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Abstract: Micro-polarizer array (MPA) is the core optical component of the Division of Focal-Plane
(DoFP) imaging system, and its design is very important to the system’s performance. Traditional
design methods rely on theoretical analysis and simulation, which is complicated and requires
designers to have profound theoretical foundations. In order to simplify the design process and
improve efficiency, this paper proposes a 2 × 2 MPA reverse-design strategy based on particle swarm
optimization (PSO). This strategy uses intelligent algorithms to automatically explore the design
space in order to discover MPA structures with optimal optical properties. In addition, the all-pass
filter is introduced to the MPA superpixel unit in the design, which effectively reduces the crosstalk
and frequency aliasing between pixels. In this study, two MPA models were designed: a traditional
MPA and an MPA with an all-pass filter. The Degree of Linear Polarization (DOLP) image contrast is
used as the evaluation standard and compared with the traditional MPA; the results show that the
contrast of the newly designed traditional MPA image is increased by 21%, and the MPA image with
the all-pass filter is significantly increased by 82%. Therefore, the reverse-design method proposed in
this paper not only simplifies the design process but also can design an MPA with enhanced optical
performance, which has obvious advantages over the traditional method.

Keywords: MPA; reverse design; particle swarm optimization; DOLP image contrast; optimizing
optical performance

1. Introduction

As a characteristic of light, polarization imaging can provide rich information about
target features. Currently, polarization imaging technology is widely utilized in military
covert target reconnaissance [1], haze elimination [2], the enhancement of unknown target
images [3], astronomical observation [4], medical image enhancement [5], natural resource
detection [6], and various other fields. The existing polarization imaging systems can be
categorized into four types: Division of Time Polarimeter (DoTP), Division of Aperture
Polarimeter (DoAP), Division of Amplitude Polarimeter (DoAmP), and Division of Focal-
Plane Polarimeter (DoFP) [7]. The DoTP polarimeter requires a rotating polarizer, making
it suitable only for static scenes. The DoAmP polarimeter utilizes multiple focal plane
arrays (FPA) to obtain measurement data simultaneously, but its optical system is large,
complex, and expensive. The DoAP polarimeter can simultaneously capture polarization
information from the same target in different directions on a detector focal plane, but it
suffers from expensive optical components and spatial resolution loss. In comparison to the
other three polarization imaging systems, the DoFP polarimeter integrates a micropolarizer
array (MPA) and a detector focal-plane array (FPA), offering outstanding advantages such
as snapshot imaging, a compact structure, low power consumption, high transmission
efficiency, and a high extinction ratio [8]. However, loss of spatial resolution and the
error in the instantaneous field of view are inherent problems in DoFP polarimetry [9].
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To address these issues, various interpolation methods such as bilinear interpolation,
bicubic interpolation, and gradient-based interpolation have been employed to correct
polarization images, thereby enhancing resolution [10–12]. Simultaneously, the study
of high-performance MPA as the core optical component in DoFP polarimetry has also
emerged as a critical avenue for improving the imaging quality of DoFP.

To enhance the performance of the MPA, extensive research has been conducted on its
design. Dmitry V [13] improved device performance by adjusting the structural param-
eters of the metal grating. Zhao et al. [14] introduced two new superpixel units for the
“quasi-Bayer” MPA based on the “Bayer” coding mode. Experimental results demonstrate
a significant improvement in the imaging quality of the new MPA. AS Alenin [15] designed
the superpixel unit of the MPA using a specific coding method combined with Fourier fre-
quency theory and numerical simulation. The experimental results indicate good polarized
image quality for the designed 2 × 3, 2 × 4, and 2 × 2 × 2 MPAs.

Conventional design methodologies exhibit a pronounced dependence on the experien-
tial acumen of designers and foundational optical principles. These methods predominantly
involve the iterative adjustment of structural parameters within devices, aiming to attain
specific performance criteria such as those pertaining to polarizers [16], terahertz (THz)
filters [17], and demultiplexers [18]. The contemporary imperative underscores the pursuit
of miniaturized, integrated, and high-performance MPA.

In contrast, the reverse-design method (RDM) represents a distinctive and innovative
paradigm. This approach entails the consideration of target performance as a benchmark
for evaluation, employing intelligent algorithms to iteratively optimize the initial structural
configuration. The ultimate objective is the identification of a device that satisfies the
specified performance criteria. Diverging from conventional methodologies, this novel
approach is characterized by its exhaustive exploration of the entire design space, enabling
the realization of devices endowed with enhanced capabilities, intricate functionalities, and
superior performance [19,20].

Recent advancements in optical device design showcase the widespread adoption of
RDM. Examples include the design of pixel-type terahertz band-pass filters through the
discrete binary particle swarm optimization (BPSO) algorithm [16], a photonic crystal fiber-
based polarization filter proposed via artificial neural networks and intelligent optimization
algorithms [21], and a microstructure of deep ultraviolet light-emitting diodes (DUV-
LEDs) developed utilizing the particle swarm optimization algorithm [22], among others.
Notwithstanding the success achieved in various optical applications, the application of
RDM in the realm of MPA design remains comparatively limited.

In this paper, we propose an RDM for an MPA based on the particle swarm optimiza-
tion (PSO) algorithm. This method takes into account the structural parameters of the metal
grating and the arrangement of superpixel unit coding combinations, thereby improving
the performance of the MPA through these two factors. This automated design method
can explore all potential design configurations within a specific parameter range, thereby
enhancing the likelihood of discovering superior performance configurations. Further-
more, this method enables online MPA design, allowing for performance analysis through
simulation. As a result, this approach can significantly reduce design costs.

The structure of this paper is as follows: Section 2 introduces the key parameters
that define MPA and outlines its design principles. Section 3 details our proposed PSO-
based reverse-design method for MPA. In Section 4, we present experimental results
demonstrating the advantages of our design approach. Finally, Section 5 provides the
concluding remarks.

2. Key Parameters of MPA

The MPA is comprised of periodic superpixel units, each consisting of metal gratings
oriented in various directions. The imaging of the MPA is a complex process that can be
influenced by various factors, including the structural parameters of the metal grating and
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the coding of superpixel units. Hence, the design of the metal grating and the coding of
superpixel units are of utmost importance.

2.1. Metal Grating Structure

Various factors must be considered when designing the metal grating [23] to achieve
the desired optical properties and fabrication feasibility. As depicted in Figure 1, h repre-
sents the height of the gratings, and Λ denotes the period of the gratings, which influence
the spatial and spectral resolution of the gratings. The grating height should be selected
considering manufacturing feasibility and performance requirements. A larger grating
height will increase manufacturing difficulty, while a smaller grating height will reduce the
grating’s performance. The f is the duty cycle. It was found in [24] that when f is about
0.5, the grating has good performance. Hence, the f is set to 0.5. Aluminum was selected
as the material due to its alignment with the specified criteria for grating polarization
performance. Then, through software simulation, the transmittance and extinction ratio of
the grating can be obtained.
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Figure 1. Schematic diagram of the metal grating structure.

2.2. Superpixel Unit Coding

Traditional MPA consists of periodic superpixel units, each of which is composed of
metal grating units with orientation angles of θ = {0,45,90,135}◦ [25]. Figure 2 illustrates the
metal grating elements at different angles in the MPA. These grating units are organized
and combined into 2 × 2 superpixel units, as shown in Figure 3. These superpixel units are
then periodically arranged to create a traditional MPA. The traditional MPA is widely used
in infrared polarization-imaging systems. However, it faces a common issue: a high pixel
crosstalk rate that negatively impacts image quality. This problem is primarily caused by the
large polarization components on the MPA, the dense distribution of gratings, the minimal
spacing between adjacent gratings, and the differing polarization intensity information
they provide. These factors lead to crosstalk between pixel units and frequency aliasing,
which results in a loss of detailed information and a decrease in image contrast [26].
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To minimize the impact of crosstalk on the MPA performance, the design of the coding
combination for superpixel units in the MPA should adhere to the following principles [27]:

(1) Utilize a reduced number of grating units. For instance, each superpixel unit
should incorporate grating units with only two angles. This approach lowers the overall
polarization component of the MPA, thereby diminishing the occurrence of frequency
aliasing and mitigating pixel crosstalk.



Micromachines 2024, 15, 1251 4 of 13

(2) Incorporate the full-pass filter illustrated in Figure 2e. The addition of the full-pass
filter increases the spacing between the different grating units within the superpixel unit,
effectively reducing the interference caused by frequency aliasing and minimizing pixel
crosstalk.

Consequently, this paper employs the four angles of the grating units and the full-pass
filter (Figure 2e) for the coding of superpixel units within the MPA.
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3. Reverse Design of MPA

The conventional forward design methodology typically relies on specific analytical
theories. For instance [28], the performance of the metal grating is analyzed using effec-
tive medium theory and the finite-difference time-domain (FDTD) method. It is found
that performance of the metal grating can be optimized by altering parameters such as
the grating material, grating period, and grating height. Different grating parameters
are adopted, followed by simulation analysis using FDTD software (2020 R2.4) until the
grating structure with the best optical performance is achieved. This method, however,
is not only time-consuming and labor-intensive but also demands a considerable depth
of experience in theoretical analysis. In the context of nonlinear device optimization, the
traditional approach involves optimizing several interdependent characteristic param-
eters simultaneously, relying heavily on individual expertise. In contrast, RDM treats
the functional parameters of the device as evaluation indices and introduces intelligent
algorithms to identify optimal structures. By exploring the entire design space using
intelligent algorithms, RDM facilitates the discovery of non-periodic topological device
structures, enabling the realization of complex functions and enhanced performance that
were previously unattainable.

Among the existing optimization algorithms, the genetic algorithm, the simulated
annealing algorithm, and the particle swarm optimization algorithm are widely used in
process parameter optimization problems [29]. Heuristic optimization algorithms such
as simulated annealing and genetic algorithms are popular in applications, especially in
discrete optimization problems. Unfortunately, the practical efficiency of heuristic opti-
mization algorithms has large defects [30]. The PSO algorithm is simple to implement, has
fast convergence speed and a strong global search ability, and performs well in optimizing
nonlinear and multimodal functions [31].

Therefore, this paper proposes an MPA RDM based on the PSO algorithm, comprising
three main parts. Section 3.3 is the core of the reverse-design method for MPAs, while
Sections 3.1 and 3.2 provide the essential groundwork for the entire reverse-design process.

3.1. Determine the Metal Grating Design Function

The critical parameters of metal gratings include grating period, grating height, and
superpixel unit coding, which affect the performance of metal gratings. The simulation
software is adopted to analyze the influence of grating height x and grating period y on
the transmittance z of polarization gratings. Then, the relationship between grating height,
grating period, and grating transmittance is obtained by fitting the data. The derived
function is referred to as the “metal grating design function”.
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3.2. Acquisition of DOLP Images and Its Contrast Value

Degree of Linear Polarization (DOLP) image acquisition methods include time-sharing
polarization imaging and simultaneous polarization imaging [32]. The current approach
for simultaneous polarization imaging involves integrating the MPA studied in this paper
with the detector to capture various polarization information of the target simultaneously.
However, if the aim is to assess the performance of the different coding combinations of the
MPA, it would significantly increase the experimental cost. Therefore, this paper opts for
the time-sharing polarization-imaging method. Following the principles of time-sharing
polarization imaging, polarization images of the same target with different polarization
angles are collected at various time points. Using OpenCV, the obtained polarization
images undergo processing, such as pixel extraction and reorganization of superpixel
units, ultimately resulting in simultaneous polarization images of the MPA with different
superpixel units.

To obtain the DOLP image of the MPA with a specific transmittance and coding
combination, five steps are needed (Figure 4):
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S1: Perform equivalent transformation on the source images according to the input
transmittance (75%). Figure 4a–e shows the source images acquired through the time-
sharing polarization-imaging system. The source image was equivalently transformed
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according to the input transmittance. The principle of the equivalent transformation is
represented as:

z0

zin
=

I0

Iin
. (1)

where z0 is the transmittance of the infrared polarizer (75%), zin is the transmittance of
input, I0 is the light intensity of the polarization image corresponding to a transmittance
of 75%, and Iin is the light intensity of the polarization image corresponding to the input
transmittance Zin.

S2: Perform the pixel extraction according to the coding combination. As shown in
Figure 4, the pixels were extracted from the equivalent transformed polarization image
obtained in the previous step.

This paper mainly optimized the design of the traditional MPA and the MPA with an
all-pass filter. Therefore, the input superpixel unit coding combination is mainly divided
into two groups. The first group is the superpixel unit coding combination of the traditional
MPA, involving the combination of four grating units with different angles, as shown in
Figure 2a–d. There are a total of 24 coding combinations in this category. The second group
is comprised of coding involving full-pass filters, where any three grating units from (a) to
(d) in Figure 2 were arranged and combined with full-pass filters. This category includes
a total of 96 coding combinations. It should be noted that the traditional four-direction
MPA was designed separately from the MPA containing the full-pass filter. The traditional
four-direction MPA and the MPA with the full-pass filter in step 2 of Figure 4 are only used
as examples of pixel extraction and were not performed simultaneously.

S3: Fuse the pixel extraction images. The pixel extraction images from the four angles
obtained in the previous step were combined into a new polarization image through
image processing.

S4: Split and interpolate the fused polarization image. Extract the pixel values with
the same polarization angle from the polarization image obtained in S3. Assign these pixel
values to the corresponding positions on a prepared blank image of the same size. This
results in four new images containing unknown pixels, as illustrated in Figure 4g. Each of
the four new images contains only 25% of the pixel values from the original image, with
the remaining 75% being unknown. To obtain all pixel values, we utilized the bilinear
interpolation algorithm to calculate the unknown pixel values based on the neighboring
four known pixel values [33]. Figure 4f–h depicts the splitting and interpolating of the
fused polarization image.

S5: Obtain the DOLP image and its contrast value. The interpolated images in Figure 4h
were derived using the Stokes vector method to obtain the DOLP image [34]. The contrast
value of DOLP image was then calculated.

3.3. Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm [31] is a widely used swarm intelli-
gence algorithm that draws inspiration from the study of bird foraging behavior. When a
flock of birds searches for food, the simplest and most effective strategy is to explore the
area around the bird that is closest to the food within the flock.

In PSO, each potential optimal solution to the optimization problem is treated as a
particle, and these particles move within the solution space to seek the optimal solution.
The velocity and position of the particle constitute two crucial variables in the algorithm.
The update of velocity and position governs the search direction and region of the particle
within the solution space, making it a pivotal process in the particle swarm optimization
algorithm. During the search process, each particle keeps a record of the best position it has
reached, known as its individual historical optimal solution, while the swarm collectively
updates its best position, referred to as the swarm optimal solution. In each iteration, every
particle adjusts its speed and position based on its current speed and position, taking into
account the information from its individual historical optimal solution and the swarm’s
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optimal solution. The velocity and position update rules for particles are depicted in
Equations (2) and (3):

vt+1
i,j = w · vt

i,j + c1 · r1 ·
(

pbestt,j − xt
i,j

)
+ c2 · r2 ·

(
gbestt,j − xt

i,j

)
(2)

xt+1
i,j = xt

i,j + vt+1
i,j (3)

where vt+1
i,j represents the velocity of particle i in the (t + 1)th iterations, xt

i,j denotes
the position of particle i in (t + 1)th iterations, w is the inertia weight, c1 and c2 are the
acceleration constants, r1 and r2 are random numbers between 0 and 1, pbestt,j is the
individual historical optimal solution of particle i in dimension j, and gbestt,j is the group
optimal solution of particle swarm in dimension j.

PSO employs a fitness function to assess the fitness of each particle, which guides its
position and velocity adjustments within the search space [35]. In PSO, the fitness function
is typically defined as the objective to be optimized. Simultaneously, the fitness function
holds significant importance in PSO as it directly influences the algorithm’s convergence
speed and the quality of the final result.

In the field of image processing, contrast [36] in grayscale images is a crucial visual
feature, one that can directly impact the image’s quality and readability. In general, the
higher the contrast in an image, the clearer its details, the more pronounced its edges, and
the easier it is to analyze and process the image. Therefore, this paper adopted the contrast
of the DOLP image as the fitness function. The image contrast is presented as:

C =

√
1
N ∑x,y [I(x, y)− I]2

I
(4)

where N is the total number of pixels in the image, I (x, y) is the intensity value of the pixel,
and I represents the average gray value of the target image.

Therefore, the main purpose of this section was to obtain the MPA with the best
imaging performance through PSO optimization algorithm. The grating height, grating
period, and different superpixel unit codes were used as input parameters, and the contrast
calculation formula of the DOLP image of the MPA was used as the fitness function for the
optimization. Among them, the imaging performance was measured by the DOLP image
contrast of the MPA, so the calculation formula of the DOLP image contrast was used as
the fitness function of the PSO optimization algorithm.

The flow chart of the particle swarm optimization algorithm is shown in Figure 5. The
primary steps for designing the coding combination of superpixel units in the MPA using
the particle swarm optimization algorithm are as follows:

Step 1: Initialize the position (x, y) and velocity V of all particles in the population. The
position of each particle in the search space can be represented by (x, y), where x represents
the grating height, and y represents the grating period. Then, the value of transmittance
Zin is calculated by the coordinates (x, y) and the grating design function. The particle’s
position should be constrained within the range x = (0.1, 1.1) and y = (0.4, 5.0).

Step 2: Calculate the fitness value at the current particle position (x, y). DOLP images
of the MPA are acquired for the given grating period x, grating height y and various
coding combinations. The contrast values of the DOLP images are computed, and these
calculated contrast values are then provided to the particle swarm optimization algorithm
as the fitness values. Finally, the individual historical optimal solution pbest and the group
optimal solution gbest are updated in real time by comparing the fitness values.

Step 3: Update the particle position (x, y) and velocity V according to Equations (2) and (3).
Step 4: Determine whether the particle is in the group’s optimal position and whether

the algorithm has reached the maximum number of iterations. If all the conditions are
satisfied, the algorithm stops running; if not, it returns to Step 2.
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4. Results and Discussion
4.1. Simulation Experiment

In this paper, a time-sharing, long-wave infrared polarization-imaging system was
designed to collect configuration images with different polarization angles, as depicted in
Figure 6. In the imaging system, the detector was a CCD infrared camera (384 × 288 pixels;
XI370-F190M; Chengdu Jinglin Company; Chengdu, China). The detector’s spectral re-
sponse band covered 8~14 µm, and it employed a USB data interface to fulfill the demands
of real-time image acquisition and data transmission.
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The infrared polarizer filter utilized a metal grating polarizer produced by Edmund
Company (Barrington, NJ, USA) with BaF2 as the substrate. The substrate featured a uni-
form distribution of 1200 lines/mm metal grating, corresponding to a light-wave frequency
band of 1.5–12 µm. The effective transmittance of the metal grating was approximately
75%, with an extinction ratio of 300:1. The time-sharing imaging system was employed
to capture polarization images of the tank model from four different angles, as illustrated
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in Figure 2a–e. Among them, Figure 2e displays the image of the full-pass filter in the
MPA directly collected by the CCD infrared camera. The CCD infrared camera was paired
with the infrared polarizer to record the respective polarization images after rotating the
polarizer to 0◦, 45◦, 90◦, and 135◦, as shown in Figure 2a–d.

After collecting the polarization images, the next step was to calculate the grating
design function. Simulation software was adopted for simulation calculations. During the
simulation, the incident wavelength was set to 10.6 µm, with the grating height ranging
from 0.1 µm to 1.1 µm in steps of 0.1 µm. The grating period ranged from 0.4 µm to 5.0 µm,
also in steps of 0.1 µm. This resulted in 517 combinations of grating height and grating
period. Aluminum was selected as the grating material. The transmittance for each of these
517 combinations was then simulated.

Subsequently, the data from these 517 groups of simulations were divided into two
sets: the model training group (450 groups) and the model testing group (67 groups).
Each group’s data included three parameters: grating height x, grating period y, and
grating transmittance z. These three parameters were then fitted. This process yielded a
fitting surface and a polynomial related to the three parameters. In this paper, polynomial
functions were chosen for fitting, with the highest order of fitting set to 5. Equation (5)
represents the polynomial formula after fitting, which served as the metal grating design
function. Table 1 contains the polynomial coefficients, and the fitted function is displayed
in Figure 7, where the change in color represents the change in height (that is, the value of
the z-axis).

f (x, y) = p00 + p10 × x + p01 × y + p20 × x2 + p11 × x × y + p02 × y2 + p30 × x3 + p21 × x2 × y
+p12x × y2 + p03 × y3 + p40 × x4 + p31 × x3 × y + p22 × x2 × y2 + p13 × x × y3 + p04 × y4

+p50 × x5 + p41 × x4 × y1 + p32 × x3 × y2 + p23 × x2 × y3 + p14 × x × y4 + p05 × y5
(5)

Table 1. Fitting polynomial function coefficients of the metal gratings.

Coefficients Coefficients Value Confidence Interval

P00 0.9132 (0.7855, 1.0410)
P10 −0.0876 (−0.9639, 0.7887)
P01 −0.1667 (−0.3867, 0.0534))
P20 0.0738 (−3.0840, 3.2310)
P11 0.1075 (−0.3962, 0.6112)
P02 0.1719 (0.0044, 0.3394)
P30 −0.0510 (−5.5780, 5.4680)
P21 −0.0322 (−0.8334, 0.7690)
P12 −0.0987 (−0.2796, 0.0822)
P03 −0.0943 (−0.1565, −0.0321)
P40 0.0809 (−4.5250, 4.6870)
P31 −0.0522 (−0.7325, 0.6281)
P22 0.0522 (−0.0863, 0.1907)
P13 0.0201 (−0.0135, 0.0537)
P04 0.0226 (0.0114, 0.0337)
P50 −0.0299 (−1.5010, 1.4420)
P41 0.0123 (−0.2344, 0.2591)
P32 0.0025 (−0.0493, 0.0542)
P23 −0.0077 (−0.0192, 0.0039)
P14 −0.0010 (−0.0036,0.0017)
P05 −0.0021 (−0.0029, −0.0013)

Table 2 presents the evaluation value of the fitted surface, which indicates the fitting
accuracy. As shown in Table 2, the SSE and RMSE for the model training group are both
very small, at 0.0475 and 0.0125, respectively. The R-square and Adjusted R-square values
are both close to 1, measuring 0.9961 and 0.9959, respectively. Thus, it is evident that the
fitting results are accurate.
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Table 2. Evaluation value of the fitted surface.

Evaluation Index Evaluation Value

Sum of Squared Errors (SSE) 0.0475
Coefficient of determination (R-square) 0.9961

Adjusted coefficient of determination (Adjusted R-square) 0.9959
Root Mean Squared Error (RMSE) 0.0125

Then, the mean square error [37] between the predicted values and the true values is
calculated as:

MSE =
1
n

n

∑
i=1

(
Yi − Yi

)2

(6)

MSE equals 0.0115, signifying that the error between the fitting function and the
original data is minimal, indicating an excellent fitting accuracy of the metal grating design
function. Then, the PSO algorithm was executed to optimize both the traditional MPA and
the MPA with a full-pass filter.

4.2. Results Analysis

The PSO algorithm was employed to optimize the design of both the traditional MPA
and the MPA with a full-pass filter. Through iterative calculations, it was found that for the
traditional MPA, the optimal parameters are a grating height of 0.33 µm; a grating period
of 1.72 µm; a grating transmittance of 0.7985; and a coding sequence of 0◦, 45◦, 135◦, and
90◦ (Figure 8b). Under these conditions, the contrast value (CV) of the DOLP image of
the MPA reaches a maximum value of 83.4428 (Figure 9b). For the MPA with a full-pass
filter, the optimal parameters are a grating height of 0.38 µm; a grating period of 1.93 µm; a
grating transmittance of 0.7871; and a coding sequence of 45◦, 0◦, full-pass filter, and 90◦

(Figure 8c). The contrast value (CV) of the DOLP image of the MPA reaches a maximum
value of 125.6748 (Figure 9c).
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Figure 9. DOLP image of (a) a traditional MPA (CV = 69.0041), (b) an optimized traditional MPA
(CV = 83.442787), and (c) an optimized MPA with an all-pass filter (CV = 125.6748).

To verify the imaging performance of the designed MPA, a comparative test was
conducted using the MPA model designed by Wu Z [38]. The parameters for this model are
a grating height of 0.14 µm; a grating period of 0.4 µm; a grating transmittance of 0.8147;
and a coding sequence of 0◦, 45◦, 90◦, and 135◦. The superpixel unit of this MPA model is
shown in Figure 8a, and its DOLP image is shown in Figure 9a. The contrast value of the
DOLP image of this model is 69.0041.

Comparing this MPA model with the optimized traditional MPA and the all-pass filter
MPA, the contrast value of the polarization image is greatly improved. The contrast value
of the DOLP image of the optimized traditional MPA increased by 21%. After the all-pass
filter was added to the MPA design, the contrast value of the DOLP image of the MPA
increased by nearly 82%.

Additionally, by observing the images in Figure 9a–c, it is evident that the image
quality of the DOLP images of the optimized MPA was enhanced, offering richer details
and clearer target edges. These improvements facilitate more accurate target identification.
This demonstrates that the reverse-design method for the MPA based on the PSO algorithm
proposed in this paper is highly effective, significantly enhancing the imaging performance
of the MPA designed using this method.

5. Conclusions

This paper adopts image contrast as the optimization target and utilizes the coding of
the superpixel unit and the metal grating structure as the design parameters. The MPA with
the best imaging performance is then realized using a reverse-design method based on the
PSO algorithm. The feasibility of this method is confirmed through simulation experiments.
This automated design approach explores all possible design schemes within a specific area,
increasing the likelihood of discovering superior performance configurations. This method
aims to intelligently design an MPA through a reverse-design process, avoiding the need
for the extensive theoretical groundwork and tedious parameter optimization inherent
in forward-design methods. The results demonstrate a significant improvement in the
design efficiency and quality of the MPA. Specifically, the contrast of the newly designed
traditional MPA image increased by 21%, while the MPA image using an all-pass filter saw
a substantial contrast increase of 82%. Hence, this approach is suitable for the intelligent,
miniaturized, and high-performance design of an MPA.
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