
1

Deep-learning-based digitization of protein-self-assembly to form biodegradable physically

unclonable labels for device security

Sayantan Pradhan a, *, Abhi D. Rajagopala b, *, Emma Meno c, *, Stephen Adams c, Carl R. Elks b,

Peter A. Beling c, Vamsi K. Yadavalli a,#

* - These authors contributed equally to the work

a Department of Chemical and Life Science Engineering, Virginia Commonwealth University

b Department of Electrical and Computer Engineering, Virginia Commonwealth University

c Intelligence Systems Division, Virginia Tech National Security Institute, Virginia Tech

- Corresponding Author: vyadavalli@vcu.edu

mailto:vyadavalli@vcu.edu

2

Deep Learning Model

There are multiple deep learning models available for image processing. Each learning model

differs in its efficiency and footprint. To analyze the relative security of different deep learning

models in generating physically unclonable functions (PUFs) from the source images, eight models

were selected from the Keras library for testing [1]. Table S1, content taken directly from the

Keras library documentation page [2], details the model architecture information, performance

statistics on a standard benchmark computer vision data set, and inference time on standard

hardware. This information can be used to estimate the performance of a model on a deployed

application.

Model Feature

Vector

Length

Size

(MB)

Top-1

Accuracy

Top-5

Accuracy

Params Depth Time (ms)

per

inference

step

(CPU)

Time

(ms) per

inference

step

(GPU)

ResNet50 2048 98 74.9% 92.1% 25.6M 107 58.2 4.6

ResNet50V2 2048 98 76.0% 93.0% 25.6M 103 45.6 4.4

MobileNet 1024 16 70.4% 89.5% 4.3M 55 22.6 3.4

InceptionV3 2048 14 71.3% 90.1% 3.5M 105 25.9 3.8

Xception 2048 88 79.0% 94.5% 22.9M 81 109.4 8.1

DenseNet121 1024 33 75.0% 92.3% 8.1M 242 77.1 5.4

DenseNet201 1920 80 77.3% 93.6% 20.2M 402 127.2 6.7

NASNetMobile 1056 23 74.4% 91.9% 5.3M 389 27.0 6.7

Average ---- 56 74.7% 92.1% 14.4M 185 61.6 5.3

Table S1: Keras Model Performance Statistics and Specifications [2]

The size of the deep learning models are represented in megabytes (MB). The top-1 and top-5

accuracy statistics represent the select model’s performance on the ImageNet validation dataset of

50000 images. The depth of the model represents the network’s topological depth, counting the

number of parameterized layers. The time per inference step was averaged over 30 batches and 10

repetitions with a 92 AMD EPYC Processor (with IBPB) CPU, 1.7T RAM, a Tesla A100 GPU,

3

and a batch size of 32 per the conditions. To compute the last row of the table, the arithmetic mean

of each tested network’s performance in the corresponding column is truncated to the appropriate

decimal place. Note that the feature vector length is also included in Table 1, required to configure

the key generation algorithm. As shown in Table S1, ResNet50, the first model tested on the PUFs

dataset, measures the greatest size in megabytes and parameters, but the time per inference step

(both CPU and GPU) is comparable to the average for this model dataset. Per the Keras API

metrics, the most size efficient models tested were InceptionV3, MobileNet, and NASNetMobile

and the most time efficient models were MobileNet, InceptionV3, and ResNet50V2.

The deep learning model is applied to the high-resolution images of protein self-assembly to

generate cryptographic keys. This process was repeated for each of the eight select Keras models

in a Python Jupyter notebook. The set of 54 images was converted to a data stream compatible for

the deep learning models to ingest. Each image is individually loaded and plotted then converted

into an array and reshaped. The image encodings are preprocessed to properly scale inputs for

machine learning. The deep learning model was loaded and a feature list initialized. Note that the

architecture of these predefined models had to be reconfigured to output the feature vector values,

achieved by stripping the last five layers from MobileNet and last two layers of all other models.

The model then iterates over each of the images to predict a feature vector, varying in length

depending on the architecture, shown in the “Feature Vector Length” column in Table S1. The

model prediction process outputs a continuous feature vector for each of the source images, where

each element is a decimal value.

i) Thresholding: The first step in digitization is to find a threshold for binary quantization (0 and

1). The quantization requires a threshold value for comparison. Since the output of the learning

model is a floating-point value, the thresholding finds an average value based on the image. The

threshold value is the mean of the set of vector values. For each image, the value of n= 2048, since

the ResNet-50 output has 2048 floating-point numbers (vector values). The threshold output will

be a single floating-point number, the average of 2048 values. The thresholding removes any

dependency of the source image with similar images; since the threshold value is on a particular

image. This technique deviates from the other machine learning techniques, which compares

different images for similarity. In this process, a simple average computation provides the

4

threshold. However, if the quality of the key is inadequate, as discussed in Section 3, then the

thresholding requires complex computation.

ii) Quantization: The output of thresholding is a non-binary floating point number, but a

cryptographic key is a binary number. The quantization stage converts the floating-point number

into a binary number by comparing the individual vector values with the threshold value to

generate the binary values. Algorithm 1 illustrates the quantization algorithm; a value higher than

the threshold results in 1, and a value lower than or equal to the threshold is a 0. Since the vector

has a 2048 floating-point value, the result is a 2048-bit binary number. Thus, binary quantization

converts floating-pointing vector values into a sequence of binary numbers.

iii) Von Neumann Extractor for debiasing: The 2048-bit binary value from quantization is not

random and is statistically biased, having an unfair number of zeros or ones. An extractor emanates

a random and unbiased "strong key" for cryptography. The process uses a Von-Neumann extractor,

which yields a binary number by comparing two consecutive digits [3]. As shown in Algorithm 2,

the pair [0, 1] converts to 1, the pair [1, 0] results in 0, and [0, 0] and [1, 1] are ignored. The end

result is a random debiased binary number suitable to generate a strong key.

iv) Key Derivation Function (KDF): The extractor generates a variable-length key depending on

the consecutive pair probability. A variable length is unusable for most cryptographic functions

and requires a 64, 128, or 256-bit key length. The KDF creates a constant key size using the result

of the extractor. The KDF computes the size by comparing the size of each key in the set. For

example, the minimum size for the tested sample was 332 bits. The minimum size determines the

largest possible key size, 256 bits, and truncates the rest of the bits from each key in the set. This

process yields a 256-bit identity for each source (self-assembly) image which is random, unbiased,

and cryptographic.

5

Key Validation and Evaluation

The cryptographic strength of the binary keys generated from PUFs was evaluated using the NIST

Statistical Test Suite [4]. NIST SP 800-22 outlines a series of statistical tests for measuring

suitability of random and pseudorandom number generators for cryptographic applications. These

tests are presented as a first step to determine feasibility in cryptography, noting that statistical

testing is not a substitution for cryptanalysis [4]. For this experiment, six random number

generation tests were selected for the evaluation of the binary cryptographic key strength:

1. Frequency Test measures whether the proportion of ones and zeros over the sequence is

consistent with that expected from a truly random sequence, approximately 50% zeros and

50% ones.

2. Frequency Test within a Block measures the proportion of ones and zeros within a defined

block length against an optimum 50% zeros and 50% ones. For this experiment, the block

length is 128. Note then that for 128-bit keys, the frequency and block frequency tests produce

the same result.

3. Cumulative Sums Test measures whether the cumulative sum of partial sequences is similar to

the expected random sequence behavior, adjusting 0-bits to -1 and 1-bits to 1 and summing the

maximum excursion of a random walk. This test produces an output in forward and reverse

mode.

4. Runs Test measures the total number of uninterrupted sequences of identical bits in a sequence,

bounded before and after a bit with the flipped value. This test utilizes a reference distribution

to measure the oscillation between ones and zeros.

5. Test for the Longest Run of Ones in a Block measures whether the longest run of ones within

blocks is comparable with the longest run of ones in blocks of a random sequence. Given the

length of the bit strings is 128 and 256, the specification defines the length of each block as 8

bits.

6. Approximate Entropy Test measures the frequency of overlapping bit patterns measured across

the whole sequence. The specification recommends the bit length be set such that 𝑚 <

[𝑙𝑜𝑔2𝑛] − 5 where m is the block length and n is the length of the entire bit sequence. Thus,

for 256-bit keys, the test measures 2-bit patterns and for 128-bit keys, the test measures 1-bit

patterns.

6

Table S2 shows the proportion of binary sequences passing the select NIST statistical test for each

of the key lengths and deep learning architectures tested. The following confidence interval

equation calculates the threshold of acceptable proportions of sequences passing the randomness

tests: 𝑝̂ ± 3√
𝑝̂(1−𝑝̂)

𝑚
, where 𝑝̂= 1-α, and m is the sample size

Model Key

Length

Freq Block

Freq

Cumulative Sums Runs Longest

Run

Approx

Entropy

ResNet50 256-bit 100% 100% 100% 100% 98.15% 98.15% 100%

128-bit 100% 100% 100% 100% 96.30% 100% 94.44%

ResNet50V2 256-bit null Null null null null null null

128-bit 100% 100% 100% 100% 98.15% 100% 100%

MobileNet 256-bit null Null null null null null null

128-bit 100% 100% 100% 100% 100% 100% 100%

InceptionV3 256-bit 100% 100% 100% 100% 98.15% 96.30% 100%

128-bit 100% 100% 100% 100% 100% 100% 100%

Xception 256-bit 96.30% 98.15% 96.30% 96.30% 100% 98.15% 100%

128-bit 100% 100% 100% 100% 100% 98.15% 100%

DenseNet121 256-bit null Null null null null null null

128-bit 100% 100% 100% 100% 100% 98.15% 100%

DenseNet201 256-bit null Null null null null null null

128-bit 100% 100% 100% 100% 98.15% 100% 100%

NASNetMobile 256-bit null Null null null null null null

128-bit 100% 100% 100% 100% 100% 98.15% 100%

Minimum Pass Rate --------- 94.94% 94.94% 94.94% 94.94% 94.94% 94.94% 94.94%

Table S2: NIST Statistical Test Suite Proportion Results (in green is the selected model)

Note that ⍺ is the significance level, i.e., the probability a conclusion rejects the null hypothesis.

Per NIST SP 800-22 [2], the null hypothesis under test is that the test sequence behavior mimics

7

that of a random sequence, so ⍺ represents the probability the data is non-random. For this

experiment, ⍺ is defined as 0.01 and p̂ = 1-0.01 = 0.99. The sample size is 54 binary sequences.

Given these experimental values, the minimum pass rate is:

 0.99 − 3√
0.99(1−0.99)

54
= 0.9494 = 94.94%

The proportion values failing to pass this benchmark are highlighted in red. From Table S2, the

only deep learning model failing to pass a statistical proportion benchmark (exempting those

failing to meet the key length requirement) was the 128-bit ResNet50 for the approximate entropy

test.

Model Key

Length

(bits)

Freq P-

valuer

Block

Freq P-

valuer

Cumulative Sums

P-valuer

Runs P-

valuer

Longest

Run P-

valuer

Approx

Entropy

P-valuer

Avg P-

valuer

ResNet50 256 0.040108 0.574903 0.000274 0.023545 0.137282 0.883171 0.574903 0.319169

128 0.213309 0.213309 0.023545 0.011791 0.006661 0.657933 0.002758 0.161329

ResNet50

V2

128 0.020548 0.020548 0.011791 0.015598 0.455937 0.494392 0.010237 0.147007

MobileN

et

128 0.035174 0.035174 0.319084 0.236810 0.262249 0.213309 0.213309 0.187873

Inception

V3

256 0.883171 0.574903 0.000170 0.236810 0.534146 0.213309 0.319084 0.394513

128 0.005762 0.005762 0.017912 0.023545 0.051942 0.816537 0.108791 0.147179

Xception 256 0.005762 0.005762 0.005762 0.005762 0.005762 0.005762 0.289667 0.046320

128 0.262249 0.262249 0.262249 0.262249 0.262249 0.262249 0.657933 0.318775

DenseNet

121

128 0.085587 0.085587 0.035174 0.699313 0.419021 0.262249 0.657933 0.320695

DenseNet

201

128 0.015598 0.015598 0.007694 0.002043 0.040108 0.035174 0.494392 0.087230

NASNet

Mobile

128 0.011791 0.011791 0.108791 0.096578 0.026948 0.350485 0.085587 0.098853

Table 3: NIST Statistical Test Suite P-Value Distribution Results (in green is the selected model)

8

Table S3 summarizes the P-value distribution results of the statistical randomness tests, used to

analyze uniformity. The P-value represents the strength of evidence against the null hypothesis

under test, i.e. the test sequence is random. Thus, the P-value represents a quantitative measure of

the key randomness, where a P-value of 1 indicates a perfectly random key and a P-value of 0

indicates a completely non-random key. To determine if the distribution of the calculated P-values

adheres to expected random behavior, a Goodness-of-Fit Distributional Test is run over the 54

calculated P-values to determine a “P-value of P-values” for the given statistical test. First, the

distribution of P-values in intervals of 0.1 from 0 to 1 is calculated by applying a chi-squared test:

𝜒2 = ∑
(𝐹𝑖−𝑠/10)2

𝑠/10

10
𝑖=1 , where 𝐹𝑖 is number of P-values in sub-interval i and s is sample size

For this experiment, the sample size s is 54, the number of cryptographic keys generated from the

source images. The chi-squared value is then used to calculate the uniformity represented by the

P-valuer = igamc(9/2, 𝜒2/2) where igamc is the incomplete gamma function given by:

𝑄(𝑎, 𝑥) =
1

𝛤(𝑎)
∫ 𝑒−𝑡𝑡𝑎−1∞

𝑥
𝑑𝑡, and Γ(a) is the gamma function given by: 𝛤(𝑎) = ∫ 𝑡𝑎−1𝑒−𝑡∞

0
𝑑𝑡.

As cited by NIST SP 800-22 [2], if P-valuer ≥ 0.0001, the sequences are considered uniformly

distributed. Note from the specification that 55 sequences is considered the benchmark for

statistical weight, but only 54 key samples were used for this experiment. This can be improved in

future iterations.

9

Binary Quantization Algorithm

The binary quantization of the 54 one-dimensional continuous feature vectors was performed using

the threshold as follows:

• If a feature value was greater than the threshold, that binary vector element became “1.”

• If the feature value was less than or equal to the threshold, the binary vector element

became “0.”

Note that given the images and feature vector calculation, these binary vectors are significantly

biased towards 0-bits.

Von Neumann Extraction

This randomness extractor parses bit pairs of the input binary vector, performing the following for

each:

• If the input is 00 or 11, these bits are discarded.

• If the input is 01 or 10, only the first bit is preserved (i.e., 0 for 01 and 1 for 10)

10

References:

1. Ketkar, N. and N. Ketkar, Introduction to keras. Deep learning with python: a hands-on

introduction, 2017: p. 97-111.

2. Team, Keras., Keras documentation: Keras applications.

URL: https://keras.io/api/applications/, 2020.

3. Seepers, R.M., et al. On using a von neumann extractor in heart-beat-based security. in 2015

IEEE Trustcom/BigDataSE/ISPA. 2015. IEEE.

4. Rukhin, A., et al., A statistical test suite for random and pseudorandom number generators for

cryptographic applications. 2001, Booz-allen and hamilton inc mclean va.

