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Abstract: Circulating tumor cells (CTCs) are cancer cells detached from tumors that enter the blood-
stream with the rest of the blood cells before settling on remote organs and growing. CTCs play a
major role as a target for cancer diagnosis. This study aims to propose and simulate a lab-on-chip
(LOC) design that separates CTCs from white blood cells (WBCs) and blood platelets (PLTs) using
low-voltage dielectrophoretic separation with high efficiency. The proposed design include two
stages a passive and an active one cascaded in a compact package. Numerical simulations are
performed on the COMSOL Multiphysics® software package to optimize the geometric parameters
of the LOC, such as the width and length of the microchannel and the number of electrodes and their
arrangements. Moreover, the effects of adjusting the applied voltage values as well as buffer inlet
velocity are investigated. The proposed LOC design uses four electrodes at ±2 V to achieve 100%
separation efficiency for the three cell types in simulation. The 919 µm × 440 µm LOC has a channel
width of 40 µm. The inlet velocities for the blood-carrying cells and buffer are 134 and 850 µm/s,
respectively. The proposed LOC can be used for the early detection of CTCs, which can be beneficial
in cancer diagnosis and early treatment. In addition, it can be used in cancer prognosis, treatment
monitoring and personalizing medicine.

Keywords: circulating tumor cells; dielectrophoresis; cell separation; lab-on-chip

1. Introduction

Analyses of biological cells often involve the isolation of cells from a biological fluid.
Cells are then sorted in preparation for further analysis. For this reason, particle separation
is often implemented as an initial step in diagnosis, screening, or treatment pipelines [1].
Two distinct particle manipulation methods that apply to separation exist based on the
usage of external electric fields: active and passive separation [2]. Passive separation
devices make use of fluid drag forces, inertial forces, and the structure of the microchannel.
Active separation, however, depends on the use of external forces to manipulate particles.

Passive separation lab-on-chips (LOCs) have the advantage of being simple and
having high throughput [3]. They can sort different particles using filtration or mechanical
trapping [4,5], based on the densities of particles [6], based on cell opacity [7], or based on
the mass of the particles using centrifugal forces [8–11]. Active separation methods add
complexity to the LOC, require external power, and generally have more limited throughput.
However, it allows real-time control of the target cells. Examples of these methods include
magnetic force separation [12–15], and dielectrophoretic force separation [16–25].

Microfluidic flows are characterized by low Reynolds numbers, lending themselves
to separation methods that depend on streamlined flows. Single flows can be separated
using dean flow and inertial flow separation in curved and straight microchannels, respec-
tively [26]. Each cell species will follow a particular trajectory based on the cell diameter,
the viscosity of the medium and its flow rate. This leads to eventual separation at the
end of the microchannel [27–30]. In contrast, pinched flow fractionation (PFF) [31,32] is

Micromachines 2023, 14, 1769. https://doi.org/10.3390/mi14091769 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14091769
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-1746-6312
https://orcid.org/0000-0003-2487-8646
https://doi.org/10.3390/mi14091769
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14091769?type=check_update&version=1


Micromachines 2023, 14, 1769 2 of 18

a separation method that uses two flows: a sample and a pinch stream (buffer). When
the buffer is introduced to the channel, a narrow sample stream is formed. Cells larger
than the sample stream follow the interface of the two streams, while smaller cells are
forced to follow the sample stream [26]. Previous studies used the pinch channel width to
target specific cell species [31]. Special precautions should be taken when optimizing the
microchannel geometry as it affects cell deformation and shear rates [32].

Other previous attempts used the Zweifach–Fung effect separation [8,33–36], also
known as the bifurcation law, which relies on the difference in resistance between a main
channel and daughter subchannels to extract relatively large cells. This means that the
volume fraction of these cells tends to increase in the daughter subchannels with higher
flow rates, as opposed to lower-flow-rate main channels. A critical flow rate is achieved at
a certain cell-to-channel size ratio [36]. Finally, some designs combine multiple separation
techniques for separation. For instance, this can be performed by combining multiple
geometries such as trapezoidal and rectangular cross-sections in a spiral microchannel [27]
to make use of dean flow and the Zweifach–Fung effect for cell separation. The cross-
section in such designs needs to be carefully optimized, including the outer and inner
wall heights, the base width, and the slant angle, in addition to the number of turns of the
spirals. Alternatively, multiple stages can be used for focusing, and then separation can be
performed in a second stage via bifurcation [37].

Circulating tumor cells (CTCs) are cancerous cell clusters in the bloodstream. They can
be used in liquid biopsy and are potentially early-detection cancer biomarkers [24,30,38,39].
CTCs are unique compared to other biomarkers in that they have distinct phenotypic and
morphological features that can identify the stage and type of cancer [40]. Isolation of CTCs
from the other blood components is therefore beneficial in cancer diagnosis, prognosis, and
treatment monitoring. Early detection of CTCs is of paramount importance in the screening
stage, as it allows treatment before tumor dissemination and metastases. In addition to
CTC separation, the ability to separate white blood cells (WBCs) from the same blood
sample enables extensive analysis that is beneficial for cancer patients. For instance, the
count of WBCs can be indicative of tumor growth in certain types of cancers [41–44]. The
WBC count can also serve as an indication for autoimmune and inflammatory diseases,
bacterial or viral infections, as well as potential allergic reactions to treatment. Further
integration of WBC sorting stages can be achieved based on cell opacity [16] in conjunction
with cell sizes.

The proposed design attempts to attain a high separation efficiency for three species
(CTCs, WBCs, and platelets (PLTs)) from a single blood sample in a compact package. The
aim is to maintain low voltage values in order to keep potential cell membrane damage to a
minimum [45,46]. It is a hybrid design that makes use of an active and a passive stage in or-
der to combine the benefits of both methods while negating most of the shortcomings. This
is a novel approach that uses DEP force during the active separation stage for the isolation
of WBCs and a passive stage for CTC separation. The design parameters of this two-way
separator are then parametrically simulated in order to arrive at an optimum design.

Achieving the high separation efficiency requires a microchannel based on a multi-Y-
channel configuration. The proposed LOC utilizes active separation in the first stage in the
form of dielectrophoretic (DEP) forces. DEP force induces the motion of the polarized cells
in the blood sample, which is an effective separation method of bioparticles [47], especially
with the much lower concentration of CTCs compared to blood cells, estimated to be at
1–10 cells in a single mL of blood [48]. The extreme rarity of CTCs compared to other blood
cells, with 1–100 CTCs in a 7.5 mL whole blood CTC [49,50] necessitates the preprocessing
of whole blood samples before separation can be practical. For instance, RBCs can be
eliminated via density-gradient centrifugation [51], and only the buffy coat containing
peripheral blood mononuclear cells (PBMCs) is isolated. The PBMCs (containing WBCs
and PLTs) can then be diluted and injected into the microchannel for separation.

Various microfluidic structures can be used for dielectrophoretic separation [52]. In
this study, a simple planar microchannel is selected due to the ease of fabrication and
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modeling. Planar microstructures can be created relatively easily through photolithography
and polydimethylsiloxane (PDMS) molding processes [53], etching [54–56], or thick-film
screen-printing [21,57,58]. Additionally, planar designs are easier to model as they can be
simulated in two dimensions. This fact is amplified when optimizing the design geometric
parameters, where performing parametric optimization studies is a necessity. In contrast,
microchannels that make use of dean forces or diffuser–nozzle effect using non-rectangular
channel geometries [8,30,53,59,60] often require the use of three dimensions in order to
be simulated.

Herein, the physical and electrical properties of the targeted cells are first introduced.
The modeling and simulation procedure is then discussed in detail, and the theoretical
background of cell separation using dielectrophoresis is also presented. The last sections
report the results, discussion, and conclusions.

2. Materials and Methods

A two-stage Y-channel separation LOC is used for the separation of three species:
CTCs, WBCs, and PLTs. The modeling and simulation procedure is introduced, including
modeling, boundary conditions, mesh refinement, and model verification is presented.
Finally, a summary of the simulated combination is presented.

2.1. Target Cell Types

Three cell types are considered due to the elimination of RBCs after centrifugation. These
are CTCs, PLTs, and WBCs. Table 1 shows the physical and electrical properties [32,61,62] of
targeted cells.

Table 1. Physical and electrical properties of target cells.

Parameter CTC WBC PLTs

Cell diameter 15 µm 12 µm 1.8 µm
Cell membrane thickness 7 nm 7 nm 8 nm

Cell conductivity 1 S/m 0.18 S/m 0.25 S/m
Membrane conductivity 9 × 10−7 S/m 9 × 10−6 S/m 1 × 10−6 S/m
Cell relative permittivity 50 80 50

Membrane relative permittivity 12.5 10 6

2.2. Modeling and Simulation Setup

The simulation software package of choice in this study is COMSOL Multiphysics®

version 6.0 due to its flexibility in combining the required Multiphysics for modeling the
LOC device. These include modeling the fluid flow, modeling the applied electric current,
and finally, particle tracing for the three cell species.

2.2.1. Computational Model

The electric field induces the major force responsible for cell manipulation, the dielec-
trophoretic force. The electric potential and electric field relation:

E = −∇·V. (1)

where E is the electric field vector, and V is the electric potential. The current is given by:

J = σE, (2)

where σ is the conductivity, and J is the current density.
Creeping flow physics is used to model the fluid flow confined within the LOC’s

microchannels using the Navier–Stokes equations, neglecting the inertia term. This type of
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flow, also known as Stokes flow, is characterized by having small Reynolds numbers. The
main equations are:

0 = ∇·[−pI + K] + F, (3)

and:
ρ∇·u = 0. (4)

Here, pI is the pressure multiplied by the unity matrix, K is the viscous stress tensor, F
is the volume force vector, ρ is the fluid density, and u is the fluid velocity field.

The dielectrophoretic (DEP) force consists of the net polarization forces induced in a
nonuniform electric field (NUEF) [52], where electrically neutral particles are asymmetri-
cally polarized after exposure to the electric field. The resulting DEP force is 0 in uniform
electric fields, while it is either positive or negative (pDEP or nDEP, respectively) in NUEF,
as shown in Figure 1. This is achieved in the proposed design by the arrangement of
electrodes. The DEP force equation is given by [63]:

FDEP = 2πεmRp
3Re[K(ω)]∇

∣∣∣E2
0

∣∣∣, (5)

where εm is the fluid (medium) permittivity, Rp is the affected particle radius, and ∇|E0| is
the electric field gradient. The electric field gradient is often the main control parameter of
the DEP force, either through optimizing the geometry of the electrodes or by adjusting the
applied voltage value. K(ω) is the Clausius–Mossotti factor (CMF), ω is the frequency of
the applied signal, and Re[K(ω)] is the real part of the CMF. CMF denotes the polarization
difference between the separated particles and the surrounding fluid [17,64]. It indicates
whether a particle is repelled or attracted to the electrodes. The real part of CMF is given
by the following expression [23]:

Re[K(ω)] =

(
εp − εm

)(
εp + 2εm

)
+

σp−σm
ω

σp+2σm
ω(

εp + 2εm
)2

+
(

σp+2σm
ω

)2 , (6)

where εp is the particle permittivity, and σp and σm are the particles and medium electrical
conductivities, respectively.
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Figure 1. Electrophoresis effect on neutral particles in uniform and non-uniform electric fields.

Using the COMSOL Multiphysics® software package, the aforementioned physics are
solved sequentially as follows:

1. Solve for creeping flow;
2. Solve for electric currents;
3. Particle tracing based on the previous two physics.
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It is important to note that this model neglects the two-way cell–cell interaction and
is fully dependent on the fluid–cell interaction. This is a common limitation in modeling
particle trajectories [27].

2.2.2. Geometry

The proposed design is presented in Figure 2. It consists of two cascaded Y-junctions
in series. The electrodes are located within the first stage, while the second stage is a
passive one. The channel lengths, CL1 and CL2, are optimized to be as short as possible to
reduce the footprint of the microchannel for packaging purposes. The channel width, CW ,
is parametrically varied to study its effect on the separation of the cell species, while the
depth, CD, is fixed at 100 µm. The placement of the electrodes is not centered in the first
stage of the microchannel to allow for flow focusing to bring the cells closer to the electrodes
before attempting to separate. This is done to ensure that the DEP force is more effective, as
it quickly loses its potency in distances further than ~30 µm [65–67]. The proposed LOC has
a two-dimensional, planar design. Planar geometries have the added advantage of the ease
of fabrication and being easy to implement in cases where multiple devices and/or stages
need to be located on the same LOC, such as a CTC detection device [40]. A summary of
the simulated ranges used for each of the geometric parameters is summarized in Table 2.
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Figure 2. Separator microchannel structure and terminology for the design dimensions. The overall
size is about 919 µm × 440 µm × 100 µm, and all inlets and outlets have the same length.

Table 2. Major dimension for simulated design configurations.

Dimension Value Description

IL 190 µm Inlet length
CL1 500 µm Main channel length
CL2 60 µm Secondary channel length
CW 40, 50, 60 µm Channel width
CD 100 µm Channel depth
OL 190 µm Outlet length
θI 90◦ Inlet channels angle
θO 90◦ Outlet channels angle
PD 16 µm Electrode protrusion depth
e 40 µm Electrode width
d 40 µm Distance between electrodes
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2.2.3. Boundary Conditions

The no-slip Dirichlet boundary condition is applied on the walls of the LOC for the
confined flow within the channel. For the buffer inlet, the flow rate is fixed to either
350 µm/s, 850 µm/s or 1350 µm/s. The blood inlet flow rate is set to 114 µm/s, 134 µm/s,
or 154 µm/s. In contrast, the outlets have a static pressure boundary condition that is fixed
at 0 Pa.

Fixed voltages, with values of ±Va, are applied on the electrodes in an alternating
fashion. Va varies from ±2 up to ±4 V in 0.5 V increments. This is true for both the two–
and four–electrode configurations of the LOC. The generated electric field induces the DEP
force that affects the cell trajectories and eventually isolates them from one another.

The final step is to define the three cell types based on their properties introduced
in Table 1. These cells are assigned to be released from the blood inlet simultaneously
during the simulation window. The released particles are affected by two forces: internal
drag forces and dielectrophoretic forces. The main limitation of this approach is the lack
of particle–particle interaction modeling, as it only depends on the coupling between the
fluid and the cells.

2.2.4. Mesh Refinement

All obtained results in this study are produced on a computational grid shown in
Figure 3 with inner triangular elements and quad elements on the boundaries. A grid
independence test is carried out to evaluate three mesh element sizes denoted as “Coarse”,
“Normal”, and “Fine” meshes based on the average element size.
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Figure 3. Mesh of fine element size showing: (a) Overview of the entire geometry; (b) close-up view
of the Y-channel and electrodes, showing the distribution of the triangular and quad mesh elements.

The independence test for this model is based on the maximum errors, εmesh, of the
different cell velocities magnitude at the target outlet of each of the respective cell types.
εmesh is the relative error between successive mesh refinement iterations. An identical mi-
crochannel setup was used for each of the considered meshes and εmesh was then compared
to a criterion εcriterion = 1%. The calculated errors are summarized in Table 3. Our results
indicate that a fine mesh with a maximum error of 0.15% is adequate for this model.

2.3. Numerical Model Validation

The model is validated by comparing it to the experimental results of Piacentini et al.’s [16]
setup. The comparison is based on RBC and blood platelet (PLT) cell trajectories, as shown
in Figure 4. The developed model uses identical parameters to the experimental setup:
an applied voltage of ±5 V, a fixed cell inlet velocity of vin,cells = 134 µm/s, and a buffer
inlet velocity of vin,buffer = 853 µm/s. The experimental cell locations are superimposed
onto the simulated cell trajectories, showing an agreement between the simulation and the
experimental results. Therefore, the model is validated.



Micromachines 2023, 14, 1769 7 of 18

Table 3. Mesh refinement comparison of the three mesh configurations, coarse, normal, and fine,
based on the velocities of the different cell types at their respective outlets.

Cell Type Coarse and Normal Meshes Normal and Fine Meshes

PLT 50.59% 0.06%
CTC 0.26% 0.08%
WBC 395.24% 0.15%

εmesh ≤ εcriterion No Yes
εmesh value 395.24% 0.15%
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2.4. Simulated Design Parameters

Parametric studies based on the dimensions of the microchannel are simulated, and
the cell separation efficiencies and purities are evaluated for every configuration. Starting
from a base velocity of vin,buffer = 850 µm/s taken from the literature [16], the inlet velocity
is varied parametrically in 100 µm/s increments above and below the base velocity. The
highest and lowest velocities that achieved full cell separation are vin,buffer = 1350, and
vin,buffer = 350 µm/s, respectively. Hence, they are selected as the upper and lower limits
for the tested configurations. The cell inlet velocity is set to vin,cells = 134 µm/s for the
two-electrode design, while the four-electrode designs are varied between vin,cells = 114, 134,
and 154 µm/s. The different combinations of the simulated parameters are summarized
in Table 4.

Table 4. Summary of the different combinations used in simulating the LOC designs.

Four-Electrode Variant
vin,buffer = 350 µm/s, 850 µm/s, 1350 µm/s
vin,cells = 114 µm/s, 134 µm/s, 154 µm/s

Two-Electrode Variant
vin,buffer = 350 µm/s, 850 µm/s, 1350 µm/s

vin,cells = 134 µm/s

Main Channel Width Applied Electrode Voltage Main Channel Width Applied Electrode Voltage

40 µm 2.0 V 40 µm 2.0 V
40 µm 2.5 V 40 µm 2.5 V
40 µm 3.0 V 40 µm 3.0 V
40 µm 3.5 V 40 µm 3.5 V
40 µm 4.0 V 40 µm 4.0 V
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Table 4. Cont.

Four-Electrode Variant
vin,buffer = 350 µm/s, 850 µm/s, 1350 µm/s
vin,cells = 114 µm/s, 134 µm/s, 154 µm/s

Two-Electrode Variant
vin,buffer = 350 µm/s, 850 µm/s, 1350 µm/s

vin,cells = 134 µm/s

Main Channel Width Applied Electrode Voltage Main Channel Width Applied Electrode Voltage

50 µm 2.0 V 50 µm 2.0 V
50 µm 2.5 V 50 µm 2.5 V
50 µm 3.0 V 50 µm 3.0 V
50 µm 3.5 V 50 µm 3.5 V
50 µm 4.0 V 50 µm 4.0 V

60 µm 2.0 V 60 µm 2.0 V
60 µm 2.5 V 60 µm 2.5 V
60 µm 3.0 V 60 µm 3.0 V
60 µm 3.5 V 60 µm 3.5 V
60 µm 4.0 V 60 µm 4.0 V

3. Results

This section defines the main metrics used to evaluate the performance of the LOC,
such as the separation efficiency for each cell type, the purity of each outlet, and the
throughput of the device. The impact of changing each of the buffer and cell inlet velocities,
channel width, electrode configuration and applied voltage is also investigated. Drag
forces, fluid velocity profile, and pressure contours are also presented.

3.1. Separation Efficiency

Separation efficiency is the most used metric for evaluating separator LOCs. It is de-
fined as the number of isolated target particles (cells), to the number of input target particles
(cells) as a percentage [3]. Separation efficiency is evaluated by the following expression:

ηSeparation =
No. o f targeted cellsisoltated
No. o f targeted cellsinjected

× 100%. (7)

The effectiveness of different configurations of the proposed design is evaluated
based on this metric per-cell type, with the ones with 100% efficiency for all cells of the
simulated configurations summarized in Table 5. Separation efficiencies for each cell type
are individually listed in the supplementary document S3. An example of a two-electrode
design with the following velocities, namely, vin,buffer = 850 µm/s, and vin,cells = 134 µm/s,
is shown in Figure 5, and as an animation in Video S2.

Table 5. Summary of the design configurations with complete separation (achieving both 100% purity
for all outlets and 100% separation efficiency for CTCs, PLTs, and WBCs).

vin,buffer 850 µm/s 1350 µm/s
Separation
Efficiency

Purity (All
Outlets)Number of

Electrodes
Channel
Width

Electrode
Voltage Channel Width Electrode Voltage

4 40 µm 2.0, 2.5 V 40 µm 2.5, 3.0, 3,5 V

100.00% 100.00%
4 50 µm 2.5, 3.0 V 50 µm 2.5 *, 3.0, 3.5, 4.0 V

4 60 µm 2.5 **, 3.0, 3.5,
4.0 V 60 µm 3.5, 4.0 V

2 40 µm 3.5, 4.0 V 40 µm 4.0 V
2 50 µm 3.5, 4.0 V 50 µm N/A

* Only for vin,cell = 114 µm/s, and vin,cell = 134 µm/s. ** Only for vin,cell = 114 µm/s.
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Figure 5. Cell trajectories for CTCs (blue), PLTs (red), and WBCs (purple). This configuration shows
100% separation efficiencies for the three cell species using two electrodes at ±4.0 V, with a close-up
view showing PLTs and CTCs at the upper Y-split. The inlet velocities are vin,buffer = 850 µm/s,
vin,cells = 134 µm/s, and Cw = 50 µm.

3.2. Purity

Purity is the metric used to assess the performance of the LOC based on the output of
each outlet. It is defined as the ratio of the targeted target particles (cells) at the specified
outlet to the number of all particles (cells) at the same outlet as a percentage. It is calculated
by the following expression for each outlet [3]:

Purity =

(
No. o f targeted cells

No. o f targeted cells + No. o f unwanted cells

)
desired outlet

× 100% (8)

The aim is to have as high of purity as possible, as lower purity values indicate the
existence of contaminants in the output. Configurations with 100% purity for all outlets are
shown in Table 5, while the purity values of each outlet for all tested configurations are
found in the supplementary document S3.

3.3. Dielectrophoretic Force

The dielectrophoretic force is calculated using COMSOL Multiphysics® for the same
type of cells in the microchannel during an 8-s simulation interval using Equation (5). The
DEP force changes over the simulation time are shown in Figure 6. WBCs are the most
influenced cell species by the DEP force, leading to their removal from the outlet furthest
from the electrodes. In a similar fashion, PLTs (affected by the weakest DEP) exit from the
outlet closest to the electrodes. The DEP force effect lasts for approximately 5.5 s (1 to 6.5 s),
during which the particles are within the first stage. The DEP force drops for all cells as
soon as they exit the active stage. The drop before 1 s occurs while the cells enter the LOC
from the cell inlet.

3.4. Fluid Velocity and Pressure

Figure 7 visualizes the velocity profile for the four-electrode configuration. The buffer
inlet velocity of the lower inlet is set to either high (1350 µm/s) or low (850 µm/s) velocity in
Figure 7a,b, respectively, while the cell inlet velocity of 134 µm/s is used in both instances.
As vin,buffer > vin,cells, the buffer focuses the cell-carrying blood closer to the electrodes,
ensuring that the CTCs, WBCs, and PLTs fall within the NUEF region. This behavior is also
apparent after the first junction, where the lower outlet has higher velocity magnitudes
on average compared to the upper one. It is at this stage that the velocity profile becomes
uniform across the channel width. The velocity magnitude decreases until it reaches its
minimum value at the end of the second stage.
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Lower pressures in the microchannel are generally preferable to ensure that blood
cells retain their shape, as higher pressures can cause cell deformations [68]. Investigating
pressure distribution shows that configurations with higher buffer inlet velocity have
pressure value that is higher than configurations with lower buffer inlet velocity, as can
be seen in Figure 8. In the case of two identical setups, except for the buffer inlet velocity,
the higher inlet velocity configuration has a higher pressure at the inlet compared to the
lower inlet velocity configuration. The pressure falls to 0 Pa at the outlets, as enforced by
the boundary conditions.



Micromachines 2023, 14, 1769 11 of 18

Micromachines 2023, 14, x FOR PEER REVIEW 11 of 18 
 

 

  
(a) (b) 

Figure 7. Fluid velocity magnitude in µm/s for: (a) vin,buffer = 1350 µm/s, and vin,cells = 134 µm/s; (b) 
vin,buffer = 850 µm/s, and vin,cells = 134 µm/s. Channel width in both instances is Cw = 40 µm. 

  

(a) (b) 

Figure 8. Pressure isolines in Pa for (a) vin,buffer = 1350 µm/s, and vin,cells = 134 µm/s; (b) vin,buffer = 850 
µm/s, and vin,cells = 134 µm/s. Channel width in both instances is Cw = 40 µm. 

4. Discussion 
This section discusses the influence of DEP force on each cell type. Based on the ob-

tained results, the effects of each of the buffer flow rates, the number of electrodes, the 
applied voltage, and the channel geometry on the separation efficiency are then discussed. 
The definition of the throughput is also introduced for microfluidic systems. A summary 
of the separation efficiency for each species, as well as the purity of the outlets for all tested 
configurations, is provided in the supplementary document S3. Finally, the optimal de-
sign for complete cell separation is proposed. 

4.1. Dielectrophoretic Force 
Dielectrophoretic (DEP) force is the main mechanism responsible for cell separation 

in the proposed design as it affects the trajectories of the cells. We can observe from Figure 
6 that, on the one hand, WBCs are affected with the largest DEP force, and hence, that 
these types are the first to exit the microchannel from the lower outlet (furthest from the 
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4. Discussion

This section discusses the influence of DEP force on each cell type. Based on the
obtained results, the effects of each of the buffer flow rates, the number of electrodes, the
applied voltage, and the channel geometry on the separation efficiency are then discussed.
The definition of the throughput is also introduced for microfluidic systems. A summary
of the separation efficiency for each species, as well as the purity of the outlets for all tested
configurations, is provided in the supplementary document S3. Finally, the optimal design
for complete cell separation is proposed.

4.1. Dielectrophoretic Force

Dielectrophoretic (DEP) force is the main mechanism responsible for cell separation in
the proposed design as it affects the trajectories of the cells. We can observe from Figure 6
that, on the one hand, WBCs are affected with the largest DEP force, and hence, that
these types are the first to exit the microchannel from the lower outlet (furthest from the
electrodes). On the other hand, PLTs have the smallest DEP force, so they tend to be closer
to the electrodes exiting from the upper outlet in the microchannel. Similarly, CTCs exit the
microchannel from the middle outlet as they are affected by the DEP force that falls between
the other two. This behavior is confirmed by the trajectories of the cells in Figure 9a,b. The
gaps between the path of the cells and the walls of the channel outlets are denoted as α, β,
and γ for WBCs, CTCs, and PLTs, respectively. The two supplementary Videos S1 and S2,
demonstrate the particle trajectories for four- and two-electrode configurations, respectively.

4.2. Throughput

Throughput is another metric that measures how quickly the separation process is
carried out. It is typically measured as the volumetric flow rate at the desired outlet, but it
is useful in some circumstances to multiply the flow rate value by cell density per volume
to account for dilution during sample preparation [69]. Alternatively, the number of sorted
cells can be reported. The throughput value is often not critical in microfluidic applications
as it can be increased by the use of parallel microchannels [70,71].
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Figure 9. Cell trajectories for CTCs (blue, β), PLTs (red, γ), and WBCs (purple, α) for two 4-electrode
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outlet wall (shaded areas) increase with lower buffer velocities, so α1 < α2, β1 < β2, and γ1 < γ2:
(a) vin,buffer = 1350 µm/s; (b) vin,buffer = 850 µm/s.

4.3. Impact of Cell and Buffer Inlet Velocities on the Separation Efficiency

Increasing the buffer velocity up to a certain point generally requires higher voltage
values to achieve comparable separation efficiencies. An additional increase in the buffer
inlet velocity will compromise the separation of CTCs from the rest of the blood components
in most cases, as the main flow is focused closer to the electrodes.

The effect of decreasing the buffer inlet velocity from vin,buffer = 1350 µm/s to vin,buffer =
850 µm/s is shown in Figure 9a,b, respectively. The impact of changing vin,buffer is apparent
in the trajectories of the cells, where higher vin,buffer values cause the cell to approach the
upper wall (electrode-side) more closely, as demonstrated by the distances between the
cells and the walls of the outlets Figure 9. This leads to WBCs and CTCs being closer to the
upper wall of the outlet. An additional increase in vin,buffer forces a portion of the WBCs to
skip the outlet altogether, compromising the separation efficiency. Moreover, using high
buffer inlet velocity necessitates increasing the electrode voltage range, risking cell damage.
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Similarly, lower buffer inlet velocity vin,buffer = 350 µm/s did not allow the targeted cells to
get close enough to the NUEF, and no separation could be achieved in this instance.

As for cell inlet, changing vin,cell did not have a significant effect on the separation
performance in most circumstances. The exception to this occurred at relatively high
vin,cell = 154 µm/s, and lower vin,buffer as the buffer fails to focus the blood flow effectively in
these circumstances. Using lower cell inlet velocity can also reduce the overall throughput
of the microchannel, but this can be easily addressed by using parallel microchannels to
increase the throughput.

4.4. Impact of Electrodes Configuration and Applied Voltage on the Separation Efficiency

The electric field distributions of four- and two-electrode configurations are shown
in Figure 10. Applied voltage polarity alternates between adjacent electrodes, as seen
in Figure 10. The most important characteristic is that a non-uniform electric field is
generated, giving rise to the dielectrophoretic force that is responsible for the separation of
the particles. The applied electrode voltage ranges from ±2 to ±4 V, giving a peak-to-peak
range of 4–8 V. Higher voltage values push the cell trajectories away from the electrodes,
as apparent in simulation results in the supplementary document S3. Considering the
simulated combinations, the wider channels require higher applied voltage values to
achieve similar separation performances.
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Using fewer electrodes would require that a higher voltage value be used to obtain
the same efficiency. In some cases, increasing the voltage is not sufficient without using
unreasonably high voltage values. Additionally, using two-electrode configurations has
noticeably lower separation efficiencies compared to four-electrode configurations. Both
shortcomings for the two-electrode configurations are visible in Table 5 and document S3
compared to the alternative four-electrode designs. At this point, using more electrodes
(four electrodes) at lower voltages proved to be the better approach, especially when
considering the possibility of cell damage at higher voltages.

4.5. Impact of Changing Channel Width on Electrode Voltage

One of the design objectives is to minimize the applied voltage value to protect the
target cells from potential membrane damage. For this reason, using narrow channels
is more advantageous compared to wider channels, as the width of the microchannel
greatly affects the required voltage values. Generally, wider channels are found to require
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higher applied voltage values to obtain a comparable separation efficiency to channels
with narrower widths. For four-electrode configurations, it is especially apparent at higher
buffer inlet velocities, namely vin,buffer = 850 µm/s, as demonstrated in Table 5.

4.6. Optimum Design

The proposed design is selected from the simulated design configurations summarized
in Table 4, prioritizing the use of low voltage potentials for minimal cell membrane damage.
First, four-electrode configurations are preferred due to their lower voltage requirement.
The lowest voltage that achieved complete separation is ±2 V. Narrower channels are pre-
ferred, as previously mentioned, due to the higher voltage requirement of wider channels.
Finally, a buffer inlet velocity of at vin,buffer = 850 µm/s is selected. The chosen parameters
are given in Table 6, and separation performance is demonstrated in the cell trajectories
in Figure 11.

Table 6. The main parameters of the proposed design.

Parameter Value Description

N Four electrodes Number of electrodes
Va ±2.0 V Applied voltage
CW 40 µm Channel width

vin,buffer 850 µm/s Buffer inlet velocity
vin,cells 134 µm/s Cell inlet velocity
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5. Conclusions

A two-stage microchannel LOC capable of separating WBCs, PLTs, and CTCs is de-
signed and simulated. The proposed design uses dielectrophoretic force (DEP) in conjunc-
tion with flow focusing to isolate each cell type based on its size and electrical properties.
This approach can efficiently separate CTCs from other blood cells. The LOC can be cas-
caded with other devices, such as cell counters. Moreover, the device uses low voltage
values, minimizing potential cell damage. The geometry of the LOC is parametrically
optimized with the aim of achieving a high separation efficiency for all three target cells.
The impact of adjusting the number of electrodes and voltage intensity, channel geometric
parameters, and buffer inlet velocities on the separation efficiency and cell trajectories can
be summarized as follows:

• Increasing the buffer inlet velocity, vin,buffer, can compromise the trajectories of the
target cells by forcing the cells to move closer to the electrode and, hence, reducing the
overall separation efficiency;
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• The use of microchannels with wider widths requires an increase in the applied voltage
value to achieve comparable levels of efficiency;

• Using four electrodes allows the usage of lower voltage values compared to using just
two electrodes;

• Higher voltage values induce a stronger DEP force that forces the cells to move further
from the electrodes.

As such, the proposed design aims to achieve full separation while using a relatively
low voltage of ±2 V to minimize cell membrane damage.

This study can potentially be expanded by investigating the separation of other blood
cell types. Additionally, the functionality of the LOC can be improved by adding cell
counters. More realistic modeling of non-spherical cells can also be considered. Finally,
modeling the particle–particle interaction can improve the reliability of the simulation
instead of fully depending on just the fluid–particle interaction.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/mi14091769/s1, Video S1: Cell trajectories for four-electrode
configuration; Video S2: Cell trajectories for two-electrode configuration; Document S3: Separation
efficiency and purity of all simulated configurations.
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