMa, cellulose nanocrystal Extrusion [100]

HepaRG cells Gelatin Extrusion [11]

Huh7 and HepaRG cells Methacrylated gelatin Extrusion [35]

Human adipose mesenchymal stem
cell-derived hepatocyte-like cells, human

umbilical vein endothelial cells, and human
hepatic stellate cells

Liver ECM Extrusion [101]

Fibroblasts and hepatocytes Alginate and methylcellulose Extrusion [102]

HepG2 cells, HUVECs and NHDFs alginate and methyl-cellulose (algMC) Extrusion [103]

Huh7 cells Decellularized liver matrix, silk fibroin,
and gelatin Extrusion [103]

Human-induced pluripotent stem
cells-derived hepatocytes Gelatin/alginate Extrusion [104]

HepaRG cells Alginate-gelatin Extrusion [105]

HepG2 cells Alginate, gelatin Extrusion [106]

Human-induced pluripotent stem cell
(hiPSC)-derived cardiomyocytes

and hepatocytes

Liver decellularized extracellular matrix
(dECM) bioink DLP [107]

HepaRG and human HSCs Gelatin and PEG DLP [108]

human-induced hepatocytes GelMA/dECM DLP [109]

human induced pluripotent stem cells
(hiPSC)-hematopoietic progenitor cells (HPCs),

human umbilical vein endothelial cells
(HUVECs), and adipose-derived stem cells

GelMA DLP [110]

HUVECs and HepG2 Glycidal methacrylate-hyaluronic
acid (GM-HA) DLP [111]

3.2. Cells

Cells are an innovative 3D-printed biomaterial for the manufacture of accurate cell
models. Cells used for liver 3D bioprinting contain hepatic parenchymal cells (hepatocytes)
and liver nonparenchymal cells (hepatic stellate cells, hepatic sinusoidal endothelial cells,
and Kupffer cells) (Figure 2). Hepatic parenchymal cells exhibit the main functions of livers
and nonparenchymal cells connect and support them. Primary hepatocytes, belonging to
hepatic parenchymal cells, are the most desirable cell source for 3D bioprinting of liver
tissues and are responsible for glucose metabolism and bile synthesis [112]. Nguyen et al.
established a bioprinted liver tissue mimetic consisting of patient-derived hepatocytes
and non-parenchymal cells [113]. However, human-sourced primary hepatocytes are
deficient and are prone to lose phenotypes, and the culture is hard [114]. Hepatocyte-
like cells differentiated from human adipose stem cells and hepatic cells derived from
embryonic stem cells (ESCs) and human induced pluripotent stem cells (hiPSCs) are
commonly used [115,116]. HepaRG cells, also hepatic progenitor cells, may be the most
promising source in light of their potential for differentiation into hepatocytes in vitro and
ability to form bile canaliculi [117]. Feng et al. introduced a versatile strategy to produce
scaffolds from alginate and gelatin utilizing HepaRG cells and embryonic stem cells [118].
Under normal conditions, hepatic stellate cells are at resting state before they are then
activated to increase collagen once the microenvironment is activated. Hepatic stellate cells
were grown with parenchymal cells to imitate hepatic microenvironment and maintain
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phenotype and functions [113]. Ide et al. developed spheroids with primary human
hepatocytes and hepatic stellate cells utilizing a 3D bio-printer [119]. Hepatic sinusoidal
endothelial cells, directly contacting with blood flow, have high permeability and can
eliminate soluble substances activated during inflammation [120]. Human umbilical vein
endothelial cells (HUVECs), growing into capillary-like sprouts, can substitute hepatic
sinusoidal endothelial cells for studies on vascularized livers [121]. Janani et al. bioprinted
a human vascularized liver model by applying a liver ECM-based bioink laden with hepatic
stellate cells, HUVECs, and adipose mesenchymal stem cell-derived hepatocyte-like cells
using an extrusion-based bioprinting technique [101]. Kupffer cells are macrophages in
liver sinusoids, the main functions of which are to extract particulates and toxins, mediate
immune response, and to process and transmit antigens. Kupffer cells mainly process and
transmit antigens, mediate immune response, and remove toxins and particulates in the
portal vein [122,123]. Norona et al. added Kupffer cells to 3D bioprinted livers in order to
test their effects on the injury/fibrogenic response under cytokine and drug stimuli, finding
the importance of KCs in the fibrogenic response to agents [124]. Cell sources applied to
the 3D bioprinting of livers from 2016 to 2022 are summarized in Table 2.
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4. Applications of 3D Bioprinting

Over the past few decades, tissue engineering has made tremendous progress in fabri-
cating tissue substitutes for clinical application. Relative to conventional scaffold-based
approaches, which are limited in the production of constructs with functionality and com-
plexity, 3D bioprinting allows accurate cell settlement, high-resolution, and biomaterials,
better mimicking the complex microstructures of native tissues and precisely modulating
cell distribution [126,127]. This technology is expected to make contributions to disease
modeling, drug discovery, and even regenerative medicine [128–130] (Figure 3). First,
livers are crucially important for drug metabolism and toxicity regulation. Bioprinted
liver tissues can be used to produce human-relevant in vitro models in order to evalu-
ate pharmacokinetics, toxicity, and efficacy, ultimately improving drug development and
reducing animal testing [131]. Second, preclinical models accurately mimicking disease
processes are vital for identifying new therapies. Bioprinted liver tissues can mimic liver
fibrosis, hepatocellular carcinoma, and other conditions [132,133]. Third, bioprinted liver
tissues can be utilized as a temporary scaffold to support the growth of new liver tissues,
resulting in functional liver regeneration. They can also be utilized to create organoids for
drug testing and personalized medicine [134,135]. Fourth, 3D printed liver tissue offers
potentially important applications for organ regeneration and drug screening [136,137].
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Three-dimensionally printed liver tissue could provide another option for patients who
require organ transplants. This method can help patients recover their damaged liver
function by converting the patient’s own cells into biomaterials and constructing complex
vascular structures during the 3D printing process. Meanwhile, 3D printed liver models
also have obvious superiority in drug screening. Since liver tissues for clinical applications
must be three-dimensional in structure, the real human liver environment can be simulated
using 3D printed liver models to more accurately assess key parameters such as drug
absorption, distribution, metabolism, and excretion [138,139]. Finally, stable 3D bioprinted
hepatocyte constructs would significantly facilitate drug testing for drug hepatotoxicity
and liver injury in vitro [140,141]. Drug testing and disease modeling capabilities can be
improved by integrating liver models and in silico simulations. For example, the exVive3D
model, consisting of primary hepatocytes, hepatic stellate cells, and endothelial cells, is
the first commercially available human liver tissue for assessing drug hepatotoxicity [142].
Liver organ printing is a promising technology in the field of regenerative medicine, but
precise control of cellular spatial organization and functional maintenance, as well as the
introduction of a functional vascular system in vitro, remain critical issues for disease
modeling and regenerative therapy of the resulting liver-like organs [143,144].
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To study the biology and development of clinical products in liver disease, the 3D
cell culture model is an indispensable tool [125]. In vitro models can mimic liver dis-
eases, explain cell function affected by single and combinatorial microenvironmental cues,
mitigate the risk of drug-caused liver injury, and enable cell-based therapies in clinical
settings [146]. Combining organoids with organ-on-a-chip or 3D bioprinting can develop
organoids and create models generalizing tissue or organ interactions [147]. An in vitro
3D cellular model is desirable for drug discovery and clinical applications, including
patient-specific treatment [148]. Kizawa et al. applied a scaffold-free 3D bio-printing
method to establish liver tissue for stably maintaining drugs as well as glucose and lipid
metabolism [149] (Figure 4A). Moreover, Kang et al. established a hexagonal bioprinted
hepatic fabrication with incorporation of the spinning condition with media stimuli, where
enhanced proliferation, EMT and functionality of HepG2 cells, increased susceptibility to
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acetaminophen-induced hepatotoxicity, and a number of spheroids as well as hepatotoxic-
ity prevention via N-acetylcysteine (NAC) were observed [150] (Figure 4B). This culture
strategy is effective for recapitulating liver injury and repair, hence improving in vitro
modeling for evaluating drug effect. Grix et al. accurately printed a complex liver-like
organ using a light-curing forming bioprinting method [151]. Tremendous progress has
been made in regenerative medicine in relation to the fabrication of functional tissue sub-
stitutes [152]. In 2022, Cuvellier et al. employed an extrusion-based system to bioprint
primary human hepatocytes in a GelMA matrix, followed by organization into polarized
hollow spheroids [153]. Bioprinted structures can vascularize and maintain hepatic specific
functions for at least 28 d in mice after implantation, which suggests its promise for human
liver tissue generation. Liu et al. fabricated soft vascularized tissue using multimaterial
bioprinting upon a customized multistage-temperature-control printer, which formed 3D
capillary networks, ensured cellular activities, and mimicked liver tissue with respect to
synthesis of liver-specific proteins [154].
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Figure 4. Applications of 3D bioprinting methods. (A) The roughly spherical printed liver tissue
was shown after 60-d incubation, with the diameter about 1 mm. Reproduced with permission [149].
(B) Images for bioprinted hepatic constructs on day 7 and 14 (spheroid-like structures). Reproduced
with permission [150]. (C) Cellbricks printing process of liver model [151]. (D) The bioprinting
process of primary human hepatocytes in GelMa using an extrusion-based system. Reproduced with
permission [153].
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5. Discussion

The liver is a vital organ for metabolism and metabolic regulation. However, liver
failure is still a major cause of mortality and the requirement for donor organs is increas-
ing [155]. Faced with shortage of liver donors and postoperative immune rejection, great
progress has been made in the use of 3D bioprinting in printing liver tissues. It has pro-
gressed over the past few decades as it can better mimic the complicated microstructures of
tissues and precisely modulate cell distribution [156]. Commonly employed 2D monolayer
cell cultures and animals for testing new drugs are expensive and time-consuming. These
methods cannot reflect actual metabolic microenvironments of drugs in the human body,
and metabolic differences of diverse species exist. Fortunately, 3D bioprinting strategies
have developed into relatively mature strategies.

Presently, the main types of 3D bioprinting are inkjet 3D bioprinting, extrusion-based
3D bioprinting, LAB, vat photopolymerization, FRESH, and sacrificial printing. As men-
tioned above, these methods possess different operating principles and are used for various
purposes of application. To achieve the bioprinting of liver units, many aspects must be
considered. Extrusion-based bioprinting possesses better printing flexibility and can print
the main part of livers with hepatocytes. To print the microvascular system, DLP technol-
ogy can create complex scaffolds with higher resolution. Considering the cost-effectiveness,
realizing the metabolism effects of hepatocytes is the priority for drug screening, and thus
extrusion-based bioprinting is sufficient for most cases.

Different hydrogels and cells were applied as bioinks in diverse categories of 3D
bioprinting. In the bioink, a biomaterial solution or a mixture of several biomaterials
encapsulates cell types for the creation of tissue constructs, which are cross-linked or stabi-
lized to produce the final shape and structure of the designed constructs [157]. An ideal
bioink should have suitable mechanical and biological particularities in order to ensure
correct functionality of bioprinted constructs. Usually, in constructed liver models, hydro-
gels containing alginate, collagen, dECM, and gelatin, as well as cells including hepatic
parenchymal cells and liver nonparenchymal cells, are commonly employed. Hepatocytes
are the main type of hepatic parenchymal cells. Liver nonparenchymal cells contain hepatic
stellate cells, hepatic sinusoidal endothelial cells, and Kupffer cells.

The ability of 3D printing technology to create complex structures is an exciting
development in tissue engineering. Nevertheless, ensuring the long-term structural and
functional stability of printed tissues is critical to their success. Achieving high cell densities
in printed structures is important for proper tissue function [158,159]. It is important
to ensure that the cells are evenly distributed and can communicate with each other
effectively. This can be challenging, as cells may undergo remodeling and rearrangement
during culture. Minimizing deformation and maintaining the original structure of the
printed tissue is essential to preserve its function. In addition, multicellular fidelity and
functionality are key factors to consider for liver organ printing [160,161]. Different types
of cells must be incorporated into the printed tissue in order to mimic the complexity of
the liver organ. The patterning of cells and the extracellular matrix (ECM) in the printed
structure plays an important role in determining the long-term outcome of the tissue. The
liver is a highly complex organ, with multiple cell types working together to perform
various functions [162]. By addressing issues such as cell density, deformation during
remodeling, multicellular fidelity, and ECM templates, we can make significant advances
in creating functional printed liver tissue.

3D bioprinting allows accurate cell settlement, high-resolution, and biomaterials for
mimicking the microstructures of native tissues and modulating cell distribution [126,127].
This contributes to disease modeling, drug discovery, and regenerative medicine. Liver
disease models are beneficial for the development of new drugs and reduce the failure rate
of these developments. 3D-bioprinted liver constructs utilizing primary hepatocytes can
produce the main structure and functions as well as accurately predict drug-stimulated
hepatotoxicity. Lewis et al. employed gelatin to fabricate scaffolds with undifferentiated
HUH7 cells and examined cellular functions to estimate the optimal scaffold structure [163].



Micromachines 2023, 14, 1648 11 of 19

The grid scaffold shape and pore size dramatically influenced hepatocellular cancer (HC)
growth in vitro, which pushed researchers to change focus from shapes to hepatic functions.
Ma et al. constructed a hexagonal hepatic lobule that contained hiPSCs and endodermal
and mesodermal cells using DLP [164]. It formed a complicated liver microenvironment,
representing sufficient HC functions. Paulina et al. succeeded in rapidly printing cell-filled
structures and established a sterile perfusion chamber, turning the printed organoids into
biofactories capable of modulating liver-specific ammonia detoxification functions accord-
ing to the printed structures. The combination of ultrafast VBP processes with organoid
technology has significant potential for advanced regenerative medicine approaches and
in vitro model development for personalized drug screening and disease modeling [165].
Liver tissue constructs 3D-bioprinted by Nguyen et al., using patient-derived hepatocytes
and nonparenchymal cells, were fabricated to assess the organ-level response to hepato-
toxicity caused by a clinical drug [113]. Dose responses of Trovafloxacin and Levofloxacin
reflected the response of this model to drug-induced liver injury. Yang et al. also created
3D-bioprinted hepatorganoids with in vivo hepatic function that could alleviate liver fail-
ure post transplantation. This hinted that 3D bioprinting could generate liver tissues for
the transplantation of liver diseases.

6. Future Directions

Challenges in the application of 3D bioprinting cannot be ignored in relation to the
stimulation of 3D bioprinting of in vivo liver microenvironments. First, the liver is a com-
plex and heterogeneous organ, with multiple cell types and microstructures that require
diverse fabrication technologies. Thus, we should combine different 3D bioprinting meth-
ods and other fabrication technics in order to reproduce liver functions in vitro. Second,
for drug screening, static models are unable to reflect the dynamic response of drugs under
perfusion culture. High throughput of 3D-bioprinted constructs will hamper their appli-
cations. Third, the resolution of 3D bioprinting is currently insufficient for the purposes
of reproducing complex hepatic microenvironments. The scale of the printed hydrogel
structure is too large to manipulate cells, and randomly distributed cells in the scaffold
cannot ensure the subtle anisotropy. Moreover, subtle changes in oxygen and nutrient
concentrations are uncontrollable in light of obtaining nutrients by soaking in the medium.
Additionally, the cost of liver 3D bioprinting remains high and it requires precise design
and manufacturing processes, which restricts its development and application worldwide.
Despite these considerations, 3D bioprinting is still a promising and innovative biofabrica-
tion strategy for creating artificial multi-cellular tissues/organs, the innovation of which
possesses the potential to revolutionize medical field and produce scaffolds for tissue and
drug screening, organ transplantation, and even regenerative medicine [166].

Vasculature plays a crucial role in the liver’s function and is essential for maintaining
proper tissue viability and functionality. When it comes to bioprinting liver tissue, one of
the key considerations is the development of functional vasculature within the constructs.
There are some approaches and challenges related to vasculature in bioprinted liver models.

Approaches for vasculature in bioprinted liver models include the follow methods:
(1) Coaxial bioprinting: this approach involves using a coaxial nozzle system to simul-
taneously deposit bioink containing parenchymal cells and another bioink containing
endothelial cells. This enables the creation of prevascularized tissue constructs with a
functional vascular network. (2) Sacrificial materials: bioprinting can involve the use of
sacrificial materials that serve as temporary templates for vessel formation. These materials
can be printed alongside the cells and then removed, leaving behind hollow channels
that can be lined with endothelial cells to create blood vessels. (3) Self-assembly: in this
approach, endothelial cells and supporting cells are allowed to self-assemble into functional
capillary-like structures. By providing appropriate culture conditions, the cells can form
intricate networks, thereby mimicking natural angiogenesis.

Challenges in vasculature in bioprinted liver models include: (1) Vascular network
complexity: peplicating the complex architecture and hierarchical organization of the liver’s
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vasculature is challenging. Bioprinting techniques must accurately recreate the varied vessel
diameters, branching patterns, and connections found in the liver. (2) Integration with host
vasculature: for successful implantation, bioprinted liver tissue must integrate with the
host vasculature. Ensuring proper connection and functionality between the bioprinted
vessels and the existing vascular network poses a challenge. (3) Scale-up and perfusion:
as the size of the bioprinted liver tissue increases, achieving efficient perfusion becomes
crucial. Proper perfusion is necessary to deliver nutrients and oxygen throughout the tissue
construct and remove waste products.

Addressing these challenges in the vascularization of bioprinted liver models is
essential for the development of functional liver tissue constructs that accurately mimic
the native liver’s physiological and metabolic functions. Continued research and inno-
vation in this area will contribute to the advancement of bioprinting technology for liver
tissue engineering.

Faced with these challenges, liver 3D bioprinting can be improved in the following
aspects: (1) Improvement of medical imaging technology. Improved imaging can offer
higher quality raw data for liver 3D bioprinting. High-resolution medical imaging tech-
nique will better represent liver structure and lesion, thus enhancing the accuracy and
quality of 3D-bioprinted models. (2) Selection of optimized materials. Materials mainly
contain ceramics, metals, plastics, and other materials. Selected materials must be more
suitable for reproducing liver structure and lesions, which further improves the simulation
performance of 3D-bioprinted models. (3) Improvement of machine performance. Ele-
vating the resolution and speed of 3D printers will substantially heighten its application
effectiveness and cost-effectiveness. In the future, liver 3D bioprinting can provide novel
methods for prevention and health management of liver diseases. 3D bioprinting models
can prepare high-fidelity liver models for liver surgery training and education to improve
surgical skills of doctors by simulating the real environment, thereby reducing surgical
risks and failure rates. Relative to non-surgical methods, this new method, with better
simulation and operability, will have more applications in liver medicine.

In the future, the combination of organoid and organ-on-chip technologies and 3D
printing will offer great potential for several fields, including regenerative medicine, drug
discovery, and personalized medicine. Micro organoid structures grown in the lab provide
a more physiologically relevant model than traditional two-dimensional cell cultures.
They can mimic the structure and function of human organs, enabling researchers to study
disease mechanisms and test drug responses in a more accurate and personalized way [167].
Integrating 3D printing into organ-on-chip engineering allows for the creation of micro-
organs with heterogeneity, ideal 3D cellular arrangements, tissue-specific functions, and
even circulatory motions in microfluidic devices [168]. In addition, patient-specific organ
models can be created using the patient’s own cells, enabling tailored drug screening and
therapeutic optimization. The combination of organ tissues, organ-on-chip technology, and
3D printing paves the way for personalized medicine [169].

7. Conclusions

3D bioprinting techniques fabricate biomimetic tissues with the usage of biomaterials
and living cells, in a specific pattern or on an existing 3D matrix. A bioartificial liver is one
promising tool for liver diseases, regenerative medicine, and drug testing. Considering
their adaptability to culture environments, high-resolution cell structures, production of
3D scaffolds for cell growth, inkjet printing, extrusion printing, LAB, and vat photopoly-
merization are commonly chosen. Greater efforts are still required to solve the limitations
in replicating actual 3D liver tissue environment during disease modeling, drug discovery,
and regenerative medicine.
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