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Abstract: With the arrival of the Fifth Generation (5G) communication era, there has been an urgent
demand for acoustic filters with a high frequency and ultrawide bandwidth used in radio-frequency
(RF) front-ends filtering and signal processing. First-order antisymmetric (A1) lamb mode resonators
based on LiNbO3 film have attracted wide attention due to their scalable, high operating frequency
and large electromechanical coupling coefficients (K2), making them promising candidates for sub-
6 GHz wideband filters. However, A1 mode resonators suffer from the occurrence of transverse
modes, which should be addressed to make these devices suitable for applications. In this work,
theoretical analysis is performed by finite element method (FEM), and the admittance characteristics
of an A1 mode resonator and displacement of transverse modes near the resonant frequency (f r) are
investigated. We propose a novel Dielectric-Embedded Piston Mode (DEPM) structure, achieved
by partially etching a piezoelectric film filled with SiO2, which can almost suppress the transverse
modes between the resonant frequency (f r) and anti-resonant frequency (f a) when applied on ZY-cut
LiNbO3-based A1 mode resonators. This indicates that compared with Broadband Piston Mode
(BPM), Filled-broadband Piston Mode (FPM) and standard structures, the DEPM structure is superior.
Furthermore, the design parameters of the resonator are optimized by adjusting the width, depth
and filled materials in the etched window of the DEPM structure to obtain a better suppression of
transverse modes. The optimized A1 mode resonator using a DEPM structure exhibits a transverse-
free response with a high f r of 3.22 GHz and a large K2 of ~30%, which promotes the application of
A1 mode devices for use in 5G RF front-ends.

Keywords: A1 mode resonator; transverse modes suppression; partially etched piezoelectric film;
comparison; finite element method

1. Introduction

Acoustic resonators are one of the most indispensable components of radio-frequency
(RF) front-ends used in mobile communications due to their low cost, small size and design
flexibility [1–5]. With the arrival of Fifth Generation (5G) mobile communication, traditional
acoustic resonators, mainly surface acoustic wave (SAW) and bulk acoustic wave (BAW)
resonators, face higher technical challenges. The frequency of SAW resonators is limited
by the accuracy of lithography, making it difficult to meet high-frequency application
scenarios above 3 GHz [6–11]. In contrast, the frequency of BAW resonators is determined
by the AlN piezoelectric film thickness, enabling higher frequencies to be achieved by
controlling the film thickness, but it still cannot meet the demand for a broad bandwidth in
5G mobile communication because of the limited electromechanical coupling coefficient
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(K2) of AlN [12–15]. Alternatively, first-order antisymmetric (A1) lamb mode resonators
possess the characteristics of both a high frequency and large K2, and to some extent,
they are more adaptable than SAW and BAW resonators for applications in a sub-6 GHz
wideband scenario [16–21]. Furthermore, it has gradually become a research hotspot in
recent years. Nevertheless, one of the biggest challenges for A1 mode resonators is the fact
that the presence of spurious modes in them acts as a critical bottleneck for their potential
applications, since these spurious modes can lead to increased in-band ripples, higher losses,
and a decline in overall performance. Therefore, how to weaken or eliminate spurious
modes is a key issue in the development of high-performance A1 mode resonators [22–25].

To suppress spurious modes of A1 mode resonators, several methods have been
studied. Plessky found that the A1 mode’s higher-order spurious mode (A1-3 mode) can
be eliminated by adjusting metallization. However, at the same time, the magnitude of S0
and A0 spurious modes between the resonant frequency (f r) and anti-resonant frequency
(f a) increased undesirably [26]. To address spurious modes in LiNbO3 A1 mode resonators,
Songbin Gong demonstrated a method wherein the top electrodes are fully embedded in
the piezoelectric film, and this design can effectively suppress the spurious modes caused
by electrical and mechanical loadings [27]. Naumenko’s research showed that spurious
modes of A1 mode resonators can be suppressed by adjusting the orientation and thickness
of the piezoelectric film based on analysis of the BAW slowness surface [28]. In a nutshell,
for their current study on spurious modes in A1 mode resonators, they essentially focused
on high-order spurious modes or other lamb modes away from the resonance. However,
little attention was paid to spurious modes that are known as transverse modes, which also
require further study as they affect the performance of A1 devices [29–31].

This work proposes a dielectric-embedded piston mode (DEPM) structure, achieved
by filling SiO2 in a partially etched ZY-cut LiNbO3 film, to suppress transverse modes in
the A1 mode resonator. It is confirmed that the proposed structure can effectively suppress
transverse modes of the A1 mode resonator based on theoretical and finite element method
(FEM) analysis. The simulated admittance curve of the A1 mode resonator with the
proposed structure shows a clean spectrum with a high f r of 3.22 GHz and a large K2

of ~30%. Achievable performances of the proposed DEPM structure, previous structure
and standard structure are compared, and the results indicate that the DEPM structure
improves the suppression of transverse modes. In addition, the design parameters of
DEPM structures are optimized by adjusting the width, depth and filled materials in etched
windows to demonstrate the better suppression of transverse modes. This work also shows
the simulated results of filters with the standard and DEPM structures, further proving the
effectiveness of the proposed structure and providing a promising path for applications in
5G N77 bands for A1 mode filters.

2. Theoretical Analysis of Transverse Modes

Acoustic resonators can transform energy between mechanical and electrical domains
by utilizing the piezoelectric effect. Wave motion and electrical behavior are coupled by
constitutive equations, as follows [32]:

T = cES − eE (1)

D = εSE + eS (2)

where T and D are mechanical stress and electric displacement, respectively. They are
expressed in terms of the mechanical strain S and the electric field E with the elastic stiffness
constant cE at the constant electric field E, dielectric constant εS at the constant strain S and
piezoelectric coefficient e. Note that the subscripts of these variables and material constants
tensor are omitted for simplicity.
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It is known that acoustic wave propagation can be determined through constitutive
equations governed by the Maxwell equation and Newton equation of motion [33]. Diffrac-
tion is an inherent phenomenon of acoustic wave propagation. As shown in Figure 1, the
acoustic wave propagates along with interdigital transducers (IDTs) in the x-direction, and
diffraction occurs in the y-direction, which widens the propagation path of the acoustic
wave and results in diffractive loss and spurious resonances. The region where acous-
tic waves propagate only in the x-direction is called the Fresnel region, and the region
where acoustic waves propagate in both x- and y-directions with diffraction is called the
Fraunhofer region. The length of the Fresnel region Xc is given by [33]:

Xc =
(1 + γ)AP2

λ
(3)

where AP and λ are the aperture and the wavelength of IDTs, respectively, and γ is a factor
determined by the anisotropy of the piezoelectric film. For a specific piezoelectric film, the
factor γ remains constant. Obviously, a larger AP and smaller λ with a larger derived Xc
are recommended for IDTs’ design and fabrication, so that the length of the Fresnel region
is extended to the utmost in order to avoid wave diffraction.
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Figure 1. Propagation and diffraction of acoustic waves along with IDTs.

In practical devices’ fabrication, however, the infinite length of aperture leads to a
broad Fraunhofer region on IDTs, which makes the occurrence of wave diffraction in
acoustic resonators inevitable. The wave number in the y-direction (βy) grows with a
decrease of AP in the Fraunhofer region, as shown in Figure 1. Additionally, transverse
resonant modes will be generated between both sides of the busbars. Here, the wave
number βy is given by:

βy = 2j × π

AP
(j = 0, 1, 2, 3 . . .) (4)

where j is the order of transverse modes.
As shown in Figure 2a, the typical A1 lamb mode resonator consists of a suspended

ZY-cut lithium niobate (LiNbO3, LN) film and aluminum (Al) IDTs that generate a lateral
electric field to excite a strong A1 mode due to the high piezoelectric component e24. To
guarantee the generation of the A1 mode, the electrode pitch p is significantly larger than
the LN thickness H, and usually H/p < 0.2.

The resonance frequency depends on the geometry of the resonator (p and Lr) and the
acoustic velocity (v) of the expected mode, expressed as [34]:

fij =
v
2

√(
i
p

)2
−
(

j
Lr

)2
(5)

where fij is the resonance frequency of the ith-order longitudinal (x-direction) and jth-order
transverse (y-direction) modes. For the A1 mode, it only propagates in the x-direction, and
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i, j are equal to 1 and 0, respectively. Thus, the resonance frequency for the A1 mode can be
approximated as:

f =
v

2p
(6)

As an effective and universal method, FEM has been widely used for the simula-
tion of acoustic resonators, and there have been extensive reports of its accuracy after
decades of development. Furthermore, FEM modeling based on COMSOL Multiphysics
provides a convenient and flexible way to build arbitrary structures. Therefore, FEM
simulations of the A1 mode are carried out on the ZY-cut LiNbO3 to capture the acoustic
characteristics by using the solid mechanics and electrostatics module in the COMSOL
Multiphysics 5.6 software [35,36]. Considering the IDT periodicity of the A1 resonator,
the FEM models in this work are established by using the periodic boundary conditions
UL = UR along the x axis to reduce time consumption and memory consumption, where
UL and UR respectively represent field variables on the left and right surfaces [37,38]. The
key parameters of the resonator are explained in Table 1. In the following article, K2 is
derived from K2 = (π2/4) × (f a − f r)/f a. In the 2D simulation, due to the fact that the 2D
model is established based on the x direction and z direction, the diffraction of acoustic
waves cannot be reflected in the simulation (there is no βy). The A1 mode at 3.2 GHz has a
large K2 of ~28.9%, achieving a spurious-free response, as shown in Figure 2b. In the 3D
simulation, the effects and variations along all three directions (x, y, and z) including βy are
captured, and the perfect matching layers (PMLs) are given to the left and right ends with
a busbar width to reduce the size of the model and to suppress the boundary reflections.
The A1 mode at 3.22 GHz has a large K2 of ~30%. Different from the spurious modes
near resonance, e.g., S0-n and A0-n modes, several transverse modes appear between f r
and f a, as shown in Figure 2c. The features of the A1 mode can be basically matched in
both 2D and 3D simulations, including f r and K2, differing only in the presence or absence
of transverse modes. These obvious transverse modes are successfully calculated in the
3D simulation, showing an amplitude of more than 3 dB, which is not acceptable for the
development and application of high-performance A1 mode resonators.
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Figure 2. (a) Typical structure of the A1 mode resonator. (b) The 2D model in simulation and 2D FEM
simulation admittance (Y)/conductance (G)/phase curves of the A1 mode resonator with typical
structure. (c) The 3D model in simulation and 3D FEM simulation admittance (Y)/conductance
(G)/phase curves of the A1 mode resonator with typical structure.
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Table 1. The key parameters of a typical A1 mode resonator.

Sym. Parameter Value Sym. Parameter Value

p Pitch of electrodes (µm) 4 AP Aperture (µm) 40
w Width of electrodes (µm) 1 Lr Length of resonators (µm) 60
g Gap length (µm) 5 H LiNbO3 thickness (nm) 600
L Length of electrodes (µm) 45 h Al thickness (nm) 75

To further analyze the displacement of the calculated transverse modes near f r, we
determine the high-order transverse modes present in the A1 mode resonator using 3D
FEM analysis. The simulation parameters remain the same as in Table 1. Figure 3a shows
the displacement in the x-direction of the A1 mode and 1st~5th-order transverse modes
at different frequency positions, and Figure 3b illustrates the different locations of these
transverse modes in the spectrum. Note that higher-order transverse modes (6th, 7th, 8th. . .)
are also present in the admittance curve and that their displacements are not shown here.
When there is no transverse wave number (βy = 0), the resonant mode is the fundamental
(A1) mode. Transverse resonant modes start to appear when βy ≥ 1. As βy increases, the
order of transverse modes increases, and it can be seen that the diffraction of acoustic waves
gradually becomes apparent.
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at different frequency positions. (b) Different locations of 1st~5th-order transverse modes in the
spectrum (amplified phase curves in Figure 2c).

3. Results
3.1. The Suppression Results for the Previous and Derived Structures

The transverse mode can be suppressed by adding a functional area between the active
region and busbars, working similarly as a free boundary condition, which weakens the
acoustic wave reflection in the aperture direction [39]. In the previous work, researchers
used the method of placing air windows between the active region and busbars to suppress
the transverse modes of the A1 mode resonator, called the Broadband Piston Mode (BPM)
structure, as shown in Figure 4a [40]. Figure 4b shows the 3D FEM model and 3D-simulated
admittance/conductance/phase curves of the A1 mode resonator with a BPM structure.
In order to observe the basic features of the resonator expediently, including the f r, f a,
admittance ratio and transverse modes, both the admittance and conductance were shown
in this work in the format of their magnitude dB (Y/G (dB) = 20 × log10|Y/G|). As can
be clearly seen in the conductance or phase curves, the BPM structure indeed improves
the suppression of transverse modes compared to the results of the standard structure
(Figure 2c). However, there are still several spurs in the spectrum caused by transverse
modes, which need to be further suppressed. To this end, we propose another structure
called Filled-broadband Piston Mode (FPM), according to BPM. Figure 4c shows a diagram
of the proposed structure, in which SiO2 with a thickness of H is filled in air windows.
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Figure 4d shows the 3D FEM model and 3D-simulated admittance/conductance curves
of the A1 mode resonator with the FPM structure, where w1, w2, l1 and l2 are set to be
the same as for the BPM structure. The simulation results show that the FPM structure
has a slightly improved suppression of transverse modes when compared with the BPM
structure, since less spurs are caused by transverse modes occurring in the admittance
curve between f r and f a. However, both BPM and FPM structures are insufficient for
realizing transverse-free A1 mode resonators.
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Figure 4. (a,c) Conceptual diagrams of the A1 mode resonator with BPM and FPM structures. (b,d) 3D
models in simulations and 3D-simulated admittance/conductance/phase curves of the A1 mode
resonator with BPM and FPM structures; the structure has w1 = 6 µm, w2 = 1 µm, l1 = 2 µm, and
l2 = 1 µm.

3.2. The Suppression Results for the Proposed Strutcure

Therefore, we propose a novel structure to further suppress transverse modes, which
is called the Dielectric-Embedded Piston Mode (DEPM) structure, as shown in Figure 5a.
In this structure, all or part of the piezoelectric films between the active region and busbars
are etched and then filled with SiO2, which can even extend to the active region. The width
of SiO2 is d, and other parameters in the resonator remain consistent with the standard
structure (Figure 2a). Figure 5b depicts the 3D model in simulations and 3D-simulated
admittance/conductance/phase curves of the A1 mode resonator with d = 5 µm. One can
see that the A1 mode at 3.22 GHz has a large K2 of ~30%, and such a high K2 is nearly
comparable to those reported in previous studies by others, while most of the transverse
modes have been suppressed. The result demonstrates that the DEPM structure is better
at transverse modes’ suppression than the BPM, FPM and standard structures are. To
quantify the suppression, the phase curves of A1 mode resonators are shown as a metric.
The generation of an acoustic mode inevitably leads to a change in phase, and the strength
of the acoustic mode correlates with the amplitude of the phase change. As shown in
Figures 2 and 5, the phase of the transverse modes reaches ~−60◦ for the standard structure,
and the phase of the transverse modes reaches ~−70◦ for the BPM and FPM structures,
while for the DEPM structure, the phase of the transverse modes is ~−90◦. The phase curve
of the A1 mode resonator with the DEPM structure has less phase variation compared to that
with the BPM, FPM and standard structures, which further demonstrates the suppression
of transverse modes. On the other hand, the use of SiO2 can reduce the Temperature
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Coefficient of Frequency (TCF) of the resonator, facilitate the frequency stability of the A1
mode resonator and broaden its applicability [41,42].
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Figure 5. (a) Conceptual diagram of the A1 mode resonator with DEPM structure. (b) Simulated
admittance/conductance curves of the A1 mode resonator with d = 5 µm. (c) Simulated phase
curves of the A1 mode resonator with the DEPM, BPM, FPM and standard structures. (d) Simulated
admittance/conductance curves of the A1 mode resonator with different d. (e) Simulated K2 of the A1
mode resonator with different d. (f) Simulated phase curves of the A1 mode resonator with d = 0 µm,
3 µm, 7 µm and 20 µm.

In the following discussion, the influence of d on acoustic wave propagation is an-
alyzed. The admittance/conductance curves under d from 0 to 20 µm are illustrated in
Figure 5c. The amplitude of the transverse modes is appropriately reduced with the increase
of d. However, it is inappropriate for an excessively large d, as it can lead to a decrease
in K2. As shown in the figure, when d ranges from 5 to 10 µm, transverse modes have a
better suppression effect; meanwhile, the A1 mode maintains a large K2, only showing
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neglectfully tiny, spurious modes in the broadband frequency response. This behavior is
even more significant when observing the phase curve of A1 mode resonators according to
phase variation, as shown in Figure 5d.

The depth t of the SiO2 is also taken into consideration to optimize the transverse mode
suppression of the DEPM structure. A conceptual diagram of the A1 mode resonator with t
is drawn in Figure 6a, where d = 5 µm and the other parameters in the resonator remain
consistent with the standard structure (Figure 2a). Figure 6b illustrates the 3D-simulated
admittance/conductance curves of the A1 mode resonator as a function of t from 0 to
0.6 µm. By comparing the results, the transverse modes gradually weaken as t increases,
and this means that it is better to fill SiO2 into the completely penetrated ZY-cut LiNbO3
film in order to suppress transverse modes. This suppression effect is also found in phase
curves. As shown in Figure 6c, the phase variation caused by transverse modes decreases
as t increases, until the phase curves become stable.
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Figure 6. (a) Conceptual diagram of DEPM structure with depth t of SiO2. (b) 3D-simulated
admittance/conductance curves of the A1 mode resonator with different t. (c) 3D-simulated phase
curves of the A1 mode resonator with t = 0 µm, t = 0.3 µm and t = 0.6 µm.

To verify the suitability of other dielectric materials for the DEPM structure, the use of
other dielectric materials (Si3N4, AlN and Al2O3) is also investigated. Figure 7a,b shows,
respectively, the 3D-simulated admittance/conductance and phase curves of the A1 mode
resonator with SiO2, Si3N4, AlN and Al2O3 in the DEPM structure. The results suggest
that the f r, f a, K2 and admittance ratio stay constant from the calculated admittance, while
SiO2 shows a significantly better transverse modes suppression when compared with other
dielectric materials, which can be particularly seen in the phase curves.
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3.3. The Suppression Results in Applicable Filters

Moreover, we provide the simulation results of conventional adder-type filters with
the proposed DEPM structure and standard structure in a 5G N77 band (3.3 GHz~4.2 GHz).
Figure 8a illustrates the topology of the simulated filters, consisting of three series resonators
(abbreviated as S1–S3) and two parallel resonators (abbreviated as P1, P2).
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All simulations of filters are accomplished through the electrical characteristics of
conductive paths and package parasitics using a standard surface-mounted device (SMD),
which connects with the acoustic characteristics of series and parallel resonators. Figure 8b,c
show the frequency response curves of the filters with the standard and DEPM structures.
The features of both filters suggest a passband of 3.3 GHz~4.2 GHz, a minimum insertion
loss of 0.8 dB and an out-of-band rejection of over 20 dB. However, when comparing the
two figures, the filter with the standard structure has a lot of spurs in the passband, while
one can clearly see that those are weakened in the filter with the DEPM structure. This
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proposed structure applied in filters has successfully suppressed the transverse modes
of resonators and significantly improved the flatness of the passband, confirming that
high-performance filters are suitable for a 5G N77 band.

4. Conclusions

In this work, the suppression of the transverse modes of LiNbO3 A1 mode resonators
is discussed. We propose a Dielectric-Embedded Piston Mode (DEPM) structure in A1
mode resonators, and the simulated admittance curve of the A1 mode resonator with the
proposed structure shows a clean spectrum with a high frequency f r of 3.22 GHz and a large
K2 of ~30% obtained by FEM analysis. In addition, the appropriate width and depth of SiO2
in the structure are studied and recommended in order to suppress the transverse modes.
Compared with the previous Broadband Piston Mode (BPM), proposed Filled-broadband
Piston Mode (FPM) and standard structures, this indicates that the DEPM structure is
superior to the BPM, FPM and standard structures. Simultaneously, a simulated adder-type
filter with the DEPM structure in a 5G N77 band was presented and proven to improve
the flatness of the passband in the filter. This technology is expected to solve conundrums
related to transverse modes and provide a promising path for future applications in 5G
new radios.
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