Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO3/SiO2/Poly-Si/Si Substrate for Improved Performance and Miniaturization
Abstract
:1. Introduction
2. Phononic Crystal Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruppel, C.C.W.; Reindl, L.; Weigel, R. SAW devices and their wireless communications applications. IEEE Microw. Mag. 2002, 3, 65–71. [Google Scholar] [CrossRef]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Nakao, T.; Hiramoto, M.; Koshino, M. I.H.P. SAW technology and its application to micro acoustic components. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Chen, P.; Li, G.; Zhu, Z. Development and Application of SAW Filter. Micromachines 2022, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Hagelauer, A.; Fattinger, G.; Ruppel, C.C.W.; Ueda, M.; Hashimoto, K.-Y. Microwave acoustic wave devices: Recent advances on architectures, modeling, materials, and packaging. IEEE Trans. Microw. Theory Tech. 2018, 66, 4548–4562. [Google Scholar] [CrossRef]
- Adkins, L.R.; Bristol, T.W.; Hagon, P.J.; Hughes, A.J. Surface acoustic waves—Device applications and signal routing techniques for VHF and UHF. Microw. J. 1970, 13, 87–94. [Google Scholar]
- Hartmann, C.S.; Abbott, B.P. Overview of design challenges for single phase unidirectional SAW filters. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 3–6 October 1989; pp. 79–89. [Google Scholar]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Fuyutsume, T.; Nakao, T.; Hiramoto, M.; Toi, T.; Koshino, M. High-Performance SAW Resonator with Simplified LiTaO3/SiO2 Double Layer Structure on Si Substrate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, H.; Takai, T.; Takamine, Y.; Nakao, T.; Fuyutsume, T.; Koshino, M. Transverse Modes in I.H.P. SAW Resonator and Their Suppression Method. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar]
- Takamine, Y.; Takai, T.; Iwamoto, H.; Nakao, T.; Koshino, M. A Novel 3.5 GHz Low-Loss Bandpass Filter Using I.H.P. SAW Resonators. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1342–1344. [Google Scholar]
- Feld, D.A.; Parker, R.; Ruby, R.; Bradley, P.; Dong, S. After 60 years: A new formula for computing quality factor is warranted. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 431–436. [Google Scholar]
- Kadota, M.; Tanaka, S. Wideband acoustic wave resonators composed of hetero acoustic layer structure. Jpn. J. Appl. Phys. 2018, 57, 07LD12. [Google Scholar] [CrossRef]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Yamazaki, H.; Fuyutsume, T.; Kyoya, H.; Nakao, T.; Kando, H.; Hiramoto, M.; Toi, T.; et al. Incredible high performance SAW resonator on novel multi-layerd substrate. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar]
- Harding, G.L.; Du, J. Design and properties of quartz-based Love wave acoustic sensors incorporating silicon dioxide and PMMA guiding layers. Smart Mater. Struct. 1997, 6, 716. [Google Scholar] [CrossRef]
- Barié, N.; Stahl, U.; Rapp, M. Vacuum-deposited wave-guiding layers on STW resonators based on LiTaO3 substrate as love wave sensors for chemical and biochemical sensing in liquids. Ultrasonics 2010, 50, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.H.; Bao, L.L.; Zhang, X.S.; Zhang, C.; Li, X.Y.; Qin, F.; Zhang, T.; Zhang, Y.; Wu, Z.H.; Bao, J.-F. Frame structure for thin-film piezoelectric-on-silicon resonator to greatly enhance quality factor and suppress spurious modes. Sens. Actuators A Phys. 2018, 274, 101–108. [Google Scholar] [CrossRef]
- Rasouli, M.A.; Bahreyni, B. Independent tuning of frequency and quality factor of microresonators. Appl. Phys. Lett. 2011, 98, 243508. [Google Scholar] [CrossRef]
- Prasad, A.; Charmet, J.; Seshia, A.A. Simultaneous interrogation of high-Q modes in a piezoelectric-on-silicon micromechanical resonator. Sens. Actuators A Phys. 2016, 238, 207–214. [Google Scholar] [CrossRef]
- Bao, F.H.; Bao, J.F.; Lee, J.E.Y.; Bao, L.L.; Khan, M.A.; Zhou, X.; Wu, Q.D.; Zhang, T.; Zhang, X.S. Quality factor improvement of piezoelectric MEMS resonator by the conjunction of frame structure and phononic crystals. Sens. Actuators A Phys. 2019, 297, 111541. [Google Scholar] [CrossRef]
- Ye, C.Y.; Xiao, Q.; Chen, Z.L.; Dong, J.H.; Mi, J.; Bao, J.F. Research on low-frequency miniaturized Lamb wave resonator. Piezoelectrics Acoust. 2024, 4, 174–183. [Google Scholar]
- Tong, Y.; Han, T. Anchor Loss Reduction of Lamb Wave Resonator by Pillar-Based Phononic Crystal. Micromachines 2021, 12, 62. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, C.; Liu, H.; Li, Y.; Wang, Q.; Su, K. Quality Factor Enhancement of Piezoelectric MEMS Resonator Using a Small Cross-Section Connection Phononic Crystal. Sensors 2022, 22, 7751. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kaya, O.; Pirro, M.; Simeoni, P.; Segovia-Fernandez, J.; Cassella, C. Extending the Linearity of AlScN Contour-Mode Resonators Through Acoustic Metamaterials-Based Reflectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kaya, O.; Maggioli, T.; Cassella, C. Multipurpose Acoustic Metamaterial Anchors for Aluminum Scandium Nitride Contour Mode Resonators. J. Microelectromechanical Syst. 2024, 33, 473–481. [Google Scholar] [CrossRef]
- Liu, J.; Workie, T.B.; Wu, Z.; Tang, P.; Hashimoto, K.Y. Acoustic Reflectors for Anchor Loss Reduction of Thin Film Piezoelectric on Substrate Resonators. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021. [Google Scholar]
- Zou, J.; Lin, C.-M.; Tang, G.; Pisano, A.P. High-Q butterfly-shaped AlN Lamb wave resonators. IEEE Electron. Device Lett. 2017, 38, 1739–1742. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J.; Bao, F.; Song, Y.; Bao, J.; Zhang, X. Fish Scale-shaped Acoustic Reflector Array for Quality Factor Enhancement of AlN-on-Silicon MEMS Resonator. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; IEEE: New York, NY, USA, 2019; pp. 1720–1723. [Google Scholar]
- Zhu, H.; Lee, E.Y. Design of phononic crystal tethers for frequency-selective quality factor enhancement in aln piezoelectric-on-silicon resonators. Procedia Eng. 2015, 120, 516–519. [Google Scholar] [CrossRef]
- Ash, B.J.; Worsfold, S.R.; Vukusic, P.; Nash, G.R. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves. Nat. Commun. 2017, 8, 174. [Google Scholar] [CrossRef] [PubMed]
Symbol | LiTaO3 | SiO2 | Poly-Si | Si | |
---|---|---|---|---|---|
Elastic Constants (×1010 N/m2) | C11 | 23.29 | 7.85 | - | - |
C12 | 46.89 | 1.61 | |||
C13 | 80.23 | 1.61 | |||
C33 | 27.53 | 7.85 | |||
C44 | 93.89 | 3.12 | |||
Piezoelectric Constants (C/m2) | e15 | 2.59 | - | - | - |
e31 | 0.08 | ||||
e33 | 1.88 | ||||
Dielectric Constants | 40.9 | 3.75 | 4.5 | 11.7 | |
43.3 | 3.75 | ||||
Density (kg/m2) | 7450 | 2200 | 2320 | 2329 |
Hexagonal Width p [um] | Bandgap1 [MHz] (FBG) | Bandgap2 [MHz] (FBG) | FF |
---|---|---|---|
1.4 | 704.0~724 (2.8%) | 794.7~883. 6 (10. 6%) | 20.1% |
1.6 | 683.1~707.6 (3.5%) | 744.4~882.4 (16.9%) | 26.3% |
1.8 | 667.6~686.9 (2.8%) | 704~882.2 (22. 5%) | 33.3% |
2.0 | 652.5~662.7 (2.5%) | 675.1~878.8 (26.2%) | 41.2% |
2.2 | - | 654.3~859.0 (27.1%) | 49.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, P.; Pan, H.; Workie, T.B.; Mi, J.; Bao, J.; Hashimoto, K.-y. Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO3/SiO2/Poly-Si/Si Substrate for Improved Performance and Miniaturization. Micromachines 2024, 15, 1256. https://doi.org/10.3390/mi15101256
Tang P, Pan H, Workie TB, Mi J, Bao J, Hashimoto K-y. Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO3/SiO2/Poly-Si/Si Substrate for Improved Performance and Miniaturization. Micromachines. 2024; 15(10):1256. https://doi.org/10.3390/mi15101256
Chicago/Turabian StyleTang, Panliang, Hongzhi Pan, Temesgen Bailie Workie, Jia Mi, Jingfu Bao, and Ken-ya Hashimoto. 2024. "Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO3/SiO2/Poly-Si/Si Substrate for Improved Performance and Miniaturization" Micromachines 15, no. 10: 1256. https://doi.org/10.3390/mi15101256
APA StyleTang, P., Pan, H., Workie, T. B., Mi, J., Bao, J., & Hashimoto, K. -y. (2024). Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO3/SiO2/Poly-Si/Si Substrate for Improved Performance and Miniaturization. Micromachines, 15(10), 1256. https://doi.org/10.3390/mi15101256