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Abstract: This work proposes a methodology to determine the height difference of the guideways
of machine tools where two guideways are not placed on the same horizontal plane. Firstly, a
rigid–flexible coupling system consisting of a moving rigid mass and an elastic overhanging beam is
presented as an equivalent mechanical model of a column and a spindle box. Then, the relationship
between the deviation of a reference point and the height difference or the spindle box’s stroke is
modeled. Next, the natural frequency and mode shape function of the overhanging beam, and the
frequency response functions of the coupling system, are derived. The results indicate that there
always exists an optimal height difference minimizing the relative deflection over the stroke of the
moving part, and the optimal value depends on the loads in two directions and the stroke of the
moving part. Similarly, there is also an optimal choice maximizing the first-order resonant frequency
of the coupling system; however, the optimal solutions for both static and dynamic cases are not the
same. This work provides beneficial instruction for choosing the height difference of machine tools
with two guideways on a bed that are not on the same plane.

Keywords: machine tools; height difference of guideways; rigid–flexible system; static deflection;
frequency response

1. Introduction

Machine tools play a significant role in manufacturing. Structural design optimization
is a crucial approach to improving the performance of machine tools. In today’s economic
environment, the machine tool industry continually focuses on enhancing performance
while reducing costs, conserving energy, and minimizing environmental impacts [1]. A lot
of the work focuses on structural optimization or the lightweight design of components or a
holistic machine tool. Shen et al. [2] adopted an adaptive growth method to design an inner
stiffener layout of structures, like the headstock, column, and bed, and an optimization
strategy for a holistic machine tool utilizing dynamic sensitivity was presented. Ma et al. [3]
addressed a dynamic modeling and design methodology for a box-in-box-type precision
horizontal machine tool based on parallel artificial neural networks and genetic algorithms,
and lower-order natural frequencies and frequency responses over the task workspace
were improved. Chan et al. [4] focused on the implementation of finite element methods
for the analysis and optimization of CNC (Computerized Numerical Control) machine tool
operations and the structure, and an increase of 1.5% in the first three modal frequencies
was observed. Liu et al. [5] presented four types of bionic tables and compared them
through the finite element method; then, a multi-objective optimization design for the
prairie rushes bionic structure table was conducted. The results indicate that the natural
frequency, mass, deformation, and maximum equivalent stress were all improved compared
with the original design. Similarly, Chen et al. [6] employed finite element analysis to
find key parts of a five-axis tool grinding machine. After model parameterization, a
back propagation neural network and genetic algorithm were combined to solve a multi-
objective optimization problem with the constraints of the first-order natural frequency,
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deformation, and mass. Xiao et al. [7] proposed a lightweight design method for machine
tools based on particle damping technology and the finite element method. The results
indicate that the acceleration and displacement amplitudes of a lightweight machine tool
with a particle damper were smaller than those of traditional machine tools. Li et al. [8]
conducted an optimization effort on the crossbeam of a gantry machine tool. The X-type
structure of the internal unit of the crossbeam was replaced by an O-type one, and specific
dimensions were optimized using a neural network algorithm and a nondominated sorting
genetic algorithm, considering constraints of deformation, modal frequency, and mass.
Triebe et al. [9] explored the lightweighting of the machine slides (or tables) to achieve
energy savings, considering the table and workpiece mass, the cutting force, and the motor
that drives the table. The results show potential energy savings of up to 38% in terms of the
energy required to move the table. Ji et al. [10] investigated the structural optimization of the
tool slide of a dry-cut hobbing machine, comprehensively considering energy consumption
and the static and dynamic performance of the machine tool. Several methods like the
uniform design method, sensitivity analysis, response surface method, principal component
analysis, and hybrid algorithm combining particle swarm optimization with the simulated
annealing algorithm were integrated in the work. Cui et al. [11] carried out the topological
optimization of the cardan frame of an A/C swing angle milling head using the finite
element method. Xie et al. [12] presented an optimization method based on the Kriging
and multi-objective genetic algorithm to reduce the mass of a hinged beam structure of the
cubic diamond press, taking the stress and displacement peak as the constraint conditions.

This work focuses on an innovative design of the machine tool structure, as Figure 1a
shows. To improve the load-bearing capacity, reduce the mass of moving parts, and
promote the machining efficiency of a horizontal machining center, two guideways
connecting the column and bed are no longer placed on the same horizontal plane and
there exists a height difference denoted by l1. However, the influence of the height
difference on the end performance of the machine tool is not revealed yet, which is the
motivation of this work.
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Obviously, the parameter l1 mainly affects the static and dynamic behaviors in the xy
plane; thus, only forces Fx and Fy are taken into account during the following analysis, as
shown in Figure 1b. Transforming Fx into the centroid of the moving part, an equivalent
moment M = Fxly is obtained. For the further transformation of Fx to the axis of the ball
screw, a moment and a force are applied to the ball screw–nut pair, which are neglected in
the following analysis. Thus, the loads applied to the spindle box include Fy and moment
M. As the inner structure of the column is hollow, and the research objective is to explore
the influencing trend of the height difference, the column is simplified into an overhanging
beam and the spindle box into a rigid body, and the two bodies are connected by the
spring-damping unit, as shown in Figure 1c.

The following sections of this paper are organized as follows: The static deflection
analysis is conducted in Section 2 and the frequency response functions of the coupling
system are derived in Section 3. The simulation and discussions are presented in Section 4,
and the conclusion is presented in the final section.

2. Static Analysis

As Figure 2a shows, a reference coordinate system is established first, where the origin
is located at the left end of the beam. The total length of the beam is denoted by l; the
simply supported span is l1, which is variable; and the overhanging is l2, and l = l1 + l2.
Two bodies are connected by the spring and damping with the stiffness k1, k2 and damping
coefficients c1, c2, respectively. The distance from the left spring-damping unit to the left
end of the beam is denoted by lF1, which varies along the x-axis direction, and the span
between the two spring-damping units is a constant l12.
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Figure 2. Schematic of rigid–flexible coupling system. (a) Simplification of loaded forces; (b) Model
for statics analysis.
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During the static analysis, the contact damping terms between the bodies are not taken
into account, as shown in Figure 2b. According to the mechanics, the interaction forces F1
and F2 between the moving mass and elastic overhanging beam are

F1 =
Fy
2 +

Fx ly
l12

F2 =
Fy
2 − Fx ly

l12

(1)

There are two situations here: one is the mass moving along the x direction while the
support position is fixed as shown in Figure 3a, and the other supporting position varies as
shown in Figure 3b. For clarification, the calculation of the deflection at the point only the
single force F is applied is given first and the schematic is shown in Figure 3c.
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Figure 3. Equivalent model for static analysis. (a) The case that loads moving and support span fixed;
(b) The case that support span varying and load position fixed; (c) General case of overhanging beam
with single force.

For the constant cross-section beam, the differential equation of the bending deflection
w is

EIw′ =
∫

Mdx + C (2)

where E is the elastic modulus of the beam material, I is the moment of inertia, and C is the
constant to be determined according to the boundary conditions.

According to the mechanics of the material, substituting the boundary conditions into
Equation (2), the deflection where force F is applied to the position is obtained:

w =

− Fl2
F(l1−lF)

2

3EIl1
lF ≤ l1

− FlF(l1−lF)
2

3EI l1 < lF

F = F1 or F2 (3)

In this case, there are two forces F1, F2 simultaneously applied; thus, the superposition
method is employed to obtain the deflection at both points. To describe the deviation of
point p referring to the original position, a homogenous transfer matrix is adopted here, as
Figure 4 shows.
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Figure 4. Deviation of reference point. (a) Schematic of deviation of point p; (b) Coordinates for
describing deviation of point p.

Two local coordinate systems are built: osxsys, whose origin os is fixed to point S1 and
the xs-axis is always pointing toward S2, and opxpyp, whose origin is set at the midpoint
of two connecting springs and the xp-axis lies on the bottom of the rigid mass, shown in
Figure 4b.

Taking Axy as the global coordinate system, the homogeneous coordinates of point p
in the global aspect before loads are applied is denoted by [px0,py0,pz0,1]T, and

px0
px0
px0
1

 = TAos Tosop


0
ly
0
1

 (4)

where the transfer matrixes TAos, Tosop are

TAos =


1 0 0 lF1
0 1 0 0
0 0 1 0
0 0 0 1

, Tosop =


1 0 0 l12/2
0 1 0 0
0 0 1 0
0 0 0 1

.

As the deflections are small, the deviation matrixes under loads are

∆TAos =


1 −γs 0 0
γs 1 0 w1
0 0 1 0
0 0 0 1

 (5)

∆Tosop =


1 −γp 0 0

γp 1 0 δy
0 0 1 0
0 0 0 1

 (6)

where γs ≈ w2−w1
l12

, γp =
Fx ly
k1l2

12
=

Fx ly
k2l2

12
, and δy =

Fy
k1+k2

.

Then, the resultant coordinates of point p are obtained by
px
py
pz
1

 = TAos ∆TAos Tosop ∆Tosop


0
ly
0
1

 (7)

The compound deviation amount is then calculated by

δ =
√
(px − px0)

2 + (py − py0)
2 (8)
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This is the evaluating indicator for the static analysis.

3. Frequency Response Functions

Reviewing Figure 1, the motion equations of the coupling system are given by

ms
..
y + Fd1 + Fd2 = Fy (9)

Js

(
..
θ −

..
yb1 −

..
yb2

l12

)
+

Fd1l12

2
− Fd2l12

2
= Fx

ly
2

(10)

m
∂2yb
∂t2 + EI

∂4yb
∂x4 = Fd1 + Fd2 (11)

where ms, Js represent the mass and moment of inertia of the moving component, and
m is the mass per unit length of the beam. The variables y, yb represent the vibration
displacements of the lumped mass and beam along the y-axis, respectively. And θ is the
angular displacement of the mass. The interaction forces Fd1, Fd2 between two bodies are
given by

Fd1 = c1(
.
y − .

yb1 +
l12

2

.
θ) + k1(y − yb1 +

l12

2
θ) (12)

Fd2 = c2(
.
y − .

yb2 −
l12

2

.
θ) + k2(y − yb2 −

l12

2
θ) (13)

3.1. Vibration Mode of the Overhanging Beam

The free vibration equation of Equation (11) is written by

m
∂2yb
∂t2 + EI

∂4yb
∂x4 = 0 (14)

By means of the separation of variables and mode superposition, the solution of
Equation (14) takes the following form:

yb(x, t) =
∞

∑
r=1

Yr(x)qr(t) (15)

where Yr(x) is the rth vibration shape function, and qr(t) is the rth-order response in the
time domain. Correspondingly, the response at the force-applied points is expressed by

yb(x1, t) =
∞

∑
r=1

Yr(x1)qr(t) = yb1(t) (16)

yb(x2, t) =
∞

∑
r=1

Yr(x2)qr(t) = yb2(t) (17)

To derive the mode function, the beam is divided into two segments, as shown in
Figure 5.
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The functions take the following forms:

Ys1(x1) = C1S(λx1) + C2T(λx1) + C3U(λx1) + C4V(λx1) (18)

Ys2(x2) = C1
′S(λx2) + C2

′T(λx2) + C3
′U(λx2) + C4

′V(λx2) (19)

S(λx) = 1
2 (chλx + cos λx)

T(λx) = 1
2 (shλx + sin λx)

U(λx) = 1
2 (chλx − cos λx)

V(λx) = 1
2 (shλx − sin λx)

, x = x1 or x2 (20)

where λ is an auxiliary variable λ4 = ω2
nm

EI , and ωn is the natural frequency.
The left end of the first segment is simply supported, and the boundary conditions are

as follows:
x1 = 0, Ys1(0) = Ys1

′′ (0) = 0 (21)

The right end of the second segment is free, and the boundary conditions are as follows:

x2 = 0, Ys2
′′ (0) = Ys2

′′′ (0) = 0 (22)

Moreover, the boundary conditions at the connection between the two segments are
as follows:

Ys1(l1) = Ys2(l2) = 0, Ys1
′(l1) = Ys2

′(l2), Ys1
′′ (l1) = Ys2

′′ (l2) (23)

Substituting the above boundary conditions into Equations (18) and (19), the natural
frequency equation is obtained,

chλl1 sin λl1 − shλl1 cos λl1
2shλl1 sin λl1

=
chλl2 cos λl2 + 1

chλl2 sin λl2 − shλl2 cos λl2
(24)

where ωnr = λ2
r

√
EI
m .

And the shape functions are

Ys1(x1) = D
(

sin λx1 −
sin λl1
shλl1

shλx1

)
(25)

Ys2(x2) = D

(
chλx2 + cos λx2−
chλl2+cos λl2
shλl2+sin λl2

(shλx2 + sin λx2)

)
(26)

D =

√
4λ

m(den1 + den2 + den3 + den4 + den5)
(27)

where

den1 = 2λl1
(

1 − sin λl1
shλl1

)2

den2 = 2 sin λl1(shλl1 cos λl1 − chλl1 sin λl1)/shλl1

den3 = 4λl2 + (1 + Ca
2)sh2λl2

den4 = (1 − Ca
2) sin 2λl2 − 2Ca(ch2λl2 − cos 2λl2) + 4(1 + Ca

2)chλl2 sin λl2

den5 = 4(1 − Ca
2)shλl2 cos λl2 − 8Cshλl2 sin λl2

Ca =
chλl2+cos λl2
shλl2+sin λl2
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3.2. Frequency Response Function

Substituting Equation (15) and its derivatives into Equation (11) yields

..
qr(t) + ω2

nrqr(t) = Qr(t) r = 1, 2, . . . (28)

As above, the individual equations are independent of each other and take the same
form with the motion equation of the single degree of freedom without damping; thus, the
solution qr(t) takes the following form:

qr(t) =
1

ωnr

∫ t

0
Qr(τ) sin ωnr(t − τ)dτ (29)

For the concentrated load, the rth-order generalized force Qr(t) takes the following form:

Qr(t) = Fd1(t)Yr(x1) + Fd2(t)Yr(x2) (30)

Consequently,

qr(t) =
Yr(x1)

ωnr

∫ t

0
Fd1(τ) sin ωnr(t − τ)dτ +

Yr(x2)

ωnr

∫ t

0
Fd2(τ) sin ωnr(t − τ)dτ (31)

Performing the Laplace transform on Equation (15),

L(yb) =
∞

∑
r=1

Yr(x)L(qr) (32)

By introducing the convolution transform, L(qr) is obtained:

L(qr) =
Yr(x1)

ω2
nr + s2 Fd1(s) +

Yr(x2)

ω2
nr + s2 Fd2(s) (33)

Correspondingly, the Laplace transform of Equations (16) and (17) results in[
Yb1(s)
Yb2(s)

]
= C

[
Fd1(s)
Fd2(s)

]
(34)

where

C =


∞
∑

r=1

Y2
r (x1)

ω2
nr + s2

∞
∑

r=1

Yr(x1)Yr(x2)

ω2
nr + s2

∞
∑

r=1

Yr(x1)Yr(x2)

ω2
nr + s2

∞
∑

r=1

Y2
r (x2)

ω2
nr + s2


Similarly, the Laplace transform of Equations (12) and (13) gives[

Fd1(s)
Fd2(s)

]
= (cs + k)

[
1 l12/2
1 −l12/2

][
Y
θ

]
+ (cs + k)

[
−1 0
0 −1

][
Yb1
Yb2

]
(35)

Substituting Equation (34) into Equation (35) yields[
Fd1(s)
Fd2(s)

]
= K

[
Y
θ

]
(36)

where

K = (cs + k)
(

E2×2 − (cs + k)
[
−1 0
0 −1

]
× C

)−1[1 l12/2
1 −l12/2

]
(37)



Micromachines 2024, 15, 1279 9 of 17

Thus, the relationship between Yb1, Yb2 and Y, θ could be determined by[
Yb1(s)
Yb2(s)

]
= C

[
Fd1(s)
Fd2(s)

]
= C × K

[
Y
θ

]
(38)

The Laplace transforms of Equations (9) and (10) are written as

M
[

Y
θ

]
+ CF

[
Fd1
Fd2

]
+ Kyb

[
Yb1
Yb2

]
=

[
Fy
Fx

]
(39)

where

M =

[
mss2 0

0 2Jss2

ly

]
, Kyb =

[
0 0

− 2Jss2

l12ly
2Jss2

l12ly

]
, CF =

[
1 1
l12
ly

− l12
ly

]
.

Combining Equations (36)–(39) yields(
M + CF × K + Kyb × C × K

)[Y
θ

]
=

[
Fy
Fx

]
(40)

Finally, the matrix H of the frequency response function is obtained by calculating the
inverse matrix of the left hand side of the above equation and replacing s with jω,[

Y
θ

]
= H(jω)

[
Fy
Fx

]
=

[
H11 H12
H21 H22

][
Fy
Fx

]
(41)

H(jω) =

([
−msω2 0

0 − 2Jsω2

ly

]
+

[
1 1
l12
ly

− l12
ly

]
× K +

[
0 0

2Jsω2

l12ly
− 2Jsω2

l12ly

]
C × K

)−1

(42)

where ω is the exciting frequency.

4. Simulation and Discussion

In this section, the influences of the support position of a rigid mass–flexible beam on
both the static and frequency response characteristics of a given example are studied. The
parameters used in the simulation are given in Table 1.

Table 1. Simulation condition.

Total length l (m) 2 Force arm ly (m) 0.4 Density (kg/m3) 7800

Range of l1 (m) 0.1~1.9 Transverse section of beam b × h mm 100 × 200 Contact stiffness (N/m) 2 × 109

lF1 (m) 0.2~0.8 Mass of moving part (kg) 20 Contact damping (N.s/m) 2 × 106

l12 (m) 0.4 Moment of inertia (kg.m2) 0.003

4.1. Static Deflection Analysis

In the simulation, the forces Fx = 200 N and Fy = 1000 N are applied. The individual
deflection along the x, y-axis and the compound deflection of reference point p are shown
in Figures 6–8.
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Figure 6a shows the variation in the deflection along the x-axis with a different sup-
porting span l1 and displacement over the travel of the moving mass. As the x-axis is
longitudinal, the deflection at the reference point may be positive or negative. To see clearly,
Figure 6b gives the results under several displacements of the mass. As the figure shows,
the changing trends are similar with different force-applied positions lF1 = 0.2, 0.4, 0.6, and
0.8 m.

Taking lF1 = 0.4 m as an example, the deflection is along the positive direction of
the x-axis when the supporting span is less than 0.58 m and decreases with the span l1
increasing. At two special supporting positions, l1 = 0.58 and 1.24 m, the deflections are
zero and negative. When the span is longer than l1 = 1.24, the deflection increases with l1.

Similarly, the deflection along the y-axis is shown in Figure 7. The deflection is
always along the minus direction of the y-axis and the absolute value is given. Figure 7a
shows the deflection distribution. Figure 7b gives the deflection curves with different
force-applied positions.

It could be seen from the figure that once the force-applied position is fixed, there
definitely exists an inflection point where the deflection is at a minimum. Specifically,
as shown in Figure 7c, the optimal supporting spans are 0.5, 0.6, 0.8, and 1 m when the
force-applied position is lF1 = 0.2, 0.4, 0.6, and 0.8 m, respectively.

The compound deflection defined by Equation (8) is shown in Figure 8. As the
deflection along the y direction is larger than those along the x-axis, consequently, the
inflection point is very close to those shown in Figure 7b.

In real practice, the relative deflection over the total travel of the moving rigid mass
may be more interesting. Thus, the relative deflection δre is defined as

δre = wmax − wmin (43)

where wmax, wmin represent the maximum and minimum deflection over the total travel
under a given supporting span, respectively.

Figure 9a shows the relative deflection δ over the total travel of reference point p. The
value does not change monotonically but reaches its minimum at a span of l1 = 1.16 m. It
should be noted that the result comes from Fx = 200 N and Fy = 1000 N. Whether there
are influences of applied forces on the relative value, Figure 9b gives the results where
Fy = 1000 N and Fx varies uniformly from 200 N to 1800 N. Obviously, the trends are
similar, but the inflection points differ under different loading conditions. Figure 9c shows
the optimal supporting span with the minimum relative deflection versus the load Fx.
Moreover, the case Fx = Fy is also studied, which is shown in Figure 9d. It could be seen
from the figure that whatever the specific value of the force load is, the optimal supporting
span is l1 = 0.7 m.

Besides the applied load, whether the travel affects the optimal supporting position or
not is checked further. The travels selected are [0.2, 0.8], [0.4, 1], and [0.6, 1.2] m, respectively.
The applied forces are Fx = Fy = 1000 N. The results are given in Figure 10. The supporting
span with the minimum relative deflection for the three travels is l1 = 0.7, 0.9, and 1.3 m,
respectively. That means that the optimal supporting span is related to the starting position
of the total travel.

Based on the above analysis, here, a conclusion can be drawn: for the given specific
travel and applied forces, there always exists a supporting span minimizing the relative
deflection over the total travel. And the optimal value depends on the relationship between
the loads in two directions and the starting position of the travel.
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4.2. Frequency Response Analysis

The static analysis is executed in the above section, and this part will show the
influence of the supporting span on the dynamic characteristics of the reference point by
means of the frequency responses. The exciting frequency is up to 1500 Hz and lF1 = 0.8 m.
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Recalling Equation (35), H11, H12 represent the response of the vibration displacement
y in the frequency domain under excitations from Fy, Fx, respectively. As the first-order
frequency is more significant than the others, only the first is extracted in the simulation,
and the results are shown in Figure 11a–d. Figure 11a,c give the variation in the am-
plitude thorough the supporting span [0.1, 1.9] m under a series of exciting frequencies.
Figure 11b,d show this at several discrete spans. It is not difficult to find that the first-order
resonant frequency increases first and then decreases with the increasing of the supporting
span. Taking Figure 11b as an example, the frequency reaches its maximum when the span
l1 = 1.5 m, which is higher than those both at l1 = 1.3m and l1 = 1.7 m.
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A similar situation could be found in the cross-frequency response function H12, which
is not described further.

The frequency responses of the angular displacement are shown in Figure 12.
Figure 12a,b are the cross function H12 and Figure 12c,d shows H22.
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As the figures show, the maximum resonant frequency is obtained when the span
l1 = 1.5 m, and the same with H11 and H12. To further clarify the effect on the resonant
frequency, the relationship between the supporting span and the frequency is given in
Figure 13.

Figure 13a indicates that the increase in the supporting span could effectively improve
the first resonant frequency of the rigid–flexible coupling system up to l1 = 1.5 m, and the
maximum value is about 1056 Hz. However, a too long span will have a negative influence,
as the frequency decreases when l1 is greater than 1.5 m. The effect of the force-applied
position is checked and shown in Figure 13b, which implies that there is a little variation in
the frequency. This is because the rigid mass is 20 kg, which is much less than the beam
mass of 156 kg, and the mass distribution of the coupled system changes little while the
rigid body is moving.

To further reveal the influence of the supporting span on both the statics and dynamics
of the coupled system, the relative static deflection over the total travel and the resonant
frequency are shown in Figure 14.
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5. Conclusions 
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Figure 14. Effect of supporting position on both static deflection and resonant frequency.

The simulation conditions are Fx = 200 N, Fy = 1000 N, and lF1 = 0.8m. As the figure
shows, the optimal supporting spans for the individual static and dynamic conditions are
usually not the same: l1 = 1.1m for the minimum relative static deflection and l1 = 1.5 m
for the maximum resonant frequency. In practice, a specific supporting span could be
determined by combining both the static and dynamic constraints. For example, the
relative deflection is specified to be no more than 5 µm, the load exciting frequency is lower
than 500 Hz, and then the span of l1 = 0.85~1.85 m could be chosen as the candidates.

5. Conclusions

This work conducted a study about the influence of the height difference of guideways
on the performance of a horizontal machining center. The following conclusions could
be drawn:
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(1) Given working conditions like stroke and applied forces, there exists an optimal
height difference that minimizes the relative static deflection over the stroke;

(2) The relationship between applied forces along two orthogonal directions affects the
specific optimal value of the height difference corresponding to the minimum relative
deflection. Moreover, the same stroke but different launching positions also alters the
optimal height difference.

(3) The first-order resonant frequency does not change monotonically with increasing
height difference, and there always exists an optimal position that results in the
highest resonant frequency.

As the optimal value for the statics is not the same as that of the dynamics, in practice,
a reasonable height difference could be determined simultaneously considering both the
static and dynamic constraints.

It is known that thermal deformation and guideway wear will affect the perfor-
mance of machine tools; in the future, optimization considering these factors should be
further investigated.
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