High-Precision Chromatic Confocal Technologies: A Review
Abstract
:1. Introduction
2. Chromatic Confocal Technology
2.1. Principles
2.2. Broad Spectrum Light Source
2.3. Conjugate Pinholes and Beam Splitter
2.4. Dispersion Probe
2.5. Spectrum Detection
3. Spectrum Analyzing
3.1. Normalization and Peak Extraction
3.2. Signal Processing of Dual-Detection Chromatic Confocal Probe
4. Applications
4.1. Contour Measurement
4.2. Biomedical Imaging
4.3. Thickness Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.K.; Cheung, C.F.; Savio, E.; Linares, J.M. On-machine and in-process surface metrology for precision manufacturing. Cirp Ann.-Manuf. Technol. 2019, 68, 843–866. [Google Scholar] [CrossRef]
- Shimizu, Y.; Chen, L.C.; Kim, D.W.; Chen, X.G.; Li, X.H.; Matsukuma, H. An insight into optical metrology in manufacturing. Meas. Sci. Technol. 2021, 32, 042003. [Google Scholar] [CrossRef]
- Catalucci, S.; Thompson, A.; Piano, S.; Branson, D.T.; Leach, R. Optical metrology for digital manufacturing: A review. Int. J. Adv. Manuf. Technol. 2022, 120, 4271–4290. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chena, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement technologies for precision positioning. Cirp Ann.-Manuf. Techn. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Li, C.; Yan, H.X.; Qian, X.; Zhu, S.D.; Zhu, P.Y.; Liao, C.W.; Tian, H.Y.; Li, X.; Wang, X.H.; Li, X.H. A domain adaptation YOLOv5 model for industrial defect inspection. Measurement 2023, 213, 112725. [Google Scholar] [CrossRef]
- Sato, R.; Li, K.; Michihata, M.; Takahashi, S.; Gao, W. Advanced Sensing and Machine Learning Technologies for Intelligent Measurement in Smart and Precision Manufacturing. Int. J. Autom. Technol. 2024, 18, 545–580. [Google Scholar] [CrossRef]
- Li, C.; Pan, X.K.; Zhu, P.Y.; Zhu, S.D.; Liao, C.W.; Tian, H.Y.; Qian, X.; Li, X.; Wang, X.H.; Li, X.H. Style Adaptation module: Enhancing detector robustness to inter-manufacturer variability in surface defect detection. Comput. Ind. 2024, 157, 104084. [Google Scholar] [CrossRef]
- Gao, W. Precision Nanometrology: Sensors and Measuring Systems for Nanomanufacturing; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Li, D.; Wang, B.; Tong, Z.; Blunt, L.; Jiang, X.Q. On-machine surface measurement and applications for ultra-precision machining: A state-of-the-art review. Int. J. Adv. Manuf. Technol. 2019, 104, 831–847. [Google Scholar] [CrossRef]
- Chen, S.; Xue, S.; Xiong, Y.; Peng, X.; Dai, Y. Research Progress of Ultra-Precision Measurement of Optical Surfaces for Manufacturing. Laser Optoelectron. Prog. 2023, 60, 0312011. [Google Scholar]
- Yang, H.G.; Zheng, H.; Zhang, T.H. A review of artificial intelligent methods for machined surface roughness prediction. Tribol. Int. 2024, 199, 109935. [Google Scholar] [CrossRef]
- Hu, P.C.; Chang, D.; Tan, J.B.; Yang, R.T.; Yang, H.X.; Fu, H.J. Displacement measuring grating interferometer: A review. Front. Inf. Technol. Electron. Eng. 2019, 20, 631–654. [Google Scholar] [CrossRef]
- Yao, T.F.; Duenner, A.; Cullinan, M. In-line metrology of nanoscale features in semiconductor manufacturing systems. Precis. Eng. 2017, 47, 147–157. [Google Scholar] [CrossRef]
- Maitra, V.; Su, Y.T.; Shi, J. Virtual metrology in semiconductor manufacturing: Current status and future prospects. Expert Syst. Appl. 2024, 249, 123559. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, J.; Xu, T.; Yuan, S.; Zhang, Z.; Jiang, H.; Gu, H.; Zhou, R.; Liu, S. Optical wafer defect inspection at the 10 nm technology node and beyond. Int. J. Extrem. Manuf. 2022, 4, 032001. [Google Scholar] [CrossRef]
- Kim, K.J. Review on the thickness measurement of ultrathin oxide films by mutual calibration method. Surf. Interface Anal. 2022, 54, 405–416. [Google Scholar] [CrossRef]
- Park, J.; Cho, Y.J.; Chegal, W.; Lee, J.; Jang, Y.S.; Jin, J. A Review of Thin-film Thickness Measurements using Optical Methods. Int. J. Precis. Eng. Manuf. 2024, 25, 1725–1737. [Google Scholar] [CrossRef]
- Xu, B.; Jia, Z.G.; Li, X.H.; Chen, Y.L.; Shimizu, Y.; Ito, S.; Gao, W. Surface form metrology of micro-optics. Int. Conf. Opt. Precis. Eng. Nanotechnol. 2013, 8769, 2019243. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, H.H.; Ni, K.; Zhou, Q.; Mao, X.Y.; Zeng, L.J.; Wang, X.H.; Xiao, X. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating. Opt. Express 2016, 24, 21378–21391. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.T.; Luo, L.B.; Zhu, J.H.; Shi, N.N.; Li, X.H. An Ultra-Precision Absolute-Type Multi-Degree-of-Freedom Grating Encoder. Sensors 2022, 22, 9047. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Ito, T.; Li, X.H.; Kim, W.; Gao, W. Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating. Meas. Sci. Technol. 2014, 25, 094002. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, C.Y.; He, C.L.; Wang, X.; Huang, J.J.; Deng, J.H. A Review on Applications of Capacitive Displacement Sensing for Capacitive Proximity Sensor. IEEE Access 2020, 8, 45325–45342. [Google Scholar] [CrossRef]
- Fleming, A.J. A review of nanometer resolution position sensors: Operation and performance. Sens. Actuators A Phys. 2013, 190, 106–126. [Google Scholar] [CrossRef]
- Wang, W.; Qiu, W.J.; Yang, H.; Wu, H.M.; Shi, G.; Chen, Z.F.; Lu, K.Q.; Xiang, K.; Ju, B.F. An Improved Capacitive Sensor for Detecting the Micro-Clearance of Spherical Joints. Sensors 2019, 19, 2694. [Google Scholar] [CrossRef] [PubMed]
- Ripka, P.; Mirzaei, M.; Blazek, J. Magnetic position sensors. Meas. Sci. Technol. 2022, 33, 022002. [Google Scholar] [CrossRef]
- Borovik, S.; Kuteynikova, M.; Sekisov, Y. Reducing the Impact of Influence Factors on the Measurement Results from Single-Coil Eddy Current Sensors. Sensors 2023, 23, 351. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.M.; Li, X.H.; Wang, X.H.; Li, J.X.; Xue, G.P.; Zhou, Q.; Kai, N. A planar pattern based calibration method for high precision structured laser triangulation measurement. In Proceedings of the SPIE/COS Photonics Asia, Hangzhou, China, 18 November 2019; Volume 11189. [Google Scholar] [CrossRef]
- Sun, B.; Wang, J.H. Application of the laser displacement sensor in the large-diameter aspheric parabolic mirror detection. Int. J. Adv. Manuf. Technol. 2018, 99, 1579–1588. [Google Scholar] [CrossRef]
- Kennedy, W.P. The basics of triangulation sensors. Sensors 1998, 15, 76–83. [Google Scholar]
- Pigeon, S.; Lapointe-Pinel, B. Using a Slit to Suppress Optical Aberrations in Laser Triangulation Sensors. Sensors 2024, 24, 2662. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.M.; Li, Y.M.; Xue, G.P.; Tao, Y.H.; Li, X.H. Laser triangulation measurement system with Scheimpflug calibration based on the Monte Carlo optimization strategy. Opt. Express 2022, 30, 25290–25307. [Google Scholar] [CrossRef]
- Liu, C.H.; Cheng, C.H. Development of a grating based multi-degree-of-freedom laser linear encoder using diffracted light. Sens. Actuators A Phys. 2012, 181, 87–93. [Google Scholar] [CrossRef]
- Zhu, J.H.; Wang, G.C.; Wang, S.T.; Li, X.H. A Reflective-Type Heterodyne Grating Interferometer for Three-Degree-of-Freedom Subnanometer Measurement. IEEE Trans. Instrum. Meas. 2022, 71, 3213005. [Google Scholar] [CrossRef]
- Kikuchi, G.; Furutani, R. Interferometer for pitch and yaw measurement using LC-screen and four ball lenses. Meas. Sci. Technol. 2020, 31, 094016. [Google Scholar] [CrossRef]
- Li, X.H.; Shi, Y.P.; Xiao, X.; Zhou, Q.; Wu, G.H.; Lu, H.O.; Ni, K. Design and Testing of a Compact Optical Prism Module for Multi-Degree-of-Freedom Grating Interferometry Application. Appl. Sci. 2018, 8, 2495. [Google Scholar] [CrossRef]
- Zeng, Z.; Qu, X.; Tan, Y.; Tan, R.; Zhang, S. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects. Opt. Express 2015, 23, 16977–16983. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.N.; Zhu, J.H.; Yuan, W.H.; Zhou, Q.; Xue, G.P.; Wu, G.H.; Wang, X.H.; Li, X.H. Two-channel six degrees of freedom grating-encoder for precision-positioning of sub-components in synthetic-aperture optics. Opt. Express 2021, 29, 21113–21128. [Google Scholar] [CrossRef]
- Matsukuma, H.; Ishizuka, R.; Furuta, M.; Xinghui, L.; Shimizu, Y.; Wei, G. Reduction in Cross-Talk Errors in a Six-Degree-of-Freedom Surface Encoder. Nanomanuf. Metrol. 2019, 2, 111–123. [Google Scholar] [CrossRef]
- Shi, N.N.; Wang, S.T.; Xue, G.P.; Liu, M.F.; Han, Y.D.; Zhu, J.H.; Ni, K.; Zhou, Q.; Wang, X.H.; Li, X.H. A real-time processing system for dual-channel six-degree-of-freedom grating ruler based on FPGA. In Proceedings of the SPIE/COS Photonics Asia, Nantong, China, 9 October 2021; Volume 11895. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.D.; Mu, H.L.; Li, Y.; Wang, J.G.; Jin, J.F. Laser Interferometric Multi-Degree-of-Freedom Measurement Technology in Space Gravitational-Wave Detection. Laser Optoelectron. Prog. 2023, 60, 0312006. [Google Scholar] [CrossRef]
- Wu, J.H.; Liu, W.; Lu, Y.K.; Zhang, Y.; Sun, S.Q.; Li, J.Q.; Zhou, Y.H. Calibration of the Geometric Error Parameters of Laser Trackers in Site Environments. IEEE Sens. J. 2023, 23, 7077–7086. [Google Scholar] [CrossRef]
- Fu, H.; Hu, P.; Tan, J.; Fan, Z. Simple method for reducing the first-order optical nonlinearity in a heterodyne laser interferometer. Appl. Opt. 2015, 54, 6321–6326. [Google Scholar] [CrossRef] [PubMed]
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996, 35, 1566–1573. [Google Scholar] [CrossRef]
- Joo, K.N.; Clark, E.; Zhang, Y.Q.; Ellis, J.D.; Guzmán, F. A compact high-precision periodic-error-free heterodyne interferometer. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2020, 37, B11–B18. [Google Scholar] [CrossRef] [PubMed]
- Eom, T.B.; Kim, J.A.; Kang, C.S.; Park, B.C.; Kim, J.W. A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer. Meas. Sci. Technol. 2008, 19, 075302. [Google Scholar] [CrossRef]
- Eom, T.; Choi, T.; Lee, K.; Choi, H.; Lee, S. A simple method for the compensation of the nonlinearity in the heterodyne interferometer. Meas. Sci. Technol. 2002, 13, 222–225. [Google Scholar] [CrossRef]
- Kawata, Y.; Hyashi, K.; Aoto, T. Two-wavelength interferometer based on sinusoidal phase modulation with an acetylene stabilized laser and a second harmonic generation. Opt. Express 2015, 23, 16024–16034. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.P.; Zhou, Q.; Li, X.H.; Ni, K.; Wang, X.H. Design and testing of a linear encoder capable of measuring absolute distance. Sensor Actuat. A Phys. 2020, 308, 111935. [Google Scholar] [CrossRef]
- Shi, Y.P.; Ni, K.; Li, X.H.; Zhou, Q.; Wang, X.H. Highly accurate, absolute optical encoder using a hybrid-positioning method. Opt. Lett. 2019, 44, 5258–5261. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Qi, Y.J.; Lu, Z.X. Design of a miniature grating displacement sensor with large range. In Proceedings of the 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)—Micro- and Nano-Optics, Catenary Optics, and Subwavelength Electromagnetics, Chengdu, China, 26–29 June 2018. [Google Scholar]
- Li, X.H.; Gao, W.; Muto, H.S.; Shimizu, Y.; Ito, S.; Dian, S. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage. Precis. Eng. 2013, 37, 771–781. [Google Scholar] [CrossRef]
- Minghao, G.; Lu, W.; Fenghao, Z. Research on High Precision Angle Measurement and Compensation Technology Based on Circular Grating. J. Phys. Conf. Ser. 2021, 1838, 012075. [Google Scholar] [CrossRef]
- Wang, S.T.; Ma, R.; Cao, F.F.; Luo, L.B.; Li, X.H. A Review: High-Precision Angle Measurement Technologies. Sensors 2024, 24, 1755. [Google Scholar] [CrossRef]
- Tao, W.; Pu, Z.B.; Zhang, Z. Dual-frequency laser interferometry of rotating angle measurement with a grating wedge-plate. In Proceedings of the Conference on Interferometry XI Techniques, Analysis and Applications, Seattle, WA, USA, 7–11 July 2002; pp. 288–292. [Google Scholar]
- Li, X.H.; Shimizu, Y.; Ito, T.; Cai, Y.D.; Ito, S.; Gao, W. Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder. Opt. Eng. 2014, 53, 122405. [Google Scholar] [CrossRef]
- Zhu, J.H.; Yu, K.N.; Xue, G.P.; Zhou, Q.; Wang, X.H.; Li, X.H. An improved signal filtering strategy based on EMD algorithm for ultrahigh precision grating encoder. In Proceedings of the SPIE/COS Photonics Asia, Nantong, China, 9 October 2021; Volume 11902. [Google Scholar] [CrossRef]
- Lin, J.; Guan, J.; Wen, F.; Tan, J.B. High-resolution and wide range displacement measurement based on planar grating. Opt. Commun. 2017, 404, 132–138. [Google Scholar] [CrossRef]
- Yu, H.Y.; Chen, X.L.; Liu, C.J.; Cai, G.G.; Wang, W.D. A survey on the grating based optical position encoder. Opt. Laser Technol. 2021, 143, 107352. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Niu, D.; Zhao, G.B.; Ban, Y.W.; Wang, X.H.; Wei, P.; Jiang, W.T.; Chen, J.J.; Liu, H.Z. Improving the optical subdivision ability of a grating interferometer via double-row reverse blazed gratings. Opt. Lasers Eng. 2023, 168, 107676. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, G.; Xue, G.; Zhou, Q.; Li, X. Heterodyne three-degree-of-freedom grating interferometer for ultra-precision positioning of lithography machine. In Proceedings of the 2021 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, Online, 8–10 April 2022; pp. 21–32. [Google Scholar]
- Wang, S.T.; Liao, B.Q.; Shi, N.N.; Li, X.H. A Compact and High-Precision Three-Degree-of-Freedom Grating Encoder Based on a Quadrangular Frustum Pyramid Prism. Sensors 2023, 23, 4022. [Google Scholar] [CrossRef] [PubMed]
- Badami, V.G.; Patterson, S.R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precis. Eng.-J. Am. Soc. Precis. Eng. 2000, 24, 41–49. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, G.; Zhu, J.; Wang, S.; Wu, Y.; Li, X. Method and system for phase measurement of the heterodyne interference system. In Proceedings of the 2021 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, Online, 8–10 April 2022; pp. 431–442. [Google Scholar]
- Zhu, J.H.; Yu, K.N.; Xue, G.P.; Shi, N.N.; Zhou, Q.; Wang, X.H.; Li, X.H. A simplified two-phase differential decoding algorithm for high precision grating encoder. In Proceedings of the Optical Metrology and Inspection for Industrial Applications Viii, Nantong, China, 10–19 October 2021; Volume 11899. [Google Scholar] [CrossRef]
- Wang, G.C.; Gao, L.Y.; Huang, G.Y.; Lei, X.Y.; Cui, C.; Wang, S.T.; Yang, M.Y.; Zhu, J.H.; Yan, S.H.; Li, X.H. A Wavelength-Stabilized and Quasi-Common-Path Heterodyne Grating Interferometer With Sub-Nanometer Precision. IEEE Trans. Instrum. Meas. 2024, 73, 3372212. [Google Scholar] [CrossRef]
- Wang, S.; Luo, L.; Li, X. Design and Parameter Optimization of Zero Position Code Considering Diffraction Based on Deep Learning Generative Adversarial Networks. Nanomanuf. Metrol. 2024, 7, 2. [Google Scholar] [CrossRef]
- Han, Y.D.; Ni, K.; Li, X.H.; Wu, G.H.; Yu, K.N.; Zhou, Q.; Wang, X.H. An FPGA Platform for Next-Generation Grating Encoders. Sensors 2020, 20, 2266. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.P.; Lu, H.O.; Li, X.H.; Zhou, Q.; Wu, G.H.; Wang, X.H.; Zhai, Q.H.; Ni, K. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd’s mirrors based interference lithography. Opt. Express 2020, 28, 2179–2191. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.P.; Lin, L.Y.; Zhai, Q.H.; Zeng, C.; Wang, X.H.; Li, X.H. Development of dielectric-film-based polarization modulation scheme for patterning highly uniform 2D array structures with periodic tunability. Opt. Lasers Eng. 2023, 167, 107627. [Google Scholar] [CrossRef]
- Cai, Y.D.; Li, X.H.; Aihara, R.; Zongwei, R.; Shimizu, Y.; Ito, S.; Gao, W. Investigation on the three-dimensional light intensity distribution of the fringe patterns generated by a modified two-axis Lloyd’s mirror interferometer. J. Adv. Mech. Des. Syst. Manuf. 2016, 10, JAMDSM0080. [Google Scholar] [CrossRef]
- Wang, G.C.; Xue, G.P.; Zhai, Q.H.; Zhu, J.H.; Yu, K.N.; Huang, G.Y.; Wang, M.; Zhong, A.H.; Zhu, L.X.; Yan, S.H.; et al. Planar diffractive grating for magneto-optical trap application: Fabrication and testing. Appl. Opt. 2021, 60, 9358–9364. [Google Scholar] [CrossRef]
- Qian, J.M.; Feng, S.J.; Xu, M.Z.; Tao, T.Y.; Shang, Y.H.; Chen, Q.; Zuo, C. High-resolution real-time 360° 3D surface defect inspection with fringe projection profilometry. Opt. Lasers Eng. 2021, 137, 106382. [Google Scholar] [CrossRef]
- Shang, Z.Y.; Wang, J.H.; Zhao, L.; Du, H.B.; Yin, P.L.; Zhang, Y.D. Measurement of gear tooth profiles using incoherent line structured light. Measurement 2022, 189, 110450. [Google Scholar] [CrossRef]
- Rodriguez-Fajardo, V.; Forbes, A. Structured light for topography measurements in the nanometric regime. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 15 March 2023; Volume 12436. [Google Scholar] [CrossRef]
- Han, M.; Lei, F.X.; Shi, W.J.; Lu, S.A.; Li, X.H. Uniaxial MEMS-based 3D reconstruction using pixel refinement. Opt. Express 2023, 31, 536–554. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.X.; Han, M.; Jiang, H.; Wang, X.H.; Li, X.H. A phase-angle inspired calibration strategy based on MEMS projector for 3D reconstruction with markedly reduced calibration images and parameters. Opt. Lasers Eng. 2024, 176, 108078. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Zhang, C.; Han, M.; Lei, F.; Liang, X.; Wang, X.; Gui, W.; Li, X. Deep Learning-Driven One-Shot Dual-View 3-D Reconstruction for Dual-Projector System. IEEE Trans. Instrum. Meas. 2024, 73, 5021314. [Google Scholar] [CrossRef]
- Feng, S.J.; Zuo, C.; Yin, W.; Gu, G.H.; Chen, Q. Micro deep learning profilometry for high-speed 3D surface imaging. Opt. Lasers Eng. 2019, 121, 416–427. [Google Scholar] [CrossRef]
- Aguénounon, E.; Smith, J.T.; Al-Taher, M.; Diana, M.; Intes, X.; Gioux, S. Real-time, wide-field and high-quality single snapshot imaging of optical properties with profile correction using deep learning. Biomed. Opt. Express 2020, 11, 5701–5716. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Li, Z.A.; Liang, X.J.; Huang, H.Z.; Qian, X.; Feng, F.; Zhang, C.B.; Wang, X.H.; Gui, W.H.; Li, X.H. Global phase accuracy enhancement of structured light system calibration and 3D reconstruction by overcoming inevitable unsatisfactory intensity modulation. Measurement 2024, 236, 114952. [Google Scholar] [CrossRef]
- Zhong, C.; Gao, Z.; Wang, X.; Shao, S.; Gao, C. Structured Light Three-Dimensional Measurement Based on Machine Learning. Sensors 2019, 19, 3229. [Google Scholar] [CrossRef] [PubMed]
- Su, X.Y.; Zhang, Q.C. Dynamic 3-D shape measurement method: A review. Opt. Lasers Eng. 2010, 48, 191–204. [Google Scholar] [CrossRef]
- Xing, C.; Huang, J.H.; Wang, Z.; Duan, Q.Q.; Li, Z.J.; Qi, M.W. A high-accuracy online calibration method for structured light 3D measurement. Measurement 2023, 210, 112488. [Google Scholar] [CrossRef]
- Lin, Q.H.; Zhang, J.; Jiang, K.Y.; Lin, J.Y. Fast Multi-Line Structured Light Measurement Method Integrated with Region Matching. Laser Optoelectron. Prog. 2023, 60, 0112003. [Google Scholar] [CrossRef]
- Zhou, Q.; Qiao, X.R.; Ni, K.; Li, X.H.; Wang, X.H. Depth detection in interactive projection system based on one-shot black-and-white stripe pattern. Opt. Express 2017, 25, 5341–5351. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Xing, Y.; Wang, X.; Li, X. Projection superimposition for the generation of high-resolution digital grating. Opt. Lett. 2024, 49, 4473–4476. [Google Scholar] [CrossRef]
- Winston, P.H. Marvin L. Minsky (1927–2016). Nature 2016, 530, 282. [Google Scholar] [CrossRef]
- Li, S.; Song, B.; Peterson, T.; Hsu, J.; Liang, R. MicroLED chromatic confocal microscope. Opt. Lett. 2021, 46, 2722–2725. [Google Scholar] [CrossRef]
- Bai, J.; Li, X.; Wang, X.; Zhou, Q.; Ni, K. Chromatic Confocal Displacement Sensor with Optimized Dispersion Probe and Modified Centroid Peak Extraction Algorithm. Sensors 2019, 19, 3592. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, R.; Zhang, A.; Li, H.; Liu, J. Monochromatic LED-based spectrally tunable light source for chromatic confocal sensors. Opt. Eng. 2023, 62, 024102. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Q.; Li, X.; Chen, R.; Ni, K. An Improved Low-Noise Processing Methodology Combined with PCL for Industry Inspection Based on Laser Line Scanner. Sensors 2019, 19, 3398. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Li, P.; Yin, S.; Liu, Z. Chromatic Confocal Microscopy using Supercontinuum Light. Opt. Express 2004, 12, 2096–2101. [Google Scholar] [CrossRef]
- Minoni, U.; Manili, G.; Bettoni, S.; Varrenti, E.; Modotto, D.; De Angelis, C. Chromatic confocal setup for displacement measurement using a supercontinuum light source. Opt. Laser Technol. 2013, 49, 91–94. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; Wang, R.; Wang, M.; Yu, D.; Wang, W. Photopolymer-based coaxial holographic lens for spectral confocal displacement and morphology measurement. Opt. Lett. 2019, 44, 3554. [Google Scholar] [CrossRef]
- Matsukuma, H.; Sato, R.; Shimizu, Y.; Gao, W. Measurement Range Expansion of Chromatic Confocal Probe with Supercontinuum Light Source. Int. J. Autom. Technol. 2021, 15, 529–536. [Google Scholar] [CrossRef]
- Chen, X.; Nakamura, T.; Shimizu, Y.; Chen, C.; Chen, Y.-L.; Matsukuma, H.; Gao, W. A chromatic confocal probe with a mode-locked femtosecond laser source. Opt. Laser Technol. 2018, 103, 359–366. [Google Scholar] [CrossRef]
- Sato, R.; Shimizu, Y.; Chen, C.; Matsukuma, H.; Gao, W. Investigation and Improvement of Thermal Stability of a Chromatic Confocal Probe with a Mode-Locked Femtosecond Laser Source. Appl. Sci. 2019, 9, 4084. [Google Scholar] [CrossRef]
- Ruprecht, A.K.; Wiesendanger, T.; Tiziani, H. Chromatic confocal microscopy with a finite pinhole size. Opt. Lett. 2004, 29, 2130–2132. [Google Scholar] [CrossRef]
- Ang, K.T.; Fang, Z.P.; Tay, A. Note: Development of high speed confocal 3D profilometer. Rev. Sci. Instrum. 2014, 85, 116103. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Kim, S.; Heo, J.; Lee, D.; Ryu, S.; Joo, C. Frequency- and spectrally-encoded confocal microscopy. Opt Express 2015, 23, 5809–5821. [Google Scholar] [CrossRef]
- Hillenbrand, M.; Weiß, R.; Endrödy, C.; Grewe, A.; Hoffmann, M.; Sinzinger, S. Chromatic confocal matrix sensor with actuated pinhole arrays. Appl. Opt. 2015, 54, 4927. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Mei, S.; Fan, L.; Wang, H. A line-scanning chromatic confocal sensor for three-dimensional profile measurement on highly reflective materials. Rev. Sci. Instrum. 2021, 92, 053707. [Google Scholar] [CrossRef]
- Ye, Y.; Yi, D.; Liu, Z.; Jiang, W.; Liu, Y. Novel Chromatic Differential Confocal Matrix Sensor Using Multiband Spectral Images. IEEE Photonics Technol. Lett. 2023, 35, 31–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Q.; Wang, C.; Zhang, Y.; Cheng, F.; Wang, Y.; Lin, T.; Liu, T.; Xi, L. Design and Research of Chromatic Confocal System for Parallel Non-Coaxial Illumination Based on Optical Fiber Bundle. Sensors 2022, 22, 9596. [Google Scholar] [CrossRef] [PubMed]
- Prause, K.; Pinzer, B.R.; Herkommer, A.; Layh, M. Verification of a single-shot high speed aerial chromatic confocal metrology sensor. In Proceedings of the Conference on Photonic Instrumentation Engineering IX Part of SPIE Photonics West OPTO Conference, Electr Network, San Francisco, CA, USA, 22 January–24 February 2022. [Google Scholar]
- Cui, Q.; Liang, R.G. Chromatic confocal microscopy using liquid crystal display panels. Appl. Opt. 2019, 58, 2085–2090. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Kuang, C.; Liu, X. Fiber-based chromatic confocal microscope with Gaussian fitting method. Opt. Laser Technol. 2012, 44, 788–793. [Google Scholar] [CrossRef]
- Chen, C.; Yang, W.; Wang, J.; Lu, W.; Liu, X.; Jiang, X. Accurate and efficient height extraction in chromatic confocal microscopy using corrected fitting of the differential signal. Precis. Eng. 2019, 56, 447–454. [Google Scholar] [CrossRef]
- Bai, J.; Li, X.H.; Zhou, Q.; Ni, K.; Wang, X.H. Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-coupler. Opt. Express 2019, 27, 10961–10973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, R. Initial structure of dispersion objective for chromatic confocal sensor based on doublet lens. Opt. Lasers Eng. 2021, 139, 106424. [Google Scholar] [CrossRef]
- Li, C.; Li, K.; Liu, J.; Lv, Z.; Li, G.; Luo, D. Design of Dispersive Objective Lens for Spectral Confocal Displacement Sensor Based on GRIN Lens; SPIE: St Bellingham, WA, USA, 2023; Volume 12558. [Google Scholar]
- Zhang, A.; Lu, R.; Zhang, Z.; Yang, L.; Xu, Y. Optical System Design for Chromatic Confocal Displacement Probes. In Proceedings of the 2023 28th International Conference on Automation and Computing (ICAC), Birmingham, UK, 30 August–1 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Fan, J.; Wang, J.; Wang, C.; Fan, H. Design research of chromatic lens in chromatic confocal point sensors. In Proceedings of the Sixth International Conference on Optical and Photonic Engineering, Shanghai, China, 8–11 May 2018; p. 99. [Google Scholar]
- Huang, T.; Yang, J.; Ma, T. Design of a Line-Scanning Dispersive Objective Lens for Chromatic Confocal Displacement Sensor; SPIE: St Bellingham, WA, USA, 2021; Volume 12071. [Google Scholar]
- Wang, A.-S.; Xie, B.; Liu, Z.-W. Design of Measurement System of 3D Surface Profile Based on Chromatic Confocal Technology; SPIE: St Bellingham, WA, USA, 2018; Volume 10616. [Google Scholar]
- Bai, J.; Wang, X.H.; Li, X.H.; Zhou, Q.; Ni, K. Design and testing of a chromatic dispersion system for displacement application by using a spatial-bandpass-filter. In Proceedings of the Tenth International Symposium on Precision Engineering Measurements and Instrumentation, Kunming, China, 8–10 August 2018; Volume 11053. [Google Scholar] [CrossRef]
- Pruss, C.; Ruprecht, A.K.; Körner, K.; Osten, W.; Lücke, P. Diffractive Elements for Chromatic Confocal Sensors. 2005. Available online: https://www.dgao-proceedings.de/download/106/106_a1.pdf (accessed on 30 April 2024).
- Garzon, J.; Duque, D.; Alean, A.; Toledo, M.; Meneses, J.; Gharbi, T. Diffractive elements performance in chromatic confocal microscopy. J. Phys. Conf. Ser. 2011, 274, 012069. [Google Scholar] [CrossRef]
- Rayer, M.; Mansfield, D. Chromatic confocal microscopy using staircase diffractive surface. Appl. Opt. 2014, 53. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, J.; Liu, Q.; Hu, J.; Wang, Z.; Wan, C.; Yang, S. Chromatic confocal measurement method using a phase Fresnel zone plate. Opt. Express 2022, 30, 2390–2401. [Google Scholar] [CrossRef] [PubMed]
- Hillenbrand, M.; Lorenz, L.; Kleindienst, R.; Grewe, A.; Sinzinger, S. Spectrally multiplexed chromatic confocal multipoint sensing. Opt. Lett. 2013, 38, 4694–4697. [Google Scholar] [CrossRef] [PubMed]
- Hillenbrand, M.; Mitschunas, B.; Wenzel, C.; Grewe, A.; Ma, X.; Feßer, P.; Bichra, M.; Sinzinger, S. Hybrid hyperchromats for chromatic confocal sensor systems. Adv. Opt. Technol. 2012, 1, 187–194. [Google Scholar] [CrossRef]
- Fleischle, D.; Lyda, W.; Schaal, F.; Osten, W. Chromatic Confocal Sensor for In-Process Measurement During Lathing. 2011. Available online: http://www.ismtii2011.org/article/xml/sub/file_download.kin?main_no=120&mode=pdf (accessed on 30 April 2024).
- Park, H.M.; Kwon, U.; Joo, K.N. Vision chromatic confocal sensor based on a geometrical phase lens. Appl. Opt. 2021, 60, 2898–2901. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.H.T.; Tang, D.; Williamson, J.; Martin, H.; Henning, A.J.; Jiang, X. An ultra-compact metasurface-based chromatic confocal sensor. CIRP Ann. 2023, 72, 465–468. [Google Scholar] [CrossRef]
- Frank, J.H.; Elder, A.D.; Swartling, J.; Venkitaraman, A.R.; Jeyasekharan, A.D.; Kaminski, C.F. A white light confocal microscope for spectrally resolved multidimensional imaging. J. Microsc. 2007, 227, 203–215. [Google Scholar] [CrossRef]
- Bestvater, F.; Seghiri, Z.; Kang, M.S.; Gröner, N.; Lee, J.Y.; Im, K.B.; Wachsmuth, M. EMCCD-based spectrally resolved fluorescence correlation spectroscopy. Opt. Express 2010, 18, 23818–23828. [Google Scholar] [CrossRef]
- Yu, H.; Qian, Z.; Xinghui, L.; Wang, X.; Ni, K. Phase-stable repetition rate multiplication of dual-comb spectroscopy based on a cascaded Mach–Zehnder interferometer. Opt. Lett. 2021, 46, 3243–3246. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhou, X.; Yin, Q.; Hu, J.; Ni, Z. Miniature nuclear magnetic resonance spectrometer using a partially enclosed permanent magnet. Instrum. Sci. Technol. 2017, 45, 324–337. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, Y.; Mao, B.; Zhong, S.; Zhou, S.; IEEE. A Miniature Near-infrared Spectrometer Based on Linear Variable Filter. In Proceedings of the 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019. [Google Scholar]
- Gaopeng, X.; Liyu, L.; Qihang, Z.; Qian, Z.; Xiaohao, W.; Xinghui, L. Modulation of dielectric film on two-axis Lloyd’s mirrors for patterning high-uniformity nanoscale grating. In Proceedings of the 2021 International Conference on Optical Instruments and Technology, Online, 8–10 April 2022; Volume 12283. [Google Scholar] [CrossRef]
- Li, W.; Kyaw, C.; Rockward, W.; Marconi, M. Talbot interference lithography with table-top extreme ultraviolet laser. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; p. 2. [Google Scholar]
- Li, X.H.; Gao, W.; Shimizu, Y.; Ito, S. A two-axis Lloyd’s mirror interferometer for fabrication of two-dimensional diffraction gratings. Cirp Ann.-Manuf. Technol. 2014, 63, 461–464. [Google Scholar] [CrossRef]
- Li, W.; Marconi, M.C. Extreme ultraviolet Talbot interference lithography. Opt. Express 2015, 23, 25532–25538. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.P.; Zhai, Q.H.; Lu, H.O.; Zhou, Q.; Ni, K.; Lin, L.Y.; Wang, X.H.; Li, X.H. Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability. Microsyst. Nanoeng. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Zhao, Y. Ultra-High Precision Scanning Beam Interference Lithography and Its Application: Spatial Frequency Multiplication. 2008. Available online: https://dspace.mit.edu/handle/1721.1/44756 (accessed on 18 April 2024).
- Li, X.H.; Zhou, Q.; Zhu, X.W.; Lu, H.O.; Yang, L.; Ma, D.H.; Sun, J.H.; Ni, K.; Wang, X.H. Holographic fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder. Opt. Express 2017, 25, 16028–16039. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Lu, H.O.; Zhou, Q.; Wu, G.H.; Ni, K.; Wang, X.H. An Orthogonal Type Two-Axis Lloyd’s Mirror for Holographic Fabrication of Two-Dimensional Planar Scale Gratings with Large Area. Appl. Sci. 2018, 8, 2283. [Google Scholar] [CrossRef]
- Li, X.H.; Ni, K.; Zhou, Q.; Wang, X.H.; Tian, R.; Pang, J.C. Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method. Opt. Express 2016, 24, 010759. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, X.H.; Ni, K.; Tian, R.; Pang, J.C. Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens. Opt. Express 2016, 24, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Shimizu, Y.; Ito, S.; Gao, W. Fabrication of Scale Gratings for Surface Encoders by Using Laser Interference Lithography with 405 nm Laser Diodes. Int. J. Precis. Eng. Manuf. 2013, 14, 1979–1988. [Google Scholar] [CrossRef]
- Zhou, Q.; Pang, J.C.; Li, X.H.; Ni, K.; Tian, R. Concave grating miniature spectrometer with an expanded spectral band by using two entrance slits. Chin. Opt. Lett. 2015, 13, 110501. [Google Scholar] [CrossRef]
- Zhou, Q.; Pang, J.C.; Li, X.H.; Ni, K.; Tian, R. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones. Appl. Opt. 2015, 54, 9450–9455. [Google Scholar] [CrossRef]
- Teng, S.; Li, F.; Wang, J.; Zhang, W.; Li, Z. Experimental study about the diffraction of high-density grating in deep Fresnel field. Opt. Commun. 2014, 311, 144–149. [Google Scholar] [CrossRef]
- Geng, M.L.; Zhou, Q.; Li, X.H.; Lu, H.O.; Wang, W.Q.; Liu, Y.X.; Kai, N.; Hui, L. Design and fabrication of a variable-line-space grating surface for a Fresnel-grating lens based miniature spectrometer. In Proceedings of the Holography, Diffractive Optics, and Applications Viii, Beijing, China, 2 November 2018; Volume 10818. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.H.; Geng, M.L.; Hu, H.F.; Ni, K.; Zhong, L.C.; Yan, P.; Wang, X.H. Economic fabrication of a novel hybrid planar Grating/Fresnel lens for miniature spectrometers. Opt. Express 2018, 26, 6079–6089. [Google Scholar] [CrossRef]
- Li, X.H.; Zhang, J.C.; Zhou, Q.; Ni, K.; Pang, J.C.; Tian, R. Design of a variable-line-spacing grating pattern for spectrometers based on a grating Fresnel device. Opt. Lett. 2016, 41, 1470–1473. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Zhang, Z.G.; Zhou, C.H.; Liu, L.R. An analysis to the Fresnel diffraction of a grating. In Proceedings of the 3rd International Conference on Photonics and Imaging in Biology and Medicine, Wuhan, China, 8–11 June 2003; pp. 239–243. [Google Scholar]
- Shan, S.; Li, J.; Liu, P.; Li, Q.; Wang, X.; Li, X. A Microlens Array Grating for Miniature Multi-Channel Spectrometers. Sensors 2023, 23, 8381. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shan, S.; Liu, P.; Bai, J.; Wang, X.; Li, X. Test of a novel microlens grating based miniature spectrometers array for chromatic confocal technology. In Proceedings of the 2022 8th International Conference on Nanomanufacturing & 4th AET Symposium on ACSM and Digital Manufacturing (Nanoman-AETS), Dublin, Ireland, 30 August–1 September 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, L.-C.; Nguyen, T.; Chang, Y.-W. Precise optical surface profilometry using innovative chromatic differential confocal microscopy. Opt. Lett. 2016, 41, 5660. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, S.H.; Do, D.; Yoo, H.; Gweon, D. Chromatic confocal microscopy with a novel wavelength detection method using transmittance. Opt. Express 2013, 21, 6286–6294. [Google Scholar] [CrossRef]
- Molesini, G.; Pedrini, G.; Poggi, P.; Quercioli, F. Focus-Wavelength Encoded Optical Profilometer. Opt. Commun. 1984, 49, 229–233. [Google Scholar] [CrossRef]
- Shi, K.; Li, P.; Yin, S.; Liu, Z. Surface profile measurement using chromatic confocal microscopy. In Proceedings of the Two- and Three-Dimensional Vision Systems for Inspection, Control, and Metrology II, Philadelphia, PA, USA, 16 December 2004; Volume 5606, pp. 124–131. [Google Scholar] [CrossRef]
- Yu, H.; Ni, K.; Zhou, Q.; Li, X.; Wang, X.; Wu, G. Digital error correction of dual-comb interferometer without external optical referencing information. Opt. Express 2019, 27, 29425–29438. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.J. Virtual double-slit differential dark-field chromatic line confocal imaging technology. Opt. Lett. 2023, 48, 904–907. [Google Scholar] [CrossRef]
- Naora, H. Schwarzschild-Villiger Effect in Microspectrophotometry. Science 1952, 115, 248–249. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, K.; Zhou, R.; Cui, C.; Cheng, F.; Fu, S.; Ye, R. Calibration of a Chromatic Confocal Microscope for Measuring a Colored Specimen. IEEE Photonics J. 2018, 10, 2875562. [Google Scholar] [CrossRef]
- Xi, M.M.; Liu, H.B.; Li, D.H.; Wang, Y.Q. Intensity response model and measurement error compensation method for chromatic confocal probe considering the incident angle. Opt. Lasers Eng. 2024, 172, 107858. [Google Scholar] [CrossRef]
- Xi, M.; Liu, H.; Li, D.; Wang, Y. Spectral Signal Asymmetry Analysis and Encoding of Chromatic Confocal Sensors. IEEE Sens. J. 2024, 24, 1953–1962. [Google Scholar] [CrossRef]
- Bai, J.; Li, X.; Wang, X.; Wang, J.; Ni, K.; Zhou, Q. Self-reference dispersion correction for chromatic confocal displacement measurement. Opt. Lasers Eng. 2021, 140, 106540. [Google Scholar] [CrossRef]
- Ruprecht, A.K.; Wiesendanger, T.; Tiziani, H. Signal Evaluation for High-Speed Confocal Measurements. Appl. Opt. 2003, 41, 7410–7415. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Niu, C.; Lv, N.; Gao, X. Research on chromatic confocal technology for displacement measurement. In Proceedings of the SPIE—The International Society for Optical Engineering, Beijing, China, 26 May 2011; Volume 7997. [Google Scholar] [CrossRef]
- Niu, C.; Lv, Y. Chromatic Confocal Displacement Measurment Based on Correlation Algorithm. Appl. Mech. Mater. 2013, 446–447, 909–914. [Google Scholar] [CrossRef]
- Liu, C.M.; Lu, G.Y.; Liu, C.Y.; Li, D. Compact chromatic confocal sensor for displacement and thickness measurements. Meas. Sci. Technol. 2023, 34, 055104. [Google Scholar] [CrossRef]
- Lu, W.; Chen, C.; Zhu, H.; Wang, J.; Leach, R.; Liu, X.; Wang, J.; Jiang, X. Fast and accurate mean-shift vector based wavelength extraction for chromatic confocal microscopy. Meas. Sci. Technol. 2019, 8, 115104. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Liu, J.; Luo, D.; Liu, J. Analysis and Research on Spectral Confocal Displacement Measurement Method Based on GRNN. Acta Photonica Sin. 2022, 51, 0330001. [Google Scholar] [CrossRef]
- Dai, J.C.; Zeng, W.H.; Zhong, W.B.; Jiang, X.Q.; Lu, W.L. Nonlinear error compensation algorithm for signal resolution of chromatic confocal measurements. Measurement 2024, 226, 114091. [Google Scholar] [CrossRef]
- Sato, R.; Li, X.; Fischer, A.; Chen, L.-C.; Chen, C.; Shimomura, R.; Gao, W. Signal Processing and Artificial Intelligence for Dual-Detection Confocal Probes. Int J Precis Eng Man 2023, 25, 199–223. [Google Scholar] [CrossRef]
- Sato, R.; Shimizu, Y.; Matsukuma, H.; Gao, W. Influence of Surface Tilt Angle on a Chromatic Confocal Probe with a Femtosecond Laser. Appl. Sci. 2022, 12, 4736. [Google Scholar] [CrossRef]
- Fu, S.; Kor, W.; Cheng, F.; Seah, L. In-Situ measurement of surface roughness using chromatic confocal sensor. Procedia CIRP 2020, 94, 780–784. [Google Scholar] [CrossRef]
- Lishchenko, N.; O’Donnell, G.E.; Culleton, M. Contactless Method for Measurement of Surface Roughness Based on a Chromatic Confocal Sensor. Machines 2023, 11, 836. [Google Scholar] [CrossRef]
- Wu, J.J.; Zhao, R.; Jiang, X.X.; Jiang, L.L.; Sun, A.Y.; Ju, B.F.; Zhu, W.L. Bilateral form characterization of curved transparent components using chromatic confocal sensor. Opt. Eng. 2023, 62, 084103. [Google Scholar] [CrossRef]
- Jiao, S.; Wang, S.; Gao, M.; Xu, M. Non-contact method of thickness measurement for thin-walled rotary shell parts based on chromatic confocal sensor. Measurement 2024, 224, 113794. [Google Scholar] [CrossRef]
- Wertjanz, D.; Kern, T.; Csencsics, E.; Stadler, G.; Schitter, G. Compact scanning confocal chromatic sensor enabling precision 3-D measurements. Appl. Opt. 2021, 60, 7511–7517. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Bai, J.; Feng, F.; Zeng, L.; Feng, P.; Li, X. A Hybrid Strategy for Profile Measurement of Micro Gear Teeth. Micromachines 2023, 14, 1729. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Guo, T.; Wu, S.; An, X. Curved surface measurement method using chromatic confocal sensor and tilt scanning. Surf. Topogr. Metrol. Prop. 2023, 11, 015016. [Google Scholar] [CrossRef]
- Qu, D.; Zhou, Z.; Li, Z.; Ding, R.; Jin, W.; Luo, H.; Xiong, W. Wafer Eccentricity Deviation Measurement Method Based on Line-Scanning Chromatic Confocal 3D Profiler. Photonics 2023, 10, 398. [Google Scholar] [CrossRef]
- Heidari, E.; Harding, K.; Tait, R. Automated cylindrical mapper using chromatic confocal measurement. In Proceedings of the SPIE Optical Engineering + Applications, 2013, San Diego, CA, USA, 20 September 2013; Volume 8839. [Google Scholar] [CrossRef]
- Bai, J.; Wang, Y.; Wang, X.; Zhou, Q.; Ni, K.; Li, X. Three-Probe Error Separation with Chromatic Confocal Sensors for Roundness Measurement. Nanomanuf. Metrol. 2021, 4, 247–255. [Google Scholar] [CrossRef]
- Xiong, X.; Hu, P.; Zhang, W.; Ju, B.-F.; Chen, Y.-L. Implementation and verification of a dual-probe measurement system for geometric form evaluation of a ring-type cylinder. Precis. Eng. 2022, 74, 290–302. [Google Scholar] [CrossRef]
- Li, Q.L.; Wang, Y.F.; Li, J.W.; Wang, X.H.; Li, X.H. Non-contact ultra-precision metrology of superfine cylinders with a developed two-dimensional coordinate measuring device. Measurement 2023, 223, 113727. [Google Scholar] [CrossRef]
- Jurko, J.; Miškiv-Pavlík, M.; Husár, J.; Michalik, P. Turned Surface Monitoring Using a Confocal Sensor and the Tool Wear Process Optimization. Processes 2022, 10, 2599. [Google Scholar] [CrossRef]
- Koruba, P.; Iskierka, G.; Poskart, B.; Mazur, J.; Zakrzewski, A. Online Correction of Laser Head Nozzle Position for Laser Metal Deposition Using a Chromatic Confocal Displacement System. Sensors 2023, 23, 7120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Xi, M.M.; Liu, H.B.; Ding, Z.; Du, W.H.; Meng, X.Z.; Sui, Y.F.; Li, J.W.; Jia, Z.Y. On-machine noncontact scanning of high-gradient freeform surface using chromatic confocal probe on diamond turning machine. Opt. Laser Technol. 2021, 134, 106569. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Wang, Z.D.; Ren, M.J.; Zhang, X.Q.; Zhu, L.M.; Jiang, X.Q. Development of an on-machine measurement system for ultra-precision machine tools using a chromatic confocal sensor. Precis Eng. 2022, 74, 232–241. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Q. Development of an on-machine measurement system with chromatic confocal probe for measuring the profile error of off-axis biconical free-form optics in ultra-precision grinding. Measurement 2022, 202, 111825. [Google Scholar] [CrossRef]
- Ye, L.; Qian, J.; Haitjema, H.; Reynaerts, D. Uncertainty evaluation of an on-machine chromatic confocal measurement system. Measurement 2023, 216, 112995. [Google Scholar] [CrossRef]
- Ye, L.; Qian, J.; Haitjema, H.; Reynaerts, D. On-machine chromatic confocal measurement for micro-EDM drilling and milling. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2022, 76, 110–123. [Google Scholar] [CrossRef]
- Zhao, B.; Li, J.Y.; Mao, X.X.; Sun, F.; Gao, X.M. Dynamic pressure surface deformation measurement based on a chromatic confocal sensor. Appl. Opt. 2023, 62, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Prause, K.; Herkommer, A.; Layh, M. Toward areal chromatic confocal metrology. Opt. Eng. 2023, 62, 034101. [Google Scholar] [CrossRef]
- Chun, B.S.; Kim, K.; Gweon, D. Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope. Rev. Sci. Instrum. 2009, 80, 073706. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.D.; Lin, P.C.; Zhu, L.J.; Sun, P.C.; Fainman, Y. Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning. Appl. Opt. 2000, 39, 2605–2613. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zhang, Y.; Zhang, Y.; Cheng, F.; Shang, W.T.; Wang, Y. A novel chromatic confocal one-shot 3D measurement system based on DMD. Measurement 2021, 186, 110140. [Google Scholar] [CrossRef]
- Yang, X.F.; Zhang, H.; Liu, Z.X.; Fan, Y.B.; Yue, S.H.; Ma, D.L.; Chen, X.; Wang, P. Time-stretch Chromatic Confocal Microscopy for Multi-Depth Imaging. Laser Photonics Rev. 2023, 17, 2300387. [Google Scholar] [CrossRef]
- Zint, M.; Stock, K.; Graser, R.; Ertl, T.; Brauer, E.; Heyninck, J.; Vanbiervliet, J.; Dhondt, S.; De Ceuninck, P.; Hibst, R. Development and verification of a novel device for dental intra-oral 3D scanning using chromatic confocal technology. In Proceedings of the Progress in Biomedical Optics and Imaging—Proceedings of SPIE, San Francisco, CA, USA, 4 March 2015; Volume 9313. [Google Scholar] [CrossRef]
- Kübler, J.; Zoutenbier, V.S.; Buist, G.; Fischer, J.; Amelink, A.; de Boer, J.F. Confocal corrected attenuation coefficient imaging in phantoms and in vivo using chromatic focal shift calibration. Biomed. Opt. Express 2023, 14, 5282–5297. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Zhang, H.; Qin, H.; Wang, S.; Tong, Y.; Zhou, K.; Sun, R.; Yue, S.; Chen, X.; et al. Fiber-optic large-depth 3D chromatic confocal endomicroscopy. Biomed. Opt. Express 2022, 13, 300–313. [Google Scholar] [CrossRef]
- Olsovsky, C.; Shelton, R.; Carrasco-Zevallos, O.; Applegate, B.E.; Maitland, K.C. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue. Biomed. Opt. Express 2013, 4, 732–740. [Google Scholar] [CrossRef]
- Olsovsky, C.; Shelton, R.; Harris, M.; Carrasco-Zevallos, O.; Applegate, B.; Maitland, K. Multidepth imaging by chromatic dispersion confocal microscopy. In Proceedings of the Progress in Biomedical Optics and Imaging—Proceedings of SPIE, San Francisco, CA, USA, 28 February 2012; Volume 8214, p. 12. [Google Scholar] [CrossRef]
- Yunquan, W.; Suping, C.; Wenhan, Z.; Xiangqian, J.; Wenlong, L. Measurement of thickness and refractive index of transparent material synchronously based on chromatic confocal sensor. Opt. Express 2023, 31, 42754–42763. [Google Scholar] [CrossRef]
- Berto, A.; Azzolin, M.; Lavieille, P.; Glushchuk, A.; Queeckers, P.; Bortolin, S.; Iorio, C.S.; Miscevic, M.; Del Col, D. Experimental investigation of liquid film thickness and heat transfer during condensation in microgravity. Int. J. Heat Mass Transf. 2022, 199, 123467. [Google Scholar] [CrossRef]
- Niese, S.; Quodbach, J. Application of a chromatic confocal measurement system as new approach for in-line wet film thickness determination in continuous oral film manufacturing processes. Int. J. Pharm. 2018, 551, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Chen, T.; Yu, Q.; Cui, C.; Tjahjowidodo, T.; Su, H. A double-sided surface scanning platform for sapphire substrate quality assessment. Precis. Eng. 2023, 84, 191–201. [Google Scholar] [CrossRef]
- Haider, C.; Fuerst, M.E.; Laimer, M.; Csencsics, E.; Schitter, G. Range-Extended Confocal Chromatic Sensor System for Double-Sided Measurement of Optical Components With High Lateral Resolution. IEEE Trans. Instrum. Meas. 2022, 71, 1–8. [Google Scholar] [CrossRef]
- Li, J.F.; Zhu, X.P.; Du, H.; Ji, Z.C.; Wang, K.; Zhao, M. Thickness measurement method for self-supporting film with double chromatic confocal probes. Appl. Opt. 2021, 60, 9447–9452. [Google Scholar] [CrossRef] [PubMed]
- Eliyahu, I.; Berkovic, G.; Vaintraub, S.; Zilberman, S.; Goldberger, N.; Dadon, M.; Reinfeld, E.; Shafir, E.; Lapin, I.; Isakov, H.; et al. Optical Measurements of the thickness of the Gallium Indium free surface jet for the SARAF beam dump and neutron source. Nucl. Instrum. Methods Phys. Res. Sect. a-Accel. Spectrometers Detect. Assoc. Equip. 2023, 1053, 168320. [Google Scholar] [CrossRef]
- Lan, J.; Wang, P.; Lu, Y. Monitoring the evaporation of a sessile water droplet with a chromatic confocal measurement system. Opt. Lett. 2022, 47, 6141–6144. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.W.; Xue, G.P.; Wang, X.H.; Zhou, Q.; Li, X.H. A modified chromatic confocal system for spectral reflectance measurement. In Proceedings of the SPIE/COS Photonics Asia, Nantong, China, 9 October 2021; Volume 11895. [Google Scholar] [CrossRef]
- Kuo, C.-T.; Hung, K.-K.; Lee, Y.-H.; Chiu, B. Investigation of EUV pellicle deflection and mechanical stress within EUV inner pod under vacuum activity. Vacuum 2023, 216, 112474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ma, R.; Bai, J. High-Precision Chromatic Confocal Technologies: A Review. Micromachines 2024, 15, 1224. https://doi.org/10.3390/mi15101224
Li J, Ma R, Bai J. High-Precision Chromatic Confocal Technologies: A Review. Micromachines. 2024; 15(10):1224. https://doi.org/10.3390/mi15101224
Chicago/Turabian StyleLi, Jingwen, Rui Ma, and Jiao Bai. 2024. "High-Precision Chromatic Confocal Technologies: A Review" Micromachines 15, no. 10: 1224. https://doi.org/10.3390/mi15101224
APA StyleLi, J., Ma, R., & Bai, J. (2024). High-Precision Chromatic Confocal Technologies: A Review. Micromachines, 15(10), 1224. https://doi.org/10.3390/mi15101224