Using Electroporation to Improve and Accelerate Zebrafish Embryo Toxicity Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Fish Stock and Embryo Raising
2.3. Device Theory
2.4. Device Design and Operation
2.5. Toxicity Analysis Method
2.5.1. Dye and Nanoparticle Preparation
2.5.2. Analysis with Trypan Blue Dye
2.5.3. Analysis with Nanoparticles
Determining the Pore Size of the Chorion with Nanoparticles
Determining the Absorbance after Electroporation
Determining the Toxic Effect on the Phenotypes of Embryos
2.5.4. Survival and Morphological Analysis
2.5.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis with Trypan Blue Dye
3.2. Analysis with Nanoparticles
3.2.1. Determining the Native Transport Rate of Nanoparticles
3.2.2. Determining Absorbance after Electroporation
3.2.3. Determining the Toxic Effects Using Embryo Phenotypes
Control Experiment Results
Deformity Rate with Electric Field Application
Condition of Heart Rate after Electric Field Application
Survival Rate after Electric Field Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choudhury, D.; van Noort, D.; Iliescu, C.; Zheng, B.; Poon, K.-L.; Korzh, S.; Korzh, V.; Yu, H. Fish and Chips: A microfluidic perfusion platform for monitoring zebrafish development. Lab Chip 2011, 12, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.V.; Monzo, K.; Cha, Y.R.; Pan, W.; Weinstein, B.M. Vascular development in the zebrafish. Cold Spring Harb. Perspect. Med. 2012, 2, a006684. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.J.; Teraoka, H.; Heideman, W.; Peterson, R.E. Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity. Toxicol. Sci. 2005, 86, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Wielhouwer, E.M.; Ali, S.; Al-Afandi, A.; Blom, M.T.; Riekerink, M.B.O.; Poelma, C.; Westerweel, J.; Oonk, J.; Vrouwe, E.X.; Buesink, W.; et al. Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 2011, 11, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Mandrell, D.; Truong, L.; Jephson, C.; Sarker, M.R.; Moore, A.; Lang, C.; Simonich, M.T.; Tanguay, R.L. Automated Zebrafish Chorion Removal and Single Embryo Placement: Optimizing Throughput of Zebrafish Developmental Toxicity Screens. JALA J. Assoc. Lab. Autom. 2012, 17, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Lammer, E.; Carr, G.J.; Wendler, K.; Rawlings, J.M.; Belanger, S.E.; Braunbeck, T. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Braunbeck, T.; Boettcher, M.; Hollert, H.; Kosmehl, T.; Lammer, E.; Leist, E.; Rudolf, M.; Seitz, N. Towards an alternative for the acute fish LC50 test in chemical assessment: The fish embryo toxicity test goes multi-species—An update. ALTEX 2005, 22, 87–102. [Google Scholar]
- Cheng, J.; Flahaut, E.; Shuk, H.C. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ. Toxicol. Chem. 2007, 26, 708–716. [Google Scholar] [CrossRef]
- Kholodnyy, V.; Gadêlha, H.; Cosson, J.; Boryshpolets, S. How do freshwater fish sperm find the egg? The physicochemical factors guiding the gamete encounters of externally fertilizing freshwater fish. Rev. Aquac. 2020, 12, 1165–1192. [Google Scholar] [CrossRef]
- Sakai, Y.T. Method for Removal of Chorion and Fertilization of the Naked Egg in Oryzias Latipes. Embryologia 1961, 5, 357–368. [Google Scholar] [CrossRef]
- Creton, R. The calcium pump of the endoplasmic reticulum plays a role in midline signaling during early zebrafish development. Dev. Brain Res. 2004, 151, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Gellert, G.; Heinrichsdorff, J. Effect of age on the susceptibility of zebrafish eggs to industrial wastewater. Water Res. 2001, 35, 3754–3757. [Google Scholar] [CrossRef] [PubMed]
- I Zon, L.; Peterson, R. The New Age of Chemical Screening in Zebrafish. Zebrafish 2010, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.; Keddig, N.; Hanel, R.; Kammann, U. Microinjection into zebrafish embryos (Danio rerio)—A useful tool in aquatic toxicity testing? Environ. Sci. Eur. 2014, 26, 32. [Google Scholar] [CrossRef]
- Potter, H.; Heller, R. Transfection by electroporation. Curr. Protoc. Mol. Biol. 2003, 121, 9.3.1–9.3.13. [Google Scholar]
- Al-Sakere, B.; André, F.; Bernat, C.; Connault, E.; Opolon, P.; Davalos, R.V.; Rubinsky, B.; Mir, L.M. Tumor Ablation with Irreversible Electroporation. PLoS ONE 2007, 2, e1135. [Google Scholar] [CrossRef]
- Gehl, J. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 2003, 177, 437–447. [Google Scholar] [CrossRef]
- Cerda, G.A.; Thomas, J.E.; Allende, M.L.; Karlstrom, R.O.; Palma, V. Electroporation of DNA, RNA, and morpholinos into zebrafish embryos. Methods 2006, 39, 207–211. [Google Scholar] [CrossRef]
- He, S.; Salas-Vidal, E.; Rueb, S.; Krens, S.G.; Meijer, A.H.; Snaar-Jagalska, B.E.; Spaink, H.P. Genetic and Transcriptome Characterization of Model Zebrafish Cell Lines. Zebrafish 2006, 3, 441–453. [Google Scholar] [CrossRef]
- Pandian, T.; Marian, L. Problems and prospects of transgenic fish production. Curr. Sci. 1994, 66, 635–649. [Google Scholar]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.C.; Chizmadzhev, Y.A. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 1996, 41, 135–160. [Google Scholar] [CrossRef]
- Lurquin, P.F. Gene Transfer by Electroporation. Appl. Biochem. Biotechnol. Part B Mol. Biotechnol. 1997, 7, 5–35. [Google Scholar] [CrossRef]
- Rambabu, K.M.; Rao, S.H.N.; Rao, N.M. Efficient expression of transgenes in adult zebrafish by electroporation. BMC Biotechnol. 2005, 5, 29. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, Z.; Gong, Z. Transgenic Expression and Genome Editing by Electroporation of Zebrafish Embryos. Mar. Biotechnol. 2020, 22, 644–650. [Google Scholar] [CrossRef]
- Tazin, N.; Jordon, C.; Samuel, R.; Stevenson, T.J.; Bonkowsky, J.L.; Gale, B.K. Transgenic expression in zebrafish embryos with an intact chorion by electroporation and microinjection. Biotechnol. Rep. 2023, 40, e00814. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Li, N.-J.; Cheng, F.-Y.; Hsueh, J.-F.; Huang, C.-C.; Lu, F.-I.; Fu, T.-F.; Yan, S.-J.; Lee, Y.-H.; Wang, Y.-J. The Effect of the Chorion on Size-Dependent Acute Toxicity and Underlying Mechanisms of Amine-Modified Silver Nanoparticles in Zebrafish Embryos. Int. J. Mol. Sci. 2020, 21, 2864. [Google Scholar] [CrossRef]
- Kuntzleman, T.S.; Jacobson, E.C. Teaching Beer’s Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol. J. Chem. Educ. 2016, 93, 1249–1252. [Google Scholar] [CrossRef]
- Asharani, P.V.; Lianwu, Y.; Gong, Z.; Valiyaveettil, S. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 2011, 5, 43–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tazin, N.; Stevenson, T.J.; Bonkowsky, J.L.; Gale, B.K. Using Electroporation to Improve and Accelerate Zebrafish Embryo Toxicity Testing. Micromachines 2024, 15, 49. https://doi.org/10.3390/mi15010049
Tazin N, Stevenson TJ, Bonkowsky JL, Gale BK. Using Electroporation to Improve and Accelerate Zebrafish Embryo Toxicity Testing. Micromachines. 2024; 15(1):49. https://doi.org/10.3390/mi15010049
Chicago/Turabian StyleTazin, Nusrat, Tamara J. Stevenson, Joshua L. Bonkowsky, and Bruce K. Gale. 2024. "Using Electroporation to Improve and Accelerate Zebrafish Embryo Toxicity Testing" Micromachines 15, no. 1: 49. https://doi.org/10.3390/mi15010049
APA StyleTazin, N., Stevenson, T. J., Bonkowsky, J. L., & Gale, B. K. (2024). Using Electroporation to Improve and Accelerate Zebrafish Embryo Toxicity Testing. Micromachines, 15(1), 49. https://doi.org/10.3390/mi15010049