Breakdown Characteristics of GaN DMISFETs Fabricated via Mg, Si and N Triple Ion Implantation
Abstract
:1. Introduction
2. Mg-Ion-Implanted P-Type Layer
3. Device Structure and Fabrication
4. Device Performance
5. Breakdown Characteristics and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farley, C.W.; Streetman, B.G. The role of defects in the diffusion and activation of impurities in ion implanted semiconductors. J. Electron. Mater. 1984, 13, 401–436. [Google Scholar] [CrossRef]
- Fellows, J.A. Electrical Activation Studies of Ion Implanted GaN; Air Force Institute of Technology: Ann Arbor, MI, USA, 2001. [Google Scholar]
- Ronning, C.; Carlson, E.P.; Davis, R.F. Ion implantation into gallium nitride. Phys. Rep. 2001, 351, 349–385. [Google Scholar] [CrossRef]
- Oikawa, T.; Saijo, Y.; Kato, S.; Mishima, T.; Nakamura, T. Formation of definite GaN p–n junction by Mg-ion implantation to n-GaN epitaxial layers grown on a high-quality free-standing GaN substrate. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2015, 365, 168–170. [Google Scholar] [CrossRef]
- Feigelson, B.N.; Anderson, T.J.; Abraham, M.; Freitas, J.A.; Hite, J.K.; Eddy, C.R.; Kub, F.J. Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN. J. Cryst. Growth 2012, 350, 21–26. [Google Scholar] [CrossRef]
- Niwa, T.; Fujii, T.; Oka, T. High carrier activation of Mg ion-implanted GaN by conventional rapid thermal annealing. Appl. Phys. Express 2017, 10, 91002. [Google Scholar] [CrossRef]
- Chowdhury, S.; Swenson, B.L.; Mishra, U.K. Enhancement and Depletion Mode AlGaN/GaN CAVET With Mg-Ion-Implanted GaN as Current Blocking Layer. IEEE Electron Device Lett. 2008, 29, 543–545. [Google Scholar] [CrossRef]
- Anderson, T.J.; Greenlee, J.D.; Feigelson, B.N.; Hite, J.K.; Hobart, K.D.; Kub, F.J. Improvements in the Annealing of Mg Ion Implanted GaN and Related Devices. IEEE Trans. Semicond. Manuf. 2016, 29, 343–348. [Google Scholar] [CrossRef]
- Yoshino, M.; Sugamata, K.; Ikeda, K.; Nishimura, T.; Kuriyama, K.; Nakamura, T. Ion Implanted GaN MISFETs Fabricated in Mg Implanted Layers Activated by Conventional Rapid Thermal Annealing. Nucl. Inst. Methods Phys. Res. B 2019, 449, 49–53. [Google Scholar]
- Sierakowski, K.; Jakiela, R.; Lucznik, B.; Kwiatkowski, P.; Iwinska, M.; Turek, M.; Sakurai, H.; Kachi, T.; Bockowski, M. High Pressure Processing of Ion Implanted GaN. Electronics 2020, 9, 1380. [Google Scholar]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Nigro, R.L.; Giannazzo, F.; Patti, A.; Saggio, M. Challenges for energy efficient wide band gap semiconductor power devices. Phys. Status Solidi A 2014, 211, 2063–2071. [Google Scholar] [CrossRef]
- Chow, T.P. High-voltage SiC and GaN power devices. Microelectron. Eng. 2006, 83, 112–122. [Google Scholar]
- Shenai, K.; Dudley, M.; Davis, R.F. Current Status and Emerging Trends in Wide Bandgap(WBG) Semiconductor Power Switching Devices. ECS J. Solid State Sci. Technol. 2013, 2, N3055–N3063. [Google Scholar]
- Mantooth, H.A.; Glover, M.D.; Shepherd, P. Wide Bandgap Technologies and Their Implications on Miniaturizing Power Electronic Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 374–385. [Google Scholar] [CrossRef]
- Cooper, J.A.; Melloch, M.R.; Singh, R.; Agarwal, A.; Palmour, J.W. Status and prospects for SiC power MOSFETs. IEEE Trans. Electron Devices 2002, 49, 658–664. [Google Scholar] [CrossRef]
- Nagasawa, H.; Abe, M.; Yagi, K.; Kawahara, T.; Hatta, N. Fabrication of high performance 3C-SiC vertical MOSFETs by reducing planar defects. Phys. Status Solidi B 2008, 245, 1272–1280. [Google Scholar] [CrossRef]
- Cooper, J.A.; Agarwal, A. SiC power-switching devices-the second electronics revolution? Proc. IEEE 2002, 90, 956–968. [Google Scholar] [CrossRef]
- Kachi, T. State-of-the-art GaN vertical power devices. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Gupta, C.; Pasayat, S.S. Vertical GaN and Vertical Ga2O3 Power Transistors: Status and Challenges. Phys. Status Solidi Appl. Mater. Sci. 2022, 219, 2100659. [Google Scholar] [CrossRef]
- Otake, H.; Chikamatsu, K.; Yamaguchi, A.; Fujishima, T.; Ohta, H. Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates. Appl. Phys. Express 2008, 1, 11105. [Google Scholar] [CrossRef]
- Oka, T.; Ueno, Y.; Ina, T.; Hasegawa, K. Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl. Phys. Express 2014, 7, 21002. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, L.; Cheng, X.; Shen, L.; Liu, S.; Wang, D.; You, J.; Yu, Y. Graphene-induced positive shift of the flat band voltage in recessed gate AlGaN/GaN structures. Appl. Phys. Lett. 2021, 118, 173504. [Google Scholar] [CrossRef]
- Shenoy, J.N.; Cooper, J.A.; Melloch, M.R. High-Voltage Double-Implanted Power MOSFET’s in 6H-SiC. IEEE Electron Device Lett. 1997, 18, 93. [Google Scholar] [CrossRef]
- Takashima, S.; Ueno, K.; Tanaka, R.; Matsuyama, H.; Edo, M.; Nakagawa, K. Normally-off MOSFET Properties Fabricated on Mg Implanted GaN Layers. In Proceedings of the Extended Abstracts of the 2017 International Conference on Solid State Devices and Materials, Sendai, Japan, 19–22 September 2017; pp. 1075–1076. [Google Scholar]
- Yoshino, M.; Ando, Y.; Deki, M.; Toyabe, T.; Kuriyama, K.; Honda, Y.; Nishimura, T.; Amano, H.; Kachi, T.; Nakamura, T. Fully Ion Implanted Normally-Off GaN DMOSFETs with ALD-Al2O3 Gate Dielectrics. Materials 2019, 12, 689. [Google Scholar] [PubMed]
- Miller, M.K. Atom Probe Tomography: Analysis at the Atomic Level; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Seidman, D.N. Three-dimensional atom-probe tomography, Advances and applications. Annu. Rev. Mater. Res. 2007, 37, 127–158. [Google Scholar]
- Ziegler, J. SRIM & TRIM. Available online: https://www.srim.org/ (accessed on 16 January 2022).
- Wang, M.J.; Yuan, L.; Chen, K.J.; Xu, F.J.; Shen, B. Diffusion mechanism and the thermal stability of fluorine ions in GaN after ion implantation. J. Appl. Phys. 2009, 105, 083519. [Google Scholar] [CrossRef]
- Kasai, H.; Ogawa, H.; Nishimura, T.; Nakamura, T. Nitrogen ion implantation isolation technology for normally-off GaN MISFETs on p-GaN substrate. Phys. Status Solidi C 2014, 11, 914–917. [Google Scholar] [CrossRef]
- Zeng, K.; Chowdhury, S. Designing Beveled Edge Termination in GaN Vertical p-i-n Diode-Bevel Angle, Doping and Passivation. IEEE Trans. Electron Devices 2020, 67, 2457–2462. [Google Scholar]
- Ogawa, H.; Okazaki, T.; Kasai, H.; Hara, K.; Notani, Y.; Yamamoto, Y.; Nakamura, T. Normally-off GaN MOSFETs with high-k dielectric CeO2 films deposited by RF sputtering. Phys. Status Solidi 2014, 11, 302–306. [Google Scholar] [CrossRef]
- Cheong, M.G.; Kim, K.S.; Kim, C.S.; Choi, R.J.; Yoon, H.S.; Namgung, N.W.; Suh, E.-K.; Leea, H.J. Strong acceptor density and temperature dependences of thermal activation energy of acceptors in a Mg-doped GaN epilayer grown by metalorganic chemical-vapor deposition. Appl. Phys. Lett. 2002, 80, 1001–1003. [Google Scholar] [CrossRef]
- Gupta, C.; Chan, S.H.; Enatsu, Y.; Agarwal, A.; Keller, S.; Mishra, U.K. A novel device design to lower the on-resistance in GaN trench MOSFETs. In Proceedings of the 2016 74th Annual Device Research Conference (DRC), Newark, DE, USA, 19–22 June 2016. [Google Scholar] [CrossRef]
- Cooper, J.A.; Morisette, D.T.; Sampath, M.; Stellman, C.A.; Bayne, S.B.; Westphal, M.J.; Anderson, C.H.; Ransom, J.A. Demonstration of Constant-Gate-Charge Scaling to Increase the Robustness of Silicon Carbide Power MOSFETs. IEEE Trans. Electron Devices 2021, 68, 4577–4581. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, T.; Yoshino, M.; Toyabe, T.; Yasuda, A. Breakdown Characteristics of GaN DMISFETs Fabricated via Mg, Si and N Triple Ion Implantation. Micromachines 2024, 15, 147. https://doi.org/10.3390/mi15010147
Nakamura T, Yoshino M, Toyabe T, Yasuda A. Breakdown Characteristics of GaN DMISFETs Fabricated via Mg, Si and N Triple Ion Implantation. Micromachines. 2024; 15(1):147. https://doi.org/10.3390/mi15010147
Chicago/Turabian StyleNakamura, Tohru, Michitaka Yoshino, Toru Toyabe, and Akira Yasuda. 2024. "Breakdown Characteristics of GaN DMISFETs Fabricated via Mg, Si and N Triple Ion Implantation" Micromachines 15, no. 1: 147. https://doi.org/10.3390/mi15010147
APA StyleNakamura, T., Yoshino, M., Toyabe, T., & Yasuda, A. (2024). Breakdown Characteristics of GaN DMISFETs Fabricated via Mg, Si and N Triple Ion Implantation. Micromachines, 15(1), 147. https://doi.org/10.3390/mi15010147