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Deep Learning Model 

There are multiple deep learning models available for image processing. Each learning model 

differs in its efficiency and footprint. To analyze the relative security of different deep learning 

models in generating physically unclonable functions (PUFs) from the source images, eight models 

were selected from the Keras library for testing [1]. Table S1, content taken directly from the 

Keras library documentation page [2], details the model architecture information, performance 

statistics on a standard benchmark computer vision data set, and inference time on standard 

hardware. This information can be used to estimate the performance of a model on a deployed 

application.   

 

Model Feature 

Vector 

Length 

Size 

(MB) 

Top-1 

Accuracy 

Top-5 

Accuracy 

Params Depth Time (ms) 

per 

inference 

step 

(CPU) 

Time 

(ms) per 

inference 

step 

(GPU) 

ResNet50 2048 98 74.9% 92.1% 25.6M 107 58.2 4.6 

ResNet50V2 2048 98 76.0% 93.0% 25.6M 103 45.6 4.4 

MobileNet 1024 16 70.4% 89.5% 4.3M 55 22.6 3.4 

InceptionV3 2048 14 71.3% 90.1% 3.5M 105 25.9 3.8 

Xception 2048 88 79.0% 94.5% 22.9M 81 109.4 8.1 

DenseNet121 1024 33 75.0% 92.3% 8.1M 242 77.1 5.4 

DenseNet201 1920 80 77.3% 93.6% 20.2M 402 127.2 6.7 

NASNetMobile 1056 23 74.4% 91.9% 5.3M 389 27.0 6.7 

Average ---- 56 74.7% 92.1% 14.4M 185 61.6 5.3 

Table S1: Keras Model Performance Statistics and Specifications [2] 

 

The size of the deep learning models are represented in megabytes (MB). The top-1 and top-5 

accuracy statistics represent the select model’s performance on the ImageNet validation dataset of 

50000 images. The depth of the model represents the network’s topological depth, counting the 

number of parameterized layers. The time per inference step was averaged over 30 batches and 10 

repetitions with a 92 AMD EPYC Processor (with IBPB) CPU, 1.7T RAM, a Tesla A100 GPU, 
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and a batch size of 32 per the conditions. To compute the last row of the table, the arithmetic mean 

of each tested network’s performance in the corresponding column is truncated to the appropriate 

decimal place. Note that the feature vector length is also included in Table 1, required to configure 

the key generation algorithm. As shown in Table S1, ResNet50, the first model tested on the PUFs 

dataset, measures the greatest size in megabytes and parameters, but the time per inference step 

(both CPU and GPU) is comparable to the average for this model dataset. Per the Keras API 

metrics, the most size efficient models tested were InceptionV3, MobileNet, and NASNetMobile 

and the most time efficient models were MobileNet, InceptionV3, and ResNet50V2. 

 

The deep learning model is applied to the high-resolution images of protein self-assembly to 

generate cryptographic keys. This process was repeated for each of the eight select Keras models 

in a Python Jupyter notebook. The set of 54 images was converted to a data stream compatible for 

the deep learning models to ingest. Each image is individually loaded and plotted then converted 

into an array and reshaped. The image encodings are preprocessed to properly scale inputs for 

machine learning. The deep learning model was loaded and a feature list initialized. Note that the 

architecture of these predefined models had to be reconfigured to output the feature vector values, 

achieved by stripping the last five layers from MobileNet and last two layers of all other models. 

The model then iterates over each of the images to predict a feature vector, varying in length 

depending on the architecture, shown in the “Feature Vector Length” column in Table S1. The 

model prediction process outputs a continuous feature vector for each of the source images, where 

each element is a decimal value.  

 

i) Thresholding: The first step in digitization is to find a threshold for binary quantization (0 and 

1). The quantization requires a threshold value for comparison. Since the output of the learning 

model is a floating-point value, the thresholding finds an average value based on the image. The 

threshold value is the mean of the set of vector values. For each image, the value of n= 2048, since 

the ResNet-50 output has 2048 floating-point numbers (vector values). The threshold output will 

be a single floating-point number, the average of 2048 values. The thresholding removes any 

dependency of the source image with similar images; since the threshold value is on a particular 

image. This technique deviates from the other machine learning techniques, which compares 

different images for similarity. In this process, a simple average computation provides the 
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threshold. However, if the quality of the key is inadequate, as discussed in Section 3, then the 

thresholding requires complex computation.  

 

ii) Quantization: The output of thresholding is a non-binary floating point number, but a 

cryptographic key is a binary number. The quantization stage converts the floating-point number 

into a binary number by comparing the individual vector values with the threshold value to 

generate the binary values. Algorithm 1 illustrates the quantization algorithm; a value higher than 

the threshold results in 1, and a value lower than or equal to the threshold is a 0. Since the vector 

has a 2048 floating-point value, the result is a 2048-bit binary number. Thus, binary quantization 

converts floating-pointing vector values into a sequence of binary numbers. 

 

iii) Von Neumann Extractor for debiasing: The 2048-bit binary value from quantization is not 

random and is statistically biased, having an unfair number of zeros or ones. An extractor emanates 

a random and unbiased "strong key" for cryptography. The process uses a Von-Neumann extractor, 

which yields a binary number by comparing two consecutive digits [3]. As shown in Algorithm 2, 

the pair [0, 1] converts to 1, the pair [1, 0] results in 0, and [0, 0] and [1, 1] are ignored. The end 

result is a random debiased binary number suitable to generate a strong key. 

 

iv) Key Derivation Function (KDF): The extractor generates a variable-length key depending on 

the consecutive pair probability. A variable length is unusable for most cryptographic functions 

and requires a 64, 128, or 256-bit key length. The KDF creates a constant key size using the result 

of the extractor. The KDF computes the size by comparing the size of each key in the set. For 

example, the minimum size for the tested sample was 332 bits. The minimum size determines the 

largest possible key size, 256 bits, and truncates the rest of the bits from each key in the set. This 

process yields a 256-bit identity for each source (self-assembly) image which is random, unbiased, 

and cryptographic. 
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Key Validation and Evaluation 

The cryptographic strength of the binary keys generated from PUFs was evaluated using the NIST 

Statistical Test Suite [4]. NIST SP 800-22 outlines a series of statistical tests for measuring 

suitability of random and pseudorandom number generators for cryptographic applications. These 

tests are presented as a first step to determine feasibility in cryptography, noting that statistical 

testing is not a substitution for cryptanalysis [4]. For this experiment, six random number 

generation tests were selected for the evaluation of the binary cryptographic key strength: 

1. Frequency Test measures whether the proportion of ones and zeros over the sequence is 

consistent with that expected from a truly random sequence, approximately 50% zeros and 

50% ones. 

2. Frequency Test within a Block measures the proportion of ones and zeros within a defined 

block length against an optimum 50% zeros and 50% ones. For this experiment, the block 

length is 128. Note then that for 128-bit keys, the frequency and block frequency tests produce 

the same result. 

3. Cumulative Sums Test measures whether the cumulative sum of partial sequences is similar to 

the expected random sequence behavior, adjusting 0-bits to -1 and 1-bits to 1 and summing the 

maximum excursion of a random walk. This test produces an output in forward and reverse 

mode. 

4. Runs Test measures the total number of uninterrupted sequences of identical bits in a sequence, 

bounded before and after a bit with the flipped value. This test utilizes a reference distribution 

to measure the oscillation between ones and zeros. 

5. Test for the Longest Run of Ones in a Block measures whether the longest run of ones within 

blocks is comparable with the longest run of ones in blocks of a random sequence. Given the 

length of the bit strings is 128 and 256, the specification defines the length of each block as 8 

bits. 

6. Approximate Entropy Test measures the frequency of overlapping bit patterns measured across 

the whole sequence. The specification recommends the bit length be set such that 𝑚 <

[𝑙𝑜𝑔2𝑛] − 5 where m is the block length and n is the length of the entire bit sequence. Thus, 

for 256-bit keys, the test measures 2-bit patterns and for 128-bit keys, the test measures 1-bit 

patterns.  
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Table S2 shows the proportion of binary sequences passing the select NIST statistical test for each 

of the key lengths and deep learning architectures tested. The following confidence interval 

equation calculates the threshold of acceptable proportions of sequences passing the randomness 

tests: 𝑝̂ ± 3√
𝑝̂(1−𝑝̂)

𝑚
, where 𝑝̂= 1-α, and m is the sample size 

Model Key 

Length 

Freq Block 

Freq 

Cumulative Sums Runs Longest 

Run 

Approx 

Entropy 

ResNet50 256-bit 100% 100% 100% 100% 98.15% 98.15% 100% 

128-bit 100% 100% 100% 100% 96.30% 100% 94.44% 

ResNet50V2 256-bit null Null null null null null null 

128-bit 100% 100% 100% 100% 98.15% 100% 100% 

MobileNet 256-bit null Null null null null null null 

128-bit 100% 100% 100% 100% 100% 100% 100% 

InceptionV3 256-bit 100% 100% 100% 100% 98.15% 96.30% 100% 

128-bit 100% 100% 100% 100% 100% 100% 100% 

Xception 256-bit 96.30% 98.15% 96.30% 96.30% 100% 98.15% 100% 

128-bit 100% 100% 100% 100% 100% 98.15% 100% 

DenseNet121 256-bit null Null null null null null null 

128-bit 100% 100% 100% 100% 100% 98.15% 100% 

DenseNet201 256-bit null Null null null null null null 

128-bit 100% 100% 100% 100% 98.15% 100% 100% 

NASNetMobile 256-bit null Null null null null null null 

128-bit 100% 100% 100% 100% 100% 98.15% 100% 

Minimum Pass Rate --------- 94.94% 94.94% 94.94% 94.94% 94.94% 94.94% 94.94% 

Table S2: NIST Statistical Test Suite Proportion Results (in green is the selected model) 

 

Note that ⍺ is the significance level, i.e., the probability a conclusion rejects the null hypothesis. 

Per NIST SP 800-22 [2], the null hypothesis under test is that the test sequence behavior mimics 
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that of a random sequence, so ⍺ represents the probability the data is non-random. For this 

experiment, ⍺ is defined as 0.01 and p̂ = 1-0.01 = 0.99. The sample size is 54 binary sequences. 

Given these experimental values, the minimum pass rate is: 

 0.99 −  3√
0.99(1−0.99)

54
= 0.9494 = 94.94% 

The proportion values failing to pass this benchmark are highlighted in red. From Table S2, the 

only deep learning model failing to pass a statistical proportion benchmark (exempting those 

failing to meet the key length requirement) was the 128-bit ResNet50 for the approximate entropy 

test.  

 

Model Key 

Length 

(bits) 

Freq P-

valuer 

 

Block 

Freq P-

valuer 

Cumulative Sums 

P-valuer 

 

Runs P-

valuer 

 

Longest 

Run P-

valuer 

Approx 

Entropy 

P-valuer 

Avg P-

valuer 

 

ResNet50 256 0.040108 0.574903 0.000274 0.023545 0.137282 0.883171 0.574903 0.319169 

128 0.213309 0.213309 0.023545 0.011791 0.006661 0.657933 0.002758 0.161329 

ResNet50

V2 

128 0.020548 0.020548 0.011791 0.015598 0.455937 0.494392 0.010237 0.147007 

MobileN

et 

128 0.035174 0.035174 0.319084 0.236810 0.262249 0.213309 0.213309 0.187873 

Inception

V3 

256 0.883171 0.574903 0.000170 0.236810 0.534146 0.213309 0.319084 0.394513 

128 0.005762 0.005762 0.017912 0.023545 0.051942 0.816537 0.108791 0.147179 

Xception 256 0.005762 0.005762 0.005762 0.005762 0.005762 0.005762 0.289667 0.046320 

128 0.262249 0.262249 0.262249 0.262249 0.262249 0.262249 0.657933 0.318775 

DenseNet

121 

128 0.085587 0.085587 0.035174 0.699313 0.419021 0.262249 0.657933 0.320695 

DenseNet

201 

128 0.015598 0.015598 0.007694 0.002043 0.040108 0.035174 0.494392 0.087230 

NASNet

Mobile 

128 0.011791 0.011791 0.108791 0.096578 0.026948 0.350485 0.085587 0.098853 

Table 3: NIST Statistical Test Suite P-Value Distribution Results (in green is the selected model) 
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Table S3 summarizes the P-value distribution results of the statistical randomness tests, used to 

analyze uniformity. The P-value represents the strength of evidence against the null hypothesis 

under test, i.e. the test sequence is random. Thus, the P-value represents a quantitative measure of 

the key randomness, where a P-value of 1 indicates a perfectly random key and a P-value of 0 

indicates a completely non-random key. To determine if the distribution of the calculated P-values 

adheres to expected random behavior, a Goodness-of-Fit Distributional Test is run over the 54 

calculated P-values to determine a “P-value of P-values” for the given statistical test. First, the 

distribution of P-values in intervals of 0.1 from 0 to 1 is calculated by applying a chi-squared test: 

𝜒2 = ∑
(𝐹𝑖−𝑠/10)2

𝑠/10

10
𝑖=1 , where 𝐹𝑖 is number of P-values in sub-interval i and s is sample size  

For this experiment, the sample size s is 54, the number of cryptographic keys generated from the 

source images. The chi-squared value is then used to calculate the uniformity represented by the 

P-valuer = igamc(9/2, 𝜒2/2) where igamc is the incomplete gamma function given by: 

𝑄(𝑎, 𝑥) =
1

𝛤(𝑎)
∫ 𝑒−𝑡𝑡𝑎−1∞

𝑥
𝑑𝑡, and Γ(a) is the gamma function given by: 𝛤(𝑎) = ∫ 𝑡𝑎−1𝑒−𝑡∞

0
𝑑𝑡. 

As cited by NIST SP 800-22 [2], if P-valuer ≥ 0.0001, the sequences are considered uniformly 

distributed. Note from the specification that 55 sequences is considered the benchmark for 

statistical weight, but only 54 key samples were used for this experiment. This can be improved in 

future iterations.  
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Binary Quantization Algorithm 

The binary quantization of the 54 one-dimensional continuous feature vectors was performed using 

the threshold as follows: 

• If a feature value was greater than the threshold, that binary vector element became “1.”  

• If the feature value was less than or equal to the threshold, the binary vector element 

became “0.”   

Note that given the images and feature vector calculation, these binary vectors are significantly 

biased towards 0-bits. 

 

Von Neumann Extraction 

This randomness extractor parses bit pairs of the input binary vector, performing the following for 

each: 

• If the input is 00 or 11, these bits are discarded. 

• If the input is 01 or 10, only the first bit is preserved (i.e., 0 for 01 and 1 for 10) 
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