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Abstract: Atomic force microscopy (AFM) is a powerful tool for characterizing biological materials
at the nanoscale utilizing the AFM nanoindentation method. When testing biological materials,
spherical indenters are typically employed to reduce the possibility of damaging the sample. The
accuracy of determining Young’s modulus depends, among other factors, on the calibration of the
indenter, i.e., the determination of the tip radius. This paper demonstrates that the tip radius can
be approximately calculated using a single force–indentation curve on an unknown, soft sample
without performing any additional experimental calibration process. The proposed method is
based on plotting a tangent line on the force indentation curve at the maximum indentation depth.
Subsequently, using equations that relate the applied force, maximum indentation depth, and the
tip radius, the calculation of the tip radius becomes trivial. It is significant to note that the method
requires only a single force–indentation curve and does not necessitate knowledge of the sample’s
Young’s modulus. Consequently, the determination of both the sample’s Young’s modulus and the
tip radius can be performed simultaneously. Thus, the experimental effort is significantly reduced.
The method was tested on 80 force–indentation curves obtained on an agarose gel, and the results
were accurate.

Keywords: calibration of spherical indenters; mechanical properties; biological materials; data
processing; AFM grating; intelligent AFM systems

1. Introduction

Atomic force microscopy (AFM) is a powerful tool that enables imaging and mechani-
cal characterization of soft materials at the nanoscale [1,2]. Using the AFM nanoindentation
method, Young’s modulus maps on biological materials can be created and used for the
diagnosis of various diseases [2,3]. In particular, groundbreaking research has shown
that utilizing the AFM nanoindentation method can lead to the discrimination of cells as
normal or cancerous [4]; to the characterization of human tissues as normal, benign or ma-
lignant [5,6]; to the early diagnosis of osteoarthritis [7]; to the mechanical characterization
of proteins [8,9] and viruses [10]; and so on. The significant advantage of this approach lies
in its user-independent disease diagnosis, which can be executed through mathematical
criteria and automated computational processes. Nonetheless, several challenges remain to
be addressed prior to the complete use of AFM technology in clinical activities [11]. The
principal goal regarding the AFM research on biological materials is to develop a reliable
system used to characterize biological materials such as cells and tissues at the nanoscale
and used for medical purposes. Towards this direction it is essential to develop intelligent
systems in order to reduce the complexity and the experimental effort. An AFM nanoin-
dentation experiment, requires the calibration of the AFM tip used for the experiments (i.e.,
the determination of the indenter’s dimensions). In many cases, a spherical indenter is
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preferred, since it reduces the possibility of damaging the soft biological material. Thus, it
is essential to determine the indenter’s radius prior each experiment. When testing soft
biological materials at the nanoscale using spherical indenters (and assuming that the
indenter is orders of magnitude stiffer than the sample), the classical Hertz equation is
commonly employed for data processing [12]:

F =
4
3

E
(1 − v2)

R1/2h3/2 (1)

In Equation (1), F is the applied force on the sample, h is the indentation depth, R is the
indenter’s radius, and E, v are the Young’s modulus and the Poisson’s ratio of the material,
respectively. However, Equation (1) is only valid for small indentation depths compared
to the tip’s radius (h � R) [12]. The accurate equation that relates the applied force to the
indentation depth was firstly derived by Sneddon and is presented below [13]:

F =
E

2(1 − v2)

[(
r2

c + R2
)

ln
(

R + rc

R − rc

)
− 2rcR

]
(2)

In Equation (2), rc is the radius at contact depth (hc) [14]. In addition, the indentation
depth is related to the contact radius with the following equation [13]:

ln
(

R + rc

R − rc

)
=

2h
rc

(3)

Equations (2) and (3) do not provide a direct relation between the applied force and
the indentation depth. Thus, a new equation was recently derived [15]. The idea was to
write Equation (3) as follows:

h
R

=
1
2

rc

R
ln
(

1 + rc
R

1 − rc
R

)
(4)

Subsequently, the rc
R = f

(
h
R

)
function was fitted to a simple equation of the form [15]:

rc

R
= c1

(
h
R

)1/2
+ c2

(
h
R

)
+ c3

(
h
R

)2
+ c4

(
h
R

)3
+ · · ·+ cN

(
h
R

)N−1
(5)

In Equation (5), c1, c2, . . . , cN are constants that depend on the hmax/R ratio and can
be found in [15]. Equation (5) was substituted to the general differential equation that is
valid for every axisymmetric indenter [16]:

dF
dh

=
2E

1 − v2 rc (6)

Subsequently, the solution of differential Equation (6) results in

F =
2ER

1 − v2 hQ (7)

In Equation (7), Q is defined as follows [15]:

Q =
2
3

c1R−1/2h1/2 +
1
2

c
2
R−1h +

1
3

c3R−2h2 +
1
4

c4R−3h3 + · · ·+ 1
N

cN R1−NhN−1 (8)

It is important to note that Equations (2) and (7) yield identical results, as shown
in Figure 1a,b. The functions F

2E∗R2 = f
(

h
R

)
obtained from Equations (2) and (7) are

presented for comparison (where, E∗ = E
1−v2 is the sample’s reduced modulus). For

0 ≤ h/R ≤ 1.32, N = 3 and c1 = 1.022, c2 = −0.1133, c3 = −0.0742 (Figure 1a) [15].
For 0 ≤ h/R ≤ 4.9512, N = 6 and c1 = 1.0100000, c2 = −0.0730300, c3 = −0.1357000,
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c4 = 0.0359800, c5 = −0.0040240, c6 = 0.0001653 (Figure 1b) [15]. It is important to further
note that the latter case (N = 6) is applicable in any scenario [15]. However, it is too
complicated. Therefore, in conventional experiments, the values N = 3 and c1 = 1.022,
c2 = −0.1133, c3 = −0.0742 are not only precise but also greatly reduce complexity.
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In addition, the F
2E∗R2 = f

(
h
R

)
functions when using Equations (1) and (7) are shown

comparatively in Figure 1c for the domain 0 ≤ h
R ≤ 0.25 and in Figure 1d for the domain

0 ≤ h
R ≤ 1.32. If Equation (1) is used instead of Equation (7) for hmax/R = 1, the error in the

Young’s modulus calculation will be approximately 10%. Therefore, when conducting AFM
nanoindentation tests on soft materials with spherical indenters, the most suitable equation
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for fitting the force–indentation data is Equation (7). However, it will be demonstrated that
the preference for Equation (7) over Equation (1) is not solely based on avoiding errors
in Young’s modulus calculation. As already mentioned, the determination of the Young’s
modulus of the tested material necessitates knowledge of the tip radius. The tip radius
is usually determined using scanning electron microscopy (SEM) imaging [17] or AFM
gratings [18]. This represents an extra experimental stage in AFM indentation experiments,
considerably extending the time needed to determine the mechanical properties of the
material. This is due to the necessity of using a new indenter for each experiment to prevent
contamination or changes in the tip’s shape or dimensions (hence, prior to any experiment,
a new calibration process is essential). In addition, even one additional experimental step
increases the possibilities of contaminating the AFM tip.

This paper will demonstrate that by employing a single force–indentation curve, it
is possible to determine both the tip radius and the Young’s modulus. Hence, the need
for additional experimental processes for tip calibration can be readily circumvented.
Therefore, the significant benefit of fitting the data to Equation (7), in addition to the offered
accuracy in comparison to Equation (1), is the potential to conduct an AFM tip calibration
without requiring any supplementary experimental procedures.

2. Materials and Methods
2.1. A New Model for Processing Force—Indentation Curves

When employing spherical indenters, the data adhere to Equations (7) and (8). How-
ever, in the majority of cases, the maximum indentation depth is hmax ≤ R. It has been
previously demonstrated that for hmax

R ≤ 1.32 [15]:

F =
2E

1 − v2

(
2
3

c1R1/2h3/2 +
1
2

c2h2 +
1
3

c3R−1h3
)

(9)

As already mentioned in the introduction, the constants c1, c2, c3, for the domain
hmax/R ≤ 1.32, are c1 = 1.022, c2 = −0.1133, c3 = −0.0742 [15]. The slope of the force—
indentation curve at any given point is defined as the contact stiffness:

dF
dh

=
2ER

1 − v2

[
c1

(
h
R

)1/2
+ c2

(
h
R

)
+ c3

(
h
R

)2
]

(10)

The contact stiffness at the maximum indentation depth is presented below:

S =
dF
dh

∣∣∣∣
hmax

S =
2ER

1 − v2

[
c1

(
hmax

R

)1/2
+ c2

(
hmax

R

)
+ c3

(
hmax

R

)2
]
=

2E
1 − v2

(
c1R

1
2 h

1
2
max + c2hmax + c3R−1h2

max

)
(11)

Furthermore, the equation of the tangent line to the force–indentation curve at h = hmax
is given by:

F = Sh + b (12)

In Equation (12), b represents the point of intersection between the tangent line (12)
and the force axis. By substituting h = hmax into Equation (12), the value of b can be
readily calculated:

Fmax = Shmax + b=> b = Fmax − Shmax (13)

In addition, using also Equations (9) and (11),

b =
2E

1 − v2

(
2
3

c1R
1
2 h

3
2
max +

1
2

c2h2
max +

1
3

c3R−1h3
max

)
− 2E

1 − v2

(
c1R

1
2 h

3
2
max + c2h2

max + c3R−1h3
max

)
Thus,

b = − 2E
1 − v2

(
1
3

c1R
1
2 h

3
2
max +

1
2

c2h2
max +

2
3

c3R−1h3
max

)
(14)
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Equation (14) leads to an interesting conclusion; the Young’s modulus can be easily
calculated by plotting the tangent line of the force indentation curve at the point h = hmax.
By utilizing a linear fit to the tangent line, b, S can be determined as fitting coefficients.
Subsequently, the Young’s modulus can be easily calculated using Equation (14), assuming
that the sample’s Poisson’s ratio is known.

The analysis can be extended by calculating the point of intersection between the
tangent line (Equation (12)) and the indentation axis. At the point of intersection F = 0, thus

hcom. = − b
S

(15)

By combining Equations (11), (14) and (15), it is concluded

hcom. =
1
3 c1R

1
2 h

3
2
max +

1
2 c2h2

max +
2
3 c3R−1h3

max

c1R
1
2 h

1
2
max + c2hmax + c3R−1h2

max

(16)

Equation (16) yields an intriguing outcome. If the point of intersection between the
tangent line and the indentation axis is determined, the indenter’s radius can be calculated
using Equation (16). This outcome holds significance as the indenter’s radius can be
calculated without requiring knowledge of the sample’s Young’s modulus. Therefore, by
employing Equation (16), the indenter’s radius can be ascertained, followed by an easy
calculation of the Young’s modulus using Equation (14). The procedure is also presented in
Figure 1a and is summarized as follows. If hmax

R ≤ 1.32, the force indentation data can be
fitted to a simple equation of the form

F = ah3/2 + bh2 + ch3, a > 0, b < 0, c < 0 (17)

In Equation (17), a, b, c are fitting parameters. Subsequently, the tangent line (Equation (12))
is plotted at the point h = hmax of the fitted curve. The factors b, S are determined as
fitting parameters and the tip radius and the Young’s modulus are calculated using the
Equations (16) and (14), respectively. Equations (14) and (16) represent simplified forms of
the general case for hmax

R ≤ 1.32 and are applicable to the majority of cases. In addition, it is
straightforward to determine the suitability of the set of Equations (14) and (16), for the exper-
iments by observing the nominal tip radius. For example, let us assume that the nominal tip
radius provided by the manufacturer is 1 µm. If the maximum indentation depth is significantly
smaller (e.g., ∼0.5 µm), then it is safe to use the simplified Equations (14) and (16). However, it
is significant to note that the method has no restrictions regarding the maximum indentation
depth and it can be also applied for any hmax

R ratio. The general case is presented below:

F =
2E

1 − v2

(
2
3

c1R1/2h3/2 +
1
2

c2h2 +
1
3

c3R−1h3 + · · ·+ 1
N

cN R2−NhN
)

(18)

For example, for hmax
R ≤ 4.9512, N = 6, c1 = 1.0100000, c2 = −0.0730300,

c3 = −0.1357000, c4 = 0.0359800, c5 = −0.0040240, and c6 = 0.0001653 [15] (as also
mentioned in the introduction). Thus, in this case, the contact stiffness at h = hmax is given
by the following equation:

S =
2E

1 − v2

(
c1R

1
2 h

1
2
max + c2hmax + c3R−1h2

max + · · ·+ cN R2−NhN−1
max

)
(19)

Furthermore, Equation (14) is also adjusted as shown below:

b = − 2E
1 − v2

(
1
3

c1R
1
2 h

3
2
max +

1
2

c2h2
max +

2
3

c3R−1h3
max + · · ·+ N − 1

N
cN R2−NhN

max

)
(20)
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Thus, the point of intersection between the tangent line and the indentation axis becomes

hcom. =
1
3 c1R

1
2 h

3
2
max +

1
2 c2h2

max +
2
3 c3R−1h3

max + · · ·+ N−1
N cN R2−NhN

max

c1R
1
2 h

1
2
max + c2hmax + c3R−1h2

max + · · ·+ cN R2−NhN−1
max

(21)

Furthermore, Equation (21) can be expressed as follows:

hcom.

R
=

1
3 c1

(
hmax

R

)3/2
+ 1

2 c2

(
hmax

R

)2
+ 2

3 c3

(
hmax

R

)3
+ · · ·+ N−1

N cN

(
hmax

R

)N

c1

(
hmax

R

) 1
2
+ c2

(
hmax

R

)
+ c3

(
hmax

R

)2
+ · · ·+ cN

(
hmax

R

)N−1
(22)

The graphical representation of Equation (22) is presented in Figure 2b. It is interesting
to note that for big hmax

R ratios, hcom.
R tends to a limit value which its equal to 0.5. In addition,

Equation (20) can be also written in the form

b
2E∗R2 = −

[
1
3

c1

(
hmax

R

)3/2
+

1
2

c2

(
hmax

R

)2
+

2
3

c3

(
hmax

R

)3
+ · · ·+ N − 1

N
cN

(
hmax

R

)N
]
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Figure 2. (a) The blue curve represents the force–indentation curve. The red dotted line represents
the tangent line at the point h = hmax. The slope of the tangent line equals to the contact stiffness at
h = hmax (i.e., S = tan(θ)). The slope, S, and the point of intersection between the tangent line and
the force axis, denoted as b, are determined as fitting parameters. Subsequently, the indenter’s radius
can be calculated using Equation (16). Lastly, the Young’s modulus is determined using Equation (14).

(b) The hcom.
R = f

(
hmax

R

)
function. (c) The b

2E∗R2 = f
(

hmax
R

)
function.

The b
2E∗R2 = f

(
hmax

R

)
function is presented in Figure 2c. For big hmax

R ratios the

factor b
2E∗R2 tends to −0.5. However, it is crucial to note that attaining the limit values is

challenging in real experiments. For example, the probability of a plastic deformation is
high in such cases. However, they present significant mathematical interest and can be used
for a deeper understanding of the underlying theory. For example, assume that hmax

R = 5.
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In this case, hcom.
R = 0.5. This result can be used as a paradigm to realize that the relation

between hcom. and hmax does not depend on the Young’s modulus value. This outcome is of
paramount significance, as the method’s reliability is not contingent on the sample type
when it comes to calculating R. It is also noteworthy that the independence of the relation
between hcom. and hmax from the Young’s modulus applies to any indentation depth, as
indicated by Equation (21).

2.2. AFM Indentation Experiments on an Agarose Gel
2.2.1. Contact Point Determination

In AFM indentation experiments on biological samples, a critical aspect affecting result
accuracy is the determination of the contact point between the tip and the sample. For
precise determination of the contact point, the AtomicJ software (https://sourceforge.net/
projects/jrobust/) was utilized [19]. The procedure is straightforward: each point of the
curve is taken as a trial contact point, a polynomial is fitted to the precontact section, and
the suitable contact model is applied to the force–indentation data [19]. The tested point
that resulted in the lowest total sum of squares is considered as the contact point [19].

2.2.2. Measurements

Spherical indenters (borosilicate glass spheres with Young’s modulus 64 GPa) were
employed for the AFM indentation experiments (CP-PNPL-BSG-A, sQube, obtained from
NanoAndMore GMBH, Wetzlar, Germany). The nominal tip radius of such an indenter, as
specified by the manufacturer, is 1 µm with a deviation of ±10% (i.e., 0.9 µm ≤ R ≤ 1.1 µm).
The indenters were calibrated prior to the experiments using the AFM test grating TGT1
from NT-MDT Instruments. For precise quantitative measurements, it is necessary to
calibrate the probe parameters. To calibrate the laser detection system’s sensitivity in terms
of nanometer deflection per volt signal, a force vs. distance curve on mica was firstly
obtained [20]. By positioning two cursors on the contact section of the force vs. distance
curve, the deflection sensitivity was determined [20]. The spring’s constant determination
was performed using the thermal noise method. The experiments were performed on
agarose gels with concentration 2.5% in a 35 mm petri dish. The Poisson’s ratio of the
agarose gel can be considered equal to v = 0.5 due to the high-water content. The Young’s
modulus was calculated through conventional fitting procedures using Equation (9) (and
using also the measured R-value), as well as employing the method proposed in this paper
(i.e., fitting the tangent line to Equation (12) and subsequently employing Equation (16) to
determine the tip radius and (14) to determine the Young’s modulus).

3. Results

An example illustrating the application of the proposed method is provided below.
The experiment was performed using a spherical tip with a nominal radius equal to 1 µm.
The tip was calibrated using an AFM grating as described in Section 2.2.2, and the result
was Rmeas. = 0.92 µm (this result is within the ±10% range provided by the manufacturer,
0.9 µm ≤ Rmeas. ≤ 1.1 µm). The calibration of the spherical indenter using the AFM grating
is presented in Figure 3. The force-indentation data are shown in Figure 4a. The data were
fitted to Equation (17):

F = 281h3/2 − 23340h2 − 1.019·1010h3 (S.I.) (24)

The R-squared coefficient resulted in R2
s.c. = 0.9808. The force-indentation data and

the fitted curve (Equation (24)) are presented comparatively in Figure 4a. Subsequently, the
tangent line at h = hmax = 432 nm was plotted.

The tangent line is described by the following Equation (Figure 4b):

Ftang. = 0.2505h − 3.363·10−8 (S.I.) (25)

https://sourceforge.net/projects/jrobust/
https://sourceforge.net/projects/jrobust/
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Thus, S = 0.2505 N/m, b = −3.363·10−8 N and hcom. = − b
S = 1.342·10−7 m. In

addition, Equation (16) is written as follows:

1.342·10−7 =
1
3 1.022

(
43.2·10−8) 3

2 R
1
2 − 1

2 0.1133
(
43.2·10−8)2 − 2

3 0.0742
(
43.2·10−8)3R−1

1.022(43.2·10−8)
1
2 R

1
2 − 0.1133·43.2·10−8 − 0.0742(43.2·10−8)

2R−1
(26)

Equation (26) can be easily solved using any basic software (e.g., Matlab). The tip
radius resulted in R = 0.921·10−6 m = 0.921 µm. This result is nearly identical to the value
that was measured using the AFM grating.

A graphical solution of Equation (26) is also presented in Figure 4c. In particular, the
functions

y1(R) = 1.342·10−7m and

y2(R) =
1
3 1.022

(
43.2·10−8) 3

2 R
1
2 − 1

2 0.1133
(
43.2·10−8)2 − 2

3 0.0742
(
43.2·10−8)3R−1

1.022(43.2·10−8)
1
2 R

1
2 − 0.1133·43.2·10−8 − 0.0742(43.2·10−8)

2R−1

were plotted within the domain 0.8·10−6 m ≤ R ≤ 1.2·10−6 m. The common point of the
two functions is R = 0.921·10−6 m. In addition, it is also easy to calculate the Young’s
modulus using Equation (14):

3.363·10−8 =
2E

1 − 0.52

[
1
3

1.022
(

43.2·10−8
) 3

2
(

0.921·10−6
) 1

2 − 1
2

0.1133
(

43.2·10−8
)2

− 2
3

0.0742
(

43.2·10−8
)3(

0.921·10−6
)−1

]
(27)

By solving Equation (27), the Young’s modulus resulted in E = 132.5 kPa. Three
additional paradigms are also presented in Figure 5. To validate the accuracy of the method,
an additional 76 force–indentation curves were also processed. The results are shown in
Figure 6. Figure 6a displays the outcomes concerning the tip radius. The mean ± standard
deviation value resulted in 0.9184 µm ± 0.0135 µm, which is in agreement with the result
obtained using the AFM grating. A histogram of the R-values is also presented in Figure 6b.
In Figure 6c, the Young’s modulus values as calculated using the proposed by this paper
approach (Equations (14) and (16)) and using a classic fitting procedure are presented for
comparison. The results are nearly identical.
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Figure 3. Calibration of the spherical tip using the AFM grating. The tip radius resulted in
R = 0.92 µm.
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Figure 4. A paradigm of the proposed method. (a) The force-indentation data were fitted to
Equation (17) (F = 281h3/2 + 23340h2 + 1.019·1010h3, R2

s.c. = 0.9808). (b) The tangent line at the
maximum indentation depth h = hmax = 432 nm was plotted. The point of intersection between the
line and the F-axis is b = −3.363·10−8 N and the point of intersection between the line and the h-axis
is hcom. = 1.342·10−7 m. (c) A graphical solution of Equation (26).
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Figure 6. Evaluating the reliability of the proposed method. (a) The determination of the in-
denter’s radius using 80 measurements. The mean ± standard deviation value obtained was
0.9184 µm ± 0.0135 µm, which agrees with the tip radius measurement obtained using the AFM
grating. (b) A histogram constructed using the values presented in (a). (c) The Young’s modulus was
calculated using the method proposed in this paper and a conventional fitting procedure. The results
from the two methods were nearly identical.
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4. Discussion

In this paper, a new method is presented that allows for the determination of the
Young’s modulus of soft biological materials without the need for an experimental cal-
ibration procedure for the AFM tip. When using spherical indenters, the radius of the
indenter can be readily calculated by employing the tangent line of the fitted curve of
the force–indentation data at h = hmax. More specifically, the point of intersection be-
tween the tangent line and the indentation axis can unveil the value of R (as defined in
Equations (16) and (21)). Subsequently, by utilizing the point of intersection of the tangent
line with the force axis, the Young’s modulus can be readily determined (as described
in Equations (14) and (20)). The proposed approach is reliable, as the results were nearly
identical to those obtained using conventional methods, such as tip calibration through an
AFM grating and Young’s modulus determination using traditional fitting procedures. The
application of the new method requires solving Equations (16) and (14) (or (21) and (20)
in the general case). Furthermore, utilizing Equation (22), an equation that establishes
a numerical relationship between the ratio hcom.

hmax
and the ratio hmax

R can be derived. The
hmax

R = f
(

hcom.
hmax

)
data are presented in Figure 7a. This is a noteworthy finding, as the data

can be fitted to a polynomial curve to derive a straightforward equation that establishes a
relationship between hcom.

hmax
with hmax

R within the specified domain of interest.
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For example, the data hmax
R = f

(
hcom.
hmax

)
were fitted to the function (for the domain

0 ≤ h/R ≤ 1.32):

hmax

R
= p4

(
hcom.

hmax

)4
+ p3

(
hcom.

hmax

)3
+ p2

(
hcom.

hmax

)2
+ p1

hcom.

hmax
+ p0 (28)

The fit was perfect (R2
s.c. = 1.0000). The fitting coefficients are as follows: p4 = −8149,

p3 = 8816, p2 = −3592 and p1 = 637.3 and p0 = −39.27. This is a significant result, as
Equation (28) can be used to determine the tip radius after graphically estimating the point hcom.
For example, let us consider the case introduced at the beginning of the results section (depicted
in Figure 4). In this example, hcom. = 134.2 nm and hmax = 432 nm. Thus, hcom.

hmax
= 0.3106.

By employing Equation (28), it is straightforward to calculate that hmax
R = 0.4691. Thus,

R = 0.921 µm. Furthermore, to enhance the ease of applying the proposed method, two
tables presenting the data for hmax

R = f
(

hcom.
hmax

)
are also provided. In Table 1, the values of

hmax
R = f

(
hcom.
hmax

)
are presented within the domain of 0.01 ≤ h/R ≤ 1.32, and in Table 2, within

the domain 0.05 ≤ h/R ≤ 5.00.

Table 1. The hcom./hmax ratio for the domain 0.01 ≤ hmax/R ≤ 1.00.

hmax/R hcom./hmax hmax/R hcom./hmax hmax/R hcom./hmax

0.01 0.3321 0.35 0.3168 0.68 0.2993
0.02 0.3315 0.36 0.3163 0.69 0.2987
0.03 0.3310 0.37 0.3159 0.70 0.2982
0.04 0.3305 0.38 0.3154 0.71 0.2976
0.05 0.3301 0.39 0.3149 0.72 0.2970
0.06 0.3297 0.40 0.3144 0.73 0.2964
0.07 0.3292 0.41 0.3139 0.74 0.2959
0.08 0.3288 0.42 0.3134 0.75 0.2953
0.09 0.3284 0.43 0.3128 0.76 0.2947
0.10 0.3280 0.44 0.3123 0.77 0.2941
0.11 0.3276 0.45 0.3118 0.78 0.2935
0.12 0.3272 0.46 0.3113 0.79 0.2929
0.13 0.3268 0.47 0.3108 0.80 0.2924
0.14 0.3263 0.48 0.3103 0.81 0.2918
0.15 0.3259 0.49 0.3097 0.82 0.2912
0.16 0.3255 0.50 0.3092 0.83 0.2906
0.17 0.3251 0.51 0.3087 0.84 0.2900
0.18 0.3246 0.52 0.3081 0.85 0.2894
0.19 0.3242 0.53 0.3076 0.86 0.2888
0.20 0.3238 0.54 0.3071 0.87 0.2882
0.21 0.3233 0.55 0.3065 0.88 0.2876
0.22 0.3229 0.56 0.3060 0.80 0.2870
0.23 0.3225 0.57 0.3054 0.90 0.2864
0.24 0.3220 0.58 0.3049 0.91 0.2858
0.25 0.3215 0.59 0.3043 0.92 0.2852
0.26 0.3211 0.60 0.3038 0.93 0.2846
0.27 0.3206 0.61 0.3032 0.94 0.2840
0.28 0.3202 0.62 0.3027 0.95 0.2834
0.29 0.3197 0.63 0.3021 0.96 0.2827
0.30 0.3192 0.64 0.3016 0.97 0.2821
0.31 0.3188 0.65 0.3010 0.98 0.2815
0.32 0.3183 0.66 0.3004 0.99 0.2809
0.33 0.3178 0.67 0.2999 1.00 0.2802
0.34 0.3173
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Table 2. The hcom./hmax ratio for the domain 0.05 ≤ hmax/R ≤ 5.00.

hmax/R hcom./hmax hmax/R hcom./hmax hmax/R hcom./hmax

0.05 0.3301 1.75 0.2326 3.40 0.1443
0.10 0.3280 1.80 0.2294 3.45 0.1424
0.15 0.3259 1.85 0.2263 3.50 0.1405
0.20 0.3238 1.90 0.2231 3.55 0.1386
0.25 0.3216 1.95 0.2200 3.60 0.1368
0.30 0.3192 2.00 0.2169 3.65 0.1351
0.35 0.3168 2.05 0.2138 3.70 0.1334
0.40 0.3144 2.10 0.2107 3.75 0.1317
0.45 0.3118 2.15 0.2077 3.80 0.1301
0.50 0.3092 2.20 0.2047 3.85 0.1285
0.55 0.3065 2.25 0.2017 3.90 0.1269
0.60 0.3039 2.30 0.1988 3.95 0.1254
0.65 0.3010 2.35 0.1959 4.00 0.1240
0.70 0.2982 2.40 0.1930 4.05 0.1225
0.75 0.2953 2.45 0.1901 4.10 0.1211
0.80 0.2924 2.50 0.1873 4.15 0.1198
0.85 0.2894 2.55 0.1845 4.20 0.1185
0.90 0.2864 2.60 0.1818 4.25 0.1172
0.95 0.2834 2.65 0.1791 4.30 0.1159
1.00 0.2803 2.70 0.1765 4.35 0.1147
1.05 0.2772 2.75 0.1739 4.40 0.1134
1.10 0.2741 2.80 0.1713 4.45 0.1122
1.15 0.2709 2.85 0.1688 4.50 0.1111
1.20 0.2678 2.90 0.1663 4.55 0.1099
1.25 0.2646 2.95 0.1639 4.60 0.1088
1.30 0.2614 3.00 0.1616 4.65 0.1077
1.35 0.2582 3.05 0.1592 4.70 0.1066
1.40 0.2550 3.10 0.1570 4.75 0.1055
1.45 0.2518 3.15 0.1547 4.80 0.1044
1.50 0.2486 3.20 0.1525 4.85 0.1033
1.55 0.2454 3.25 0.1504 4.90 0.1023
1.60 0.2422 3.30 0.1483 4.95 0.1012
1.65 0.2390 3.35 0.1463 5.00 0.1002
1.70 0.2358

It is also noteworthy to emphasize that a ‘rational approach’ would involve concur-
rently determining the tip radius and the sample’s Young’s modulus by employing a simple
fit to Equation (9), under the assumption of hmax/R ≤ 1.32. The reason is that Equation (9)
can be written as follows:

F =
4c1ER1/2

3(1 − v2)
h3/2 +

c2E
(1 − v2)

h2 +
2c3ER−1

3(1 − v2)
h3 (29)

By combining Equations (17) and (29), it is concluded

a =
4c1ER1/2

3(1 − v2)
(30)

b =
c2E

(1 − v2)
(31)

c =
2c3ER−1

3(1 − v2)
(32)

Thus, given that the coefficients c1, c2, c3 are known, it may be assumed that the
Young’s modulus can be calculated using Equation (31), and subsequently, employing
Equation (30) or Equation (32), the tip radius can also be determined. However, this is
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not accurate; there exist various combinations of the fitting coefficients a, b, and c that can
result in the same curve. This fact can be also proved using Equation (24). In this case,
b = 23, 340 N

m2 . Therefore, utilizing Equation (31), E = 2.398·105 Pa. In addition,
a = 281 N

m3/2 . Therefore, by applying Equation (30), R = 0.225·10−6 m, which is ap-
proximately four times smaller than the actual value (0.921 µm). Hence, it is imperative to
adhere to the procedure outlined in this paper for the calculation of R and E.

The precise equations concerning deep spherical indentations are typically circum-
vented in experiments involving soft biological materials, as fitting the data to Equation (1)
is simpler and the errors in Young’s modulus calculations for hmax/R < 1 are not substan-
tial. However, this paper demonstrates that Equations (7) and (8) can provide significantly
more options compared to Equation (1). Indeed, these equations can lead to the determina-
tion of the indenter’s radius using a simple force–indentation curve. If we use Equation (1)
instead of Equation (7), the contact stiffness becomes

S =
2E

1 − v2 R
1
2 h

1
2
max (33)

In this case,

b = Fmax − Shmax =
4E

3(1 − v2)
R

1
2 h

3
2
max −

2E
1 − v2 R

1
2 h

3
2
max =

−2E
3(1 − v2)

R
1
2 h

3
2
max (34)

Subsequently, the point of intersection between the tangent line and the indentation
axis can be calculated:

hcom. = − b
S
=

hmax

3
(35)

Hence, when utilizing Equation (1), it becomes impossible to calculate R, as the
values for hcom. consistently equate to hmax

3 . Therefore, in cases for which hmax � R and
Equation (1) accurately describe the data, the method cannot be applied.

It is also crucial to highlight the significant reliability of the proposed method. The
experiments were conducted on an agarose gel at arbitrarily selected points. The calculated
Young’s moduli were within the range of 102 kPa ≤ E ≤ 174 kPa (see also Figure 6c).
However, despite the significant variation in the Young’s modulus, there is only a slight
variation in the calculation of the indenter’s radius (as clearly depicted in Figure 6a). If
we were to test a hypothetically perfect elastic half-space, the force–indentation data and
the fitted curve would be identical, and the calculation of R would be consistent across all
force–indentation curves. However, for real soft samples, the data do not perfectly follow
Equation (7). Consequently, errors in hcom. and b would emerge, leading to variations in R
calculations. Nevertheless, the main outcome is that even though there exists a disparity
between the fitted curve and the data in all instances, the inaccuracies pertaining to the
tip radius calculation were exceedingly minor. Specifically, the computed values in each
measurement, as depicted in Figure 6a, closely resembled the measured values obtained
through the AFM grating (as shown in Figure 3). This is a logical outcome when we
consider Equation (22). This equation suggests that there is a specific relationship between
hcom. and hmax that can lead to the calculation of the ratio hmax/R and, as a result, to the
calculation of the indenter’s radius (see also Tables 1 and 2). Importantly, this relationship
remains uninfluenced by the Young’s modulus. When collecting force–indentation data,
hmax is a known parameter and determining hcom. becomes straightforward by utilizing
the tangent line to the force–indentation curve at the maximum indentation depth. Thus,
the ratio hcom./hmax unveils the ratio hmax

R , consequently determining the radius of the
indenter. Furthermore, it is worth noting that by multiplying hcom./hmax with hmax/R in
Tables 1 and 2, a new table can be generated that establishes a relationship between hcom.
and R.

In addition, it is also important to note that most of the cells and biological tissues
present a viscoelastic behavior [21,22]. However, for small indentation rates, the elastic
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models derived from Hertzian mechanics can be employed for data fitting [22]. From this
perspective, our method remains valid for viscoelastic materials. By utilizing an extremely
small indentation rate, we can determine the indenter’s radius (R). Subsequently, we
can employ the R-value for dynamic loading at higher indentation rates, allowing us to
extract the viscoelastic properties of the material. However, a very interesting question is
whether it is possible to calculate R using force–indentation curves for different loading
conditions [23,24]. This constitutes a fascinating task for future research.

It is also noteworthy to emphasize that the development of algorithms for intelli-
gent micro- and nano-systems is crucial for technological progress and its applications in
medicine and biology. AFM processes represent cutting-edge research in today’s context,
offering numerous possibilities for potential clinical applications in the future. However,
in order to attain this objective, it is crucial to develop straightforward and automated
procedures for data processing. Simplifying experimental procedures through algorithms
based on mathematical criteria is crucial for the utilization of AFM technology in medical
applications, such as disease diagnosis.

5. Conclusions

This paper introduces a novel method for calibrating the indenter in AFM nanoin-
dentation experiments involving soft materials using spherical indenters. The calibration
of the indenter is founded on processing the force–indentation curve employing rigorous
mathematical criteria. Hence, it becomes possible to calculate the Young’s modulus and
the AFM tip radius using the force–indentation data without requiring any additional
experimental procedures. The fundamental steps of the method are outlined as follows:

• Fit the force–indentation data to Equation (17).
• Plot the tangent line of the fitted curve at the maximum indentation depth.
• Determine the point of intersection between the tangent line and the indentation axis

and solve either (16) or (21). Alternatively, for simplification, employ Equation (28) or
refer to Tables 1 and 2.

• To calculate the Young’s modulus at the tested point, identify the intersection point
between the tangent line and the force axis, and solve either Equations (14) or (20).

The proposed approach can be integrated into typical AFM equipment to automate
and streamline the experimental procedures. The development of intelligent AFM systems
increases the potential for utilizing AFM processes in practical clinical applications, such as
disease diagnosis.
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