Low-Power Consumption IGZO Memristor-Based Gas Sensor Embedded in an Internet of Things Monitoring System for Isopropanol Alcohol Gas
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaspar, C.; Ravoo, B.; van der Wiel, W.G.; Wegner, S.; Pernice, W. The rise of intelligent matter. Nature 2021, 594, 345–355. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, F.; Tian, J.; Li, S.; Fu, E.; Nie, J.; Lei, R.; Ding, Y.; Chen, X.; Wang, Z.L. Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 2021, 7, eabe2943. [Google Scholar] [CrossRef] [PubMed]
- Waseem, A.; Abdullah, A.; Bagal, I.V.; Ha, J.-S.; Lee, J.K.; Ryu, S.-W. Self-powered and flexible piezo-sensors based on conductivity-controlled GaN nanowire-arrays for mimicking rapid-and slow-adapting mechanoreceptors. Npj Flex. Electron. 2022, 6, 58. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, S.; Qiu, P.; Peng, L.; Wei, T.-R.; Zhang, Z.; Shi, X.; Chen, L. Flexible thermoelectrics based on ductile semiconductors. Science 2022, 377, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.; Wang, H.; Ding, Q.; Wu, Z.; Ding, M.; Tao, K.; Yang, B.R.; Xie, X.; Li, C.; Wu, J. High-Performance Strain Sensors Based on Organohydrogel Microsphere Film for Wearable Human–Computer Interfacing. Adv. Sci. 2023, 10, 2205632. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, Q.; Chen, A.; Wu, J. Self-powered gas sensor based on SiNWs/ITO photodiode. RSC Adv. 2019, 9, 23554–23559. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhang, Z.; Xiao, L.; Lv, R. Carbon nanotube-silicon nanowire heterojunction solar cells with gas-dependent photovoltaic performances and their application in self-powered NO2 detecting. Nanoscale Res. Lett. 2016, 11, 299. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Xing, B.; Fu, X.; Bo, R.; Mulmudi, H.K.; Huang, S.; Ho-Baillie, A.W.; Catchpole, K.R.; Tricoli, A. Superior self-charged and-powered chemical sensing with high performance for NO2 detection at room temperature. Adv. Opt. Mater. 2020, 8, 1901863. [Google Scholar] [CrossRef]
- Cho, I.; Sim, Y.C.; Cho, M.; Cho, Y.-H.; Park, I. Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption. ACS Sens. 2020, 5, 563–570. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, H.; Kim, E.; Ko, J. VOCkit: A low-cost IoT sensing platform for volatile organic compound classification. Ad Hoc Netw. 2021, 113, 102360. [Google Scholar] [CrossRef]
- Agrawal, A.V.; Kumar, N.; Kumar, M. Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 2021, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Parmar, G.; Lakhani, S.; Chattopadhyay, M.K. An IoT based low cost air pollution monitoring system. In Proceedings of the 2017 International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE), Bhopal, India, 27–29 October 2017; IEEE: New York, NY, USA, 2017; pp. 524–528. [Google Scholar]
- Mirzaei, A.; Leonardi, S.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Kimbahune, S.; Ghose, A.; Pal, A.; Guha, P.K. Selective discrimination of VOCs applying gas sensing kinetic analysis over a metal oxide-based chemiresistive gas sensor. ACS Sens. 2021, 6, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kong, Q.; Zhang, J.; Xi, G. General fabrication and enhanced VOC gas-sensing properties of hierarchically porous metal oxides. RSC Adv. 2017, 7, 35897–35904. [Google Scholar] [CrossRef]
- Marikutsa, A.; Novikova, A.; Rumyantseva, M.; Khmelevsky, N.; Gaskov, A. Comparison of Au-functionalized semiconductor metal oxides in sensitivity to VOC. Sens. Actuators B Chem. 2021, 326, 128980. [Google Scholar] [CrossRef]
- Le, D.T.T.; Long, N.D.H.; Xuan, C.T.; Van Toan, N.; Hung, C.M.; Van Duy, N.; Theu, L.T.; Dinh, V.A.; Hoa, N.D. Porous CoFe2O4 nanorods: VOC gas-sensing characteristics and DFT calculation. Sens. Actuators B Chem. 2023, 379, 133286. [Google Scholar]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 2006, 89, 112123. [Google Scholar] [CrossRef]
- Cho, N.G.; Kim, I.-D. NO2 gas sensing properties of amorphous InGaZnO4 submicron-tubes prepared by polymeric fiber templating route. Sens. Actuators B Chem. 2011, 160, 499–504. [Google Scholar] [CrossRef]
- Lee, D.; Jung, J.; Kim, S.; Kim, H.-D. Gas detection and recovery characteristics at room temperature observed in a Zr3N4-based memristor sensor array. Sens. Actuators B Chem. 2023, 376, 132993. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Kim, S.; Kim, H.-d. NO Sensing Properties of BN-based Memristor Sensor Array for Real-time NO Monitoring-Systems. Sens. Actuators B Chem. 2023, 394, 134373. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Jung, J.; Kim, H.-D. Enhanced memristor-based gas sensor for fast detection using a porous carbon nanotube top electrode with membrane. Cell Rep. Phys. Sci. 2023, 4, 101659. [Google Scholar] [CrossRef]
- Lee, D.; Bae, D.; Chae, M.; Kim, H.-D. High sensitivity of isopropyl alcohol gas sensor based on memristor device operated at room temperature. J. Korean Phys. Soc. 2022, 80, 1065–1070. [Google Scholar] [CrossRef]
- Lee, D.; Yun, M.J.; Kim, K.H.; Kim, S.; Kim, H.-D. Advanced Recovery and High-Sensitive Properties of Memristor-Based Gas Sensor Devices Operated at Room Temperature. ACS Sens. 2021, 6, 4217–4224. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.Y.; Song, Y.G.; Kim, J.E.; Kwon, J.U.; Soh, K.; Kwon, J.Y.; Kang, C.Y.; Yoon, J.H. Artificial Olfactory System Based on a Chemi-memristive Device. Adv. Mater. 2023, 35, 2302219. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Qin, Y.; Xia, Q. Ultrasensitive gas sensor developed from SnS/TiO2-based memristor for dilute methanol detection at room temperature. Sens. Actuators B Chem. 2023, 392, 134038. [Google Scholar] [CrossRef]
- Lee, D.; Jung, J.; Kim, K.H.; Bae, D.; Chae, M.; Kim, S.; Kim, H.-d. Highly Sensitive Oxygen Sensing Characteristics Observed in IGZO Based Gasistor in a Mixed Gas Ambient at Room Temperature. ACS Sens. 2022, 7, 2567–2576. [Google Scholar] [CrossRef]
- Suko, A.; Jia, J.; Nakamura, S.-I.; Kawashima, E.; Utsuno, F.; Yano, K.; Shigesato, Y. Crystallization behavior of amorphous indium–gallium–zinc-oxide films and its effects on thin-film transistor performance. Jpn. J. Appl. Phys. 2016, 55, 035504. [Google Scholar] [CrossRef]
- Jeong, H.-J.; Kim, Y.-S.; Jeong, S.-G.; Park, J.-S. Impact of Annealing Temperature on Atomic Layer Deposited In–Ga–Zn–O Thin-Film Transistors. ACS Appl. Electron. Mater. 2022, 4, 1343–1350. [Google Scholar] [CrossRef]
- Popov, A.A.; Varygin, A.D.; Plyusnin, P.E.; Sharafutdinov, M.R.; Korenev, S.V.; Serkova, A.N.; Shubin, Y.V. X-ray diffraction reinvestigation of the Ni-Pt phase diagram. J. Alloys Compd. 2022, 891, 161974. [Google Scholar] [CrossRef]
- Pujar, P.; Gandla, S.; Singh, M.; Gupta, B.; Tarafder, K.; Gupta, D.; Noh, Y.-Y.; Mandal, S. Development of low temperature stoichiometric solution combustion derived transparent conductive ternary zinc tin co-doped indium oxide electrodes. RSC Adv. 2017, 7, 48253–48262. [Google Scholar] [CrossRef]
- Kim, D.-G.; Lee, T.-K.; Park, K.-S.; Chang, Y.-G.; Han, K.-J.; Choi, D.-K. Hydrogen behavior under X-ray irradiation for a-IGZO thin film transistors. Appl. Phys. Lett. 2020, 116, 013502. [Google Scholar] [CrossRef]
- Sen, A.; Park, H.; Pujar, P.; Bala, A.; Cho, H.; Liu, N.; Gandla, S.; Kim, S. Probing the Efficacy of Large-Scale Nonporous IGZO for Visible-to-NIR Detection Capability: An Approach toward High-Performance Image Sensor Circuitry. ACS Nano 2022, 16, 9267–9277. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, V.; Jing, X.; Lanza, M. Combination of Semiconductor Parameter Analyzer and Conductive Atomic Force Microscope for Advanced Nanoelectronic Characterization. In Conductive Atomic Force Microscopy: Applications in Nanomaterials; Wiley: Hoboken, NJ, USA, 2017; pp. 225–241. [Google Scholar] [CrossRef]
- Kim, K.M.; Yang, J.J.; Merced, E.; Graves, C.; Lam, S.; Davila, N.; Hu, M.; Ge, N.; Li, Z.; Williams, R.S. Low variability resistor–memristor circuit masking the actual memristor states. Adv. Electron. Mater. 2015, 1, 1500095. [Google Scholar] [CrossRef]
- Bricalli, A.; Ambrosi, E.; Laudato, M.; Maestro, M.; Rodriguez, R.; Ielmini, D. Resistive switching device technology based on silicon oxide for improved ON–OFF ratio—Part I: Memory devices. IEEE Trans. Electron Devices 2017, 65, 115–121. [Google Scholar] [CrossRef]
- Ling, Z.; Leach, C. The effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor. Sens. Actuators B Chem. 2004, 102, 102–106. [Google Scholar] [CrossRef]
- Mo, Y.; Okawa, Y.; Tajima, M.; Nakai, T.; Yoshiike, N.; Natukawa, K. Micro-machined gas sensor array based on metal film micro-heater. Sens. Actuators B Chem. 2001, 79, 175–181. [Google Scholar] [CrossRef]
- Ha, N.H.; Thinh, D.D.; Huong, N.T.; Phuong, N.H.; Thach, P.D.; Hong, H.S. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl. Surf. Sci. 2018, 434, 1048–1054. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Yang, M. Fast response thin film SnO2 gas sensors operating at room temperature. Sens. Actuators B Chem. 2006, 119, 380–383. [Google Scholar] [CrossRef]
- Akamatsu, T.; Itoh, T.; Izu, N.; Shin, W. NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors. Sensors 2013, 13, 12467–12481. [Google Scholar] [CrossRef]
- Li, S.-H.; Chu, Z.; Meng, F.-F.; Luo, T.; Hu, X.-Y.; Huang, S.-Z.; Jin, Z. Highly sensitive gas sensor based on SnO2 nanorings for detection of isopropanol. J. Alloys Compd. 2016, 688, 712–717. [Google Scholar] [CrossRef]
- Wang, S.-C.; Wang, X.-H.; Qiao, G.-Q.; Chen, X.-Y.; Wang, X.-Z.; Wu, N.-N.; Tian, J.; Cui, H.-Z. NiO nanoparticles-decorated ZnO hierarchical structures for isopropanol gas sensing. Rare Met. 2022, 41, 960–971. [Google Scholar] [CrossRef]
- Bai, Y.; Fu, H.; Yang, X.; Xiong, S.; Li, S.; An, X. Conductometric isopropanol gas sensor: Ce-doped In2O3 nanosheet-assembled hierarchical microstructure. Sens. Actuators B Chem. 2023, 377, 133007. [Google Scholar] [CrossRef]
- Cho, I.; Kang, K.; Yang, D.; Yun, J.; Park, I. Localized liquid-phase synthesis of porous SnO2 nanotubes on MEMS platform for low-power, high performance gas sensors. ACS Appl. Mater. Interfaces 2017, 9, 27111–27119. [Google Scholar] [CrossRef] [PubMed]
- Elmi, I.; Zampolli, S.; Cozzani, E.; Mancarella, F.; Cardinali, G. Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sens. Actuators B Chem. 2008, 135, 342–351. [Google Scholar] [CrossRef]
- Ngoc, T.M.; Van Duy, N.; Hung, C.M.; Hoa, N.D.; Trung, N.N.; Nguyen, H.; Van Hieu, N. Ultralow power consumption gas sensor based on a self-heated nanojunction of SnO2 nanowires. RSC Adv. 2018, 8, 36323–36330. [Google Scholar] [CrossRef] [PubMed]
- Chikkadi, K.; Muoth, M.; Maiwald, V.; Roman, C.; Hierold, C. Ultra-low power operation of self-heated, suspended carbon nanotube gas sensors. Appl. Phys. Lett. 2013, 103, 223109. [Google Scholar] [CrossRef]
- Liu, D.; Lin, L.; Chen, Q.; Zhou, H.; Wu, J. Low power consumption gas sensor created from silicon nanowires/TiO2 core–shell heterojunctions. ACS Sens. 2017, 2, 1491–1497. [Google Scholar] [CrossRef]
- Wu, J.; Tao, K.; Guo, Y.; Li, Z.; Wang, X.; Luo, Z.; Feng, S.; Du, C.; Chen, D.; Miao, J. A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 2017, 4, 1600319. [Google Scholar] [CrossRef]
- Hsiao, Y.-J.; Nagarjuna, Y.; Tsai, C.-A.; Wang, S.-C. High selectivity Fe3O4 nanoparticle to volatile organic compound (VOC) for MEMS gas sensors. Mater. Res. Express 2020, 7, 065013. [Google Scholar] [CrossRef]
Target Gas | Sensing Material | Driven Source | Concentration (ppm) | Response (Rgas/Rair) | Response Time | Recovery Time | Power Consumption | Ref. |
---|---|---|---|---|---|---|---|---|
Benzene | SnO2@Au | 415 °C | 0.005 | ~4 | ~50 s | ~50 s | 8.9 mW | [46] |
CH4 | SiNWs/ TiO2 | RT | 120 | 1.5 | 75 s | 191 s | - | [49] |
Methanol | sulfonated RGO hydrogel | RT | 0.005 | 1.40 | - | - | 20 nW | [50] |
VOC | Fe3O4 | 300 °C | 0.6 | ~1.2 | 6.1 s | 10.7 s | 92 mW | [51] |
IPA | a-IGZO | RT | 10 | 2.51 | 384 s | 50 µs | 0.34 mW | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, M.; Lee, D.; Kim, H.-D. Low-Power Consumption IGZO Memristor-Based Gas Sensor Embedded in an Internet of Things Monitoring System for Isopropanol Alcohol Gas. Micromachines 2024, 15, 77. https://doi.org/10.3390/mi15010077
Chae M, Lee D, Kim H-D. Low-Power Consumption IGZO Memristor-Based Gas Sensor Embedded in an Internet of Things Monitoring System for Isopropanol Alcohol Gas. Micromachines. 2024; 15(1):77. https://doi.org/10.3390/mi15010077
Chicago/Turabian StyleChae, Myoungsu, Doowon Lee, and Hee-Dong Kim. 2024. "Low-Power Consumption IGZO Memristor-Based Gas Sensor Embedded in an Internet of Things Monitoring System for Isopropanol Alcohol Gas" Micromachines 15, no. 1: 77. https://doi.org/10.3390/mi15010077
APA StyleChae, M., Lee, D., & Kim, H. -D. (2024). Low-Power Consumption IGZO Memristor-Based Gas Sensor Embedded in an Internet of Things Monitoring System for Isopropanol Alcohol Gas. Micromachines, 15(1), 77. https://doi.org/10.3390/mi15010077