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Abstract: Shear wave tensiometry is a noninvasive method for directly measuring wave speed
as a proxy for force in tendons during dynamic activities. Traditionally, tensiometry has used
broadband excitation pulses and measured the wave travel time between two sensors. In this
work, we demonstrate a new method for tracking phase velocity using shaped excitations and
measurements from a single sensor. We observed modulation of phase velocity in the Achilles
tendon that was generally consistent with wave speed measures obtained via broadband excitation.
We also noted a frequency dependence of phase velocity, which is expected for dispersive soft tissues.
The implementation of this method could enhance the use of noninvasive wave speed measures
to characterize tendon forces. Further, the approach allows for the design of smaller shear wave
tensiometers usable for a broader range of tendons and applications.
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1. Introduction

Characterizing the forces generated by the muscles and understanding how they are
transmitted through the tendons during human movement is important for comprehending
coordination patterns [1]. This knowledge has a wide range of practical applications,
including evaluating an athlete’s performance and potential [2], predicting and identifying
injuries [3], and guiding and monitoring rehabilitation [4]. One way to quantify these
soft tissue forces is through the use of shear wave measurements. The basic idea is that
by observing the speed of a wave as it travels through a structure, the axial stress in the
soft tissue can then be inferred. Shear waves can be generated using a surface transducer
and tracked with accelerometers attached to the skin. This technique, known as shear
wave tensiometry, involves generating a wave in the tendon with a broadband pulse
excitation. The speed of the wave is then calculated by measuring the time it takes to
travel between two accelerometers with a known distance between them [5]. Unlike
shear wave elastography, which is an ultrasonic technique used to measure soft tissue
behavior [6–8], the shear wave tensiometry approach has a rapid update rate, making it
suitable for tracking changes in tendon loading during dynamic movements with rapidly
changing forces. Previous studies have successfully employed tensiometry to monitor
tendon loading during various activities [9–12].

Two significant challenges are associated with the utilization of impulsive, broadband
excitation in tensiometry. Firstly, it is important to note that, when it comes to wave
propagation in biological soft tissue, a phenomenon known as dispersion occurs [13–15],
meaning that the behavior of waves varies with different frequencies. The impulsive
excitation often used in tensiometry triggers the inherent dynamics of the tissue structure,
and this dynamic nature can change due to the load dependencies of the system impedance.
As a result, the primary wave frequencies may fluctuate during dynamic loading [16],
leading to variations in the measured wave speeds. One potential solution to this issue
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is to employ shaped excitations, which generate waves with a specific phase velocity at
a well-defined frequency [17]. Secondly, when performing tensiometry measurements,
it is essential that both the actuation and sensing components come into contact with
the free tendon. Current tensiometer designs have a relatively large footprint, spanning
approximately 30 mm from excitation input to final measurement output. While this size is
suitable for longer structures like the Achilles tendon, it presents challenges when dealing
with shorter structures that would benefit from a more compact sensor footprint, such as
the patellar tendon in the knee or the ulnar collateral ligament in the elbow.

In this study, we present a novel approach to shear wave tensiometry that involves the
utilization of shaped excitation pulses and a single-sensor technique for real-time tracking
of in vivo tendon phase velocity. Our findings indicate that the application of shaped
waveforms induces phase velocities with frequency dependence, in concordance with the
inherent dispersion characteristics of the system. These outcomes have the potential to
simplify and extend the application of shear wave tensiometry.

2. Methods
2.1. Wave Excitation and Measurement

Shear waves were excited in the Achilles tendon using a miniature surface transducer
(Figure 1a). A shaped, discrete wavelet was chosen as the excitation signal such that the
dominant harmonic component and amplitude modulation could be easily dissociated
using a Hilbert transform. This input excitation ψ was defined by the following piecewise
representation:

ψ =

{
A·sin(2π fAt)·sin(2π fHt + φ) f or 0 ≤ t ≤ t0

0 otherwise
(1)

where A was the peak of the amplitude modulation and fH was the dominant wavelet
frequency. The amplitude modulation was defined as a half-sine with the frequency
(Equation (2)) and duration (Equation (3)) defined to produce a wavelet with seven lobes
(Figure 1b).

fA = fH/7 (2)

t0 = 3.5/ fH (3)

Miniature skin-mounted accelerometers (PCB Piezotronics, Depew, NY, USA) were
used to measure the transverse motion of the tendon at 20 mm and 28 mm from the
transducer contact (Figure 1a).

2.2. Wave Speed Computation

Wave speed was computed in two ways. The single-sensor method was applied
only to the signal measured by the first accelerometer, and the timing of the wave arrival
was quantified via both the group delay and relative phase shift. A two-step approach
was implemented which distinguished the group and phase delays because in dispersive
materials, these are known to be different [18]. To do this, the envelope of the measured
acceleration was computed via a Hilbert transform [19] (Figure 2a). We then found the
group delay T that maximized the normalized cross-correlation between the envelopes of
the input excitation and the measured response (Figure 2b). The input excitation was then
time-shifted by T. The relative phase shift was then determined by identifying that phase
which maximized the correlation between the input excitation and measured response
(Figure 2c). The overall phase delay ϕ was computed as the resultant sum of T represented
as phase, and the relative phase delay [18]. Independent Kalman filters were implemented
for both the group and phase delay computations. The a priori estimates of the system states
were computed from the change in group and phase delay of consecutive events [20]. Phase
velocity for the shear wave was computed from the known distance from the transducer to
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the accelerometer (D = 20 mm) and the arrival times (Equation (4)). The transducer latency
(τt) and the array latency (τa) were subtracted from the overall phase delay (Figure 3).

vp = D/
(
T + ϕ′/2π fH − τt − τa

)
(4)Micromachines 2024, 15, x FOR PEER REVIEW 3 of 10 

 

 

 
Figure 1. (a) Shear wave tensiometry was performed using a standard two-sensor device. The device 
was placed over the Achilles tendon. The transducer excited transverse waves and the propagation 
was measured with two accelerometers embedded in a silicone array. (b) Example of the first accel-
erometer measurements across a 10 s collection, with excitation wavelets introduced at 100 Hz. A 
single event consists of a modulated harmonic wavelet excitation and measured response. 
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Figure 1. (a) Shear wave tensiometry was performed using a standard two-sensor device. The device
was placed over the Achilles tendon. The transducer excited transverse waves and the propagation
was measured with two accelerometers embedded in a silicone array. (b) Example of the first
accelerometer measurements across a 10 s collection, with excitation wavelets introduced at 100 Hz.
A single event consists of a modulated harmonic wavelet excitation and measured response.
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From ∠𝐹𝑅𝐹, the transducer latency 𝜏௧ can be computed. (b) Quantification of the accelerometer 
array dynamics and associated latencies, represented as both phase angle in radians, and latency in 
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lations determined the between-sensor time delay and the between-event changes in time 
delay using signals captured by both accelerometers. A Kalman filter fused these 
measures to provide adjusted arrival times of the wave at each sensor. Wave speed was 

Figure 2. (a) The Hilbert transform extracted the envelope of the amplitude-modulated wavelets used
to excite transverse waves in the tendon. (b) The group delay T optimally aligned the amplitudes of
the envelope of the input wavelet and measured response. (c) The relative phase delay ϕ′ was then
determined by correlating the measured response with phase-shifted reconstructions (range −π to π)
of the time-shifted input to find the phase that maximized the correlation. The overall phase delay
was the sum of the group delay (converted to radians) and the relative phase delay.
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Figure 3. (a) System characterization of input transducer and resultant latencies. The magnitude
(|FRF|) and phase (∠FRF) are resultant from standard frequency response function characterization.
From ∠FRF, the transducer latency τt can be computed. (b) Quantification of the accelerometer
array dynamics and associated latencies, represented as both phase angle in radians, and latency
in milliseconds.

Dual-sensor wave speeds were computed as described previously [20]. Cross-
correlations determined the between-sensor time delay and the between-event changes
in time delay using signals captured by both accelerometers. A Kalman filter fused these
measures to provide adjusted arrival times of the wave at each sensor. Wave speed was
computed based on the known distance between accelerometers (8 mm) and the difference
in wave arrival times at the two accelerometers.

2.3. System Latency Characterization

The frequency-based latencies for the transducer and the measurement array were
determined independently. For the transducer, a system response characterization was
performed by driving the transducer with a 0.1–5 kHz chirp with a duration of 60 s,
and the resultant motion was measured with a miniature accelerometer affixed to the
end effector (Figure 3a). To replicate the in vivo system behavior as closely as possible,
the characterization was performed while the device was placed over an Achilles tendon
during quiet standing. The built-in Matlab (Version R2023b) function “modalfrf” was used
to compute the amplitude and phase response of the system. The frequency-dependent
latency τt of the transducer in the time domain was computed from the phase response
(∠FRF) and the frequency ( fH) (Equation (5)).

τt = (∠FRF)/ fH (5)

The array latencies τa were determined by exciting an unloaded silicone block with
five discrete wavelet frequencies, from 1–3 kHz in 0.5 kHz increments. A laser Doppler
vibrometer (PDV-100, Polytec, Baden-Württemberg, Germany) targeted a fixed location
relative to excitation on the silicone block and measured the transmitted wavelet motion.
The test was repeated with the accelerometer array placed at the same distance from
the excitation, and the vibrometer measured the velocity of the array. The difference
in wave arrival time with and without the array was determined to be the additional
delay introduced to the tensiometer measurement by the array system dynamics for each
frequency (Figure 3b). Both the transducer and array latencies were subtracted from the
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total single-sensor latency to best approximate the actual wave travel time from input
to output.

2.4. In Vivo Implementation

The in vivo data to demonstrate the methods were collected on one healthy young
adult (UW–Madison IRB 2018-0487-CP019). The tensiometer was placed over the right
Achilles tendon. The test conditions included both walking (1.33 m/s) and running
(2.67 m/s) on a treadmill with the dominant excitation wavelet frequency fH set to 2 kHz.
In addition, fH was varied from 1–3 kHz in 500 Hz increments while the participant walked
at 1.33 m/s. Data for each condition were acquired for 10 s in duplicate, and the resultant
wave velocity profiles were ensemble averaged across multiple (15–26) strides per trial.
For each trial, at each normalized percent of the gait cycle, data were eliminated in individ-
ual strides which fell outside of a 5% percentile. Additionally, an individual stride would
have been excluded if 30% of the total number of data points were outliers, but no strides
in these collections met the exclusion criteria.

3. Results
3.1. Frequency Dependence at a Fixed Speed

The computed phase velocities were frequency dependent, consistent with the disper-
sive nature of biological tissues [17]. Most notably, an increase in the excitation frequency
resulted in an increase (35 m/s) in the magnitude of the peak phase velocity across the
range of excitation frequencies considered (Figure 4a,b). For all frequencies, the standard
deviation at peak was no more than 3% of average peak phase velocity across strides.
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Figure 4. (a) Phase velocity as computed with the single-sensor method for walking at 1.33 m/s.
The wave speeds computed with impulsive excitation and a dual-sensor approach are overlayed for
comparison. The swing phase of gait is highlighted in gray. (b) Peak phase velocity vs. the dominant
wavelet excitation frequency fH . For the impulse, fH was defined assuming the 0.3 ms impulse
was half of a sine period, or 1.67 kHz. (c) The dominant frequency (first harmonic) of the wavelet
excitation response exhibited a slight increase with phase velocity. In contrast, the impulse wave
frequencies exhibited nearly a two-fold change over the gait cycle, with the first harmonic ranging
from 1 to 2 kHz.

3.2. Comparison of Wavelet and Impulsive Excitation

Wave speeds computed via impulse excitation exhibited a pattern that modulated
between phase velocities generated by 1 and 1.5 kHz wavelets. Minimum wave speeds
in early stance were ~15 m/s, which is similar to the phase velocity induced via 1 kHz
wavelet. The peak wave speed of ~50 m/s during late pushoff was similar to the phase
velocity induced via 1.5 kHz wavelet. Likewise, frequency analysis of the first accelerometer
signal exhibited a dominant frequency that fluctuated between the frequencies induced by
1–2 kHz wavelets (Figure 4c).
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3.3. Phase Velocity Changes with Locomotion Speed and Paradigm

Phase velocity was modulated by load changes in walking and running (Figure 5),
similar to prior tensiometry studies [5,11]. The first harmonic frequency was consistent
across loading in both walking and running, with no substantial differences between
the paradigms.
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Figure 5. (a) Phase velocity during walking (1.3 m/s) and running (2.7 m/s). Shaded areas are
±1 standard deviation about the mean for each percent of the gait cycle. (b) First harmonic of the
measured wavelet. There were no substantial differences in the first harmonic frequencies between
the two locomotion paradigms.

4. Discussion

This study introduced a single sensor tensiometry approach that used shaped wavelet
excitations to track in vivo phase velocity in tendons during human locomotion. Phase
velocity patterns in the Achilles tendon were generally consistent with wave speed patterns
measured via dual-sensor tensiometry. Phase velocity magnitudes did modulate with
excitation frequency, reflecting the dispersive nature of tendinous tissue. The single sensor
tensiometer has a smaller footprint that is suitable for a broader range of ligaments and
tendons, which could enhance the overall utility of tensiometry in practice.

The Achilles tendon exhibited dispersive, or frequency-dependent, behavior, with the
phase velocities modulating with excitation frequency over the range (1.0–3.0 kHz) con-
sidered (Figure 4b). Such dispersion could arise from the finite thickness and viscoelastic
properties of tendons. Analytical models of wave propagation suggest that the finite thick-
ness of a tendon gives rise to wave-guided behavior at lower frequencies [13]. Likewise, the
inherent viscosity of soft tissues can result in wave speeds that increase with frequency [17].
The presence of dispersion poses a challenge when impulse responses are used to charac-
terize wave speed in a structure that undergoes variations in stiffness, and hence natural
frequency, during movement. Tendon wave speeds computed from impulse responses will
thus inherently include variations attributable to both load and frequency, simultaneously.
Such an effect is evident in the impulsive wave speed measurements shown here, in which
the dominant frequencies increased with loading (from 1.1 to 1.9 kHz). The resulting wave
speeds modulated between phase velocities measured with wavelet excitations of 1 and
1.5 kHz (Figure 4a,c). The overall impact of frequency-dependent changes on absolute
wave speeds was smaller than the magnitude of load-dependent changes but is nonetheless
a factor to consider when selecting an excitation.

While the behavior of wave propagation is understood to be influenced by both the
geometry of the structure of interest (i.e., the tendon) as well as the presence of surrounding
tissue, literature suggests that for superficial structures, such as the Achilles tendon, surface
measurements are dominated by the wave propagating in the stiffest structure [5]. It was
observed via ultrasound that across the depth of the skin, subcutaneous fat, and tendon,
the structures moved synchronously. This note comes with two caveats. First, this does
not disregard that other waves may propagate in surrounding tissue at different speeds;
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rather that the motion of the tendon causes the surrounding tissue to move with it. Faster
or slower waves of smaller amplitude may be present but are small compared to the tendon
motion in the observed time window. Second, there is naturally a depth limit to which
this technique is applicable; a very deep structure may not sufficiently transmit its motion
to the surface for accurate measurement in this way, but for the case presented, surface
measurements are appropriate.

The wavelet responses exhibited some load-dependent changes in dominant frequency
(Figure 4c), though substantially less than impulsive responses. This is understandable
since the wavelet, though centered on a dominant frequency, necessarily contains frequency
content outside of this band because the excitation is temporally discrete. For this reason,
the dominant frequency measured in the wavelets trended toward the system resonance
(for example, the prescribed 3 kHz wavelet had a measured dominant frequency of 2.5 kHz),
but variations over the tendon loading cycle were relatively small. It is worth noting that
the impulse excitation tended to generate waves with dominant frequencies around the
system resonance, as identified in the system characterization (Figure 3a). From this, we
can reasonably conclude that tensiometry performed with a shaped excitation about a
dominant center frequency may exhibit less variation due to dispersion than a broadband
impulse excitation.

An additional advantage when using the single-sensor approach is limiting the dis-
tortion of the propagating wave due to the physical measurement contact. Between the
transducer input and first measurement location, the wave is free to displace the tendon.
Once the wave reaches the first location, the tendon motion is subject to the response of the
tendon–sensor system combined, and this behavior is measured at the second measurement
location [21]. By limiting the measurement to a single point, the measured response is
closer to the unobstructed tendon.

Tensiometry is designed to monitor loading in specific tendons, whereas net ankle
torque superimposes contributions from all agonistic and antagonistic muscles active about
a joint. Hence, tendon wave speed can modulate across the gait cycle differently than joint
torque. This was illustrated by the secondary wave speed peak in late swing, present as
expected during walking but also observed here during running, which has been attributed
to passive stretch in the triceps surae [5,11].

There are a few limitations to consider with this method. First, the computed phase
velocity in the presented results is assumed to be associated with a single frequency. In prac-
tice, the shaped waveform was designed to have a dominant frequency, but amplitude
modulation naturally includes other frequency content into the signal. Furthermore, the
system response introduces distortion and spatial filtering to the signal, such that the
measured frequency content is not identical to the excitation. As such, the computed phase
velocity will be a close approximation, but not an exact representation, of the speed of a pure
sine excitation. Second, the wavelet induces both a forced and free vibrational response in
the tendon. The analysis technique presented here is designed to track the forced response
by identifying the envelope and phasing of the actuator excitation in the sensor signal. Free
response behavior could potentially also be considered by using a sensor in the actuator to
characterize the excitation transmitted to the tendon. Third, the single-sensor technique is
particularly sensitive to positional accuracy, with only a single dimension used to determine
the wave propagation speed. In [20], computation of wave speed using more than two
measurement points showed potential improvements in accuracy when compared to the
standard dual-sensor technique. While there are advantages to the single-sensor method,
the increased importance of accurately constraining spacing is acknowledged. Fourth, this
study is focused on a new methodology for measuring phase velocity in biological soft
tissues and presents a limited set of experimental results to demonstrate its promise. The
in vivo results presented are intended to demonstrate this method, and more extensive
human subject testing is needed to provide a more thorough description of the dispersive
behavior and repeatability of tendon phase velocity metrics, as well as to draw conclusions
about the loading and coordination patterns which drive human movement.
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The reduced footprint of a single sensor tensiometer has practical benefits. The more
compact design (~30% smaller footprint than a typical tensiometer device) may prove
beneficial for applications that have proven challenging to date, such as the shorter tendons
of children or other structures such as the quadriceps tendon, hamstring tendons, or myriad
tendons and ligaments in the upper extremities. Additionally, since the wave speeds can be
computed using only one sensor close to the excitation source, the overall signal-to-noise
ratio will be enhanced. Finally, the hardware resources required to acquire the necessary
data to perform tensiometry are essentially halved. This further expands on the potential of
this implementation to simultaneously quantify the loading patterns on multiple tendons
using fewer resources.

5. Conclusions

We have demonstrated a single-sensor approach to shear wave tensiometry which
can noninvasively track tendon phase velocity under dynamic loading conditions. This ap-
proach mitigates dispersion effects, which could prove beneficial when using wave speed to
track tendon loading [11]. Further, this technique enables the use of hardware with reduced
component requirements and a smaller footprint. By simplifying the sensor, this technique
may be more accessible with a lower cost barrier to entry. Additionally, with this approach,
the applicability of shear wave tensiometry could be extended to additional structures
relevant for biomechanical studies, and in orthopedic and rehabilitation applications.
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