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Abstract: Electric field sensors (EFSs) are widely used in various fields, particularly in accurately
assessing atmospheric electric fields and high-voltage power lines. Precisely detecting electric fields
enhances the accuracy of weather forecasting and contributes to the safe operation of power grids.
This paper comprehensively reviews the development of micro-electromechanical system (MEMS)
resonant EFSs, including theoretical analysis, working principles, and applications. MEMS resonant
EFSs have developed into various structures over the past decades. They have been reported
to measure electric field strength by detecting changes in the induced charge on the electrodes.
Significant advancements include diverse driving and sensing structures, along with improved
dynamic range, sensitivity, and resolution. Recently, mode localization has gained attention and has
been applied to electric field sensing. This paper reviews the performances and structures of MEMS
resonant EFSs over recent decades and highlights recent advances in weakly coupled resonant EFSs,
offering comprehensive guidance for researchers.

Keywords: electric field sensor; micro-electromechanical systems; MEMS resonant EFS; resonator;
mode localization

1. Introduction

High-performance micro-electromechanical system (MEMS) electric field sensors
(EFSs) have been applied across various fields, including atmospheric electricity, power
grids, and biomedical sciences [1–9]. In atmospheric electricity, MEMS EFSs monitor
atmospheric electric fields, enabling more accurate lightning prediction, analyses of me-
teorological phenomena, and assessments of electric field impacts on climate change,
ultimately improving weather forecasting accuracy. In power grids, MEMS EFSs detect
electric field strength around high-voltage power lines, enhancing grid safety and enabling
real-time identification of faults or disturbances to ensure system stability and reliabil-
ity. In biomedicine, they monitor and analyze electric field changes in biological tissues,
particularly for electrophysiological research.

The EFSs can be categorized by sensing principles into several types: macroscopic
field mill, capacitive EFS, micro-field-mill, frequency-modulated EFS, and mode-localized
EFS [10]. The macroscopic field mill excels in atmospheric electric field measurements
due to its wide measurement range, high dynamic range, and stability [11–14]. However,
complex structures, maintenance challenges, and large sizes pose obstacles for large-scale
sensor networks that require low costs, low power consumption, and high integration.
MEMS EFSs address the need for miniaturization while enhancing sensitivity and stability,
thereby broadening their applications across various fields.

With the widespread adoption of MEMS technology, MEMS resonators have become
a research focus. Researchers have begun applying MEMS resonators to electric field de-
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tection, leading to the development of high-performance MEMS resonant EFSs, including
micro-field-mills [15], micro-cantilever EFSs [16], frequency-modulated EFSs [17], and
mode-localized EFSs [18]. Due to their high-frequency response and small mass, MEMS res-
onators are widely used in micro-field-mills [19–25]. Compared to macroscopic field mills,
micro-field-mills maintain high performance while offering lower power consumption
and more compact size, making them increasingly attractive for electric field measure-
ment. Based on the vibration direction of the resonant elements, micro-field-mills can
be classified into three types: in-plane resonant, multi-axis sensitive, and torsional reso-
nant [26–30]. In-plane resonant micro-field-mills work by allowing the resonator to vibrate
periodically, exposing the sensing electrodes to the electric field, and generating periodic
induced charges to measure the electric field. Multi-axis sensitive micro-field-mills, which
provide multi-directional detection and high measurement accuracy, have been successfully
validated. The torsional resonant micro-field-mills are recognized for their outstanding
charge-sensing efficiency. In comparison, in-plane resonant micro-field-mills offer advan-
tages such as mature processes, lower manufacturing complexity and long-term reliability
over multi-axis and torsional resonant micro-field-mills [31–33].

Various structures have emerged in the design of MEMS EFSs, each tailored for dis-
tinct purposes. These designs are based on Newton’s second law and the principle of
electrostatic induction, with the resonator structure forming the core element of these
EFSs. The MEMS EFSs have typically evolved into designs featuring electrostatic comb
resonators, rotary resonators, micro-cantilever resonators, and torsional resonators. Their
respective advantages are low power consumption, multi-directional sensing, fast response
time, and high charge induction efficiency [28–30,34–37]. The micro-field-mill, consisting
of grounded movable shielding and fixed sensing electrodes, is widely used in electrostatic
and atmospheric electric field measurements due to its high sensitivity and stability [38–41].
And, to meet the demand for high-performance sensors, researchers have conducted exten-
sive studies on packaging and chip integration based on micro-field-mills to enhance sensor
performance [42–44]. Notably, the integrated micro-field-mill with vacuum packaging
has shown great potential in atmospheric electric field monitoring, signaling a significant
avenue for future development. In 2015, P.F. Yang et al. developed an atmospheric EFS for
lightning hazard warning applications [45]. In recent years, dozens of micro-field-mill de-
signs have been reported. The performance of micro-field-mills has been validated through
researchers’ studies on various levels, confirming its claimed advantages. Additionally,
micro-field-mills have already been applied in atmospheric electric field tests [46].

Frequency modulation and mode localization in coupled resonators have emerged
as new paradigms for electric field sensing [47–53]. Frequency-modulated EFS measures
the electric field by detecting changes in the resonator stiffness caused by the electric
field (leading to a frequency shift). Mode-localized EFSs are typically constructed from
multi-resonators that are interconnected through weak coupling. The mode localization
phenomenon can be summarized as follows: external perturbations affect the resonator
stiffness, causing slight asymmetry or detuning in a coupled resonator system. It leads to
the redistribution of the resonant energy of the weakly coupled system. This phenomenon
is highly sensitive to external perturbations, as the redistribution of energy significantly
alters the amplitude of the resonator, thereby amplifying the measurement signal through
the amplitude ratio of the resonator [54–59]. Charge sensors and electrometers are related
to MEMS EFSs in terms of structure, working principles, and the measurements to be
conducted; therefore, this review will discuss them together. In 2010, P. Thiruvenkatanathan
et al. [18] reported the first mode-localized electrometer.

This paper reviews the different structures, principles, and performances of MEMS
EFSs. The MEMS resonant EFSs can be classified based on their resonator structures,
sensing directions, underlying principles, output metrics, or distinctive designs. Then,
the performance of MEMS resonant EFSs is discussed. This paper is organized as follows:
Section 2 describes micro-field-mills; Section 3 reviews frequency-modulated electric field
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microsensors; Section 4 examines mode-localized electric field microsensors; Section 5
concludes the paper.

2. Electric Field Microsensors
2.1. Working Principle

The main structure of the micro-field-mill includes a grounded movable shielding
electrode, a sensing electrode (+), and a sensing electrode (−). The operating principle
and the corresponding main structural parameters are shown in Figure 1. The grounded
movable shielding electrode undergoes lateral periodic vibration under the external drive.
As the shielding electrode moves from one side to the other under the influence of the
external electric field En, the distribution of electric field lines changes. As shown in
Figure 2, when the shielding electrode is at the far-left position, more electric field lines
terminate on the sensing electrode (−) than on the sensing electrode (+), resulting in more
induced charges on the sensing electrode (−). The situation is reversed when the shielding
electrode moves to the far-right position. According to the principle of charge induction,
the induced charge on the sensing electrode can be expressed as:

Q(t) = QAsinωt (1)

(a) (b)

Figure 1. The overall working principle of the micro-field-mill: (a) schematic diagram of the principle;
(b) the corresponding main structural parameters of the reference electrodes and movable structure
(modified from [42]).

(a) (b)

Figure 2. Electric field line distribution after applying the electric field: (a) the condition when the
shutter is moved near the sensing electrode (+); (b) the condition when the shutter is moved near the
sensing electrode (−) (after [60], modified).

According to Gauss’s law, the amplitude of charge variation QA = f (x)En, where
f (x) represents the amplitude of charge variation per kV/m, and experiments have shown
that f (x) is proportional to x (i.e., f (x) = kqx) [42]. Here, x is the resonance amplitude
of the shielding electrode, which can be estimated by simulating based on the lumped
parameter model. kq represents the conversion coefficient from amplitude per kV/m to
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charge variation. Under the periodic vibration of the shielding electrode, the induced
charge on the sensing electrode can be expressed as an induced current:

is =
dQ(t)

dt
= kqxωEncosωt (2)

Assuming the gain of the trans-impedance amplifier (TIA) is R f , the induced output
voltage V and its sensitivity SE of the electric field are:

V = kqωxEnR f

SE =
dV
dE

= kqωxR f
(3)

2.2. Lumped Model Analysis

The working principle of the micro-field-mills can be equivalently described using
a lumped parameter model, either as a mechanical mass-spring-dashpot system or as an
electrical Butterworth–Van Dyke (BVD) model. Firstly, the mass-spring-dashpot model
represents the simplest resonator model, as shown in Figure 3. Based on Newton’s laws of
motion, the relationship between the displacement of the mass block and the input force
can be derived using the following equation:

mẍ + cẋ + kx = f (t) (4)

where m represents the effective mass of the resonator, k is the effective stiffness, c is the
effective damping, and f (t) is the driving force. In the Laplace domain, this equation is
expressed as:

ms2X(s) + csX(s) + kX(s) = F(s) (5)

where s is the complex domain frequency. The transfer function can be expressed as:

H1(s) =
X(s)
F(s)

=
1

ms2 + cs + k
=

1
k
(

ω2
0

s2 + ω0
Q s + ω2

0
) (6)

where ω0 is the ideal undamped resonant frequency of the system (Eigen-frequency) and
Q is the Q-factor. For an ideal undamped second-order system, the Eigen-frequency is:

ω0 = 2π f0 =

√
k
m

(7)

keff

Fin

ceff

meff

x

ceff

meff

x

keff

Fin

ceff

meff

x
Figure 3. Lumped mass-spring-dashpot model corresponding to 1-DOF resonant system.

Under an external electric field, the transfer function of the output from the resonant
micro-field-mill’s sensitive structure can be expressed as:

H(s) =
I(s)
F(s)

=
I(s)
X(s)

· X(s)
F(s)

= H2(s) · H1(s) (8)



Micromachines 2024, 15, 1333 5 of 32

where H2(s) = I(s)/X(s), and based on Equation (2), it can be derived that:

H2(s) =
I(s)
X(s)

=
(kqω0En)s

s2 + ω2
0

(9)

where

H(s) =
I(s)
F(s)

=
(kqω3

0En)s
k(s2 + ω2

0)(s
2 + ω0

Q s + ω2
0)

(10)

Based on the micro-field-mill device structural parameters described in Reference [46],
numerical simulations were performed using the transfer function equation from Equation (10).
The simulation results show the frequency response under different electric field strengths,
as illustrated in Figure 4a,b. The amplitude of the resonator increases with the rising electric
field strength. By varying the electric field strength, the simulated electric field sensitivity
of the structure was determined to be 12.5 mV/(kV/m), as shown in Figure 4c. These
results demonstrate that the structure exhibits good response characteristics and sensitivity
under varying electric field conditions.

(a) (b) (c)

Figure 4. Amplitude–frequency response (a), phase–frequency response (b), and sensitivity curves
(c) from numerical simulations based on the structural parameters of the micro-field-mill device, as
described in Reference [46].

In the application of MEMS sensors, MEMS resonators typically vibrate at the driving
force. The amplitude of the resonator is then detected as an output signal and converted into
an electrical signal through various techniques such as front-end amplification circuits or
instruments. By analogizing the electrical and mechanical resonator models, an equivalent
RLC circuit model of the MEMS resonator is constructed. This model facilitates synchronous
simulation of MEMS resonators in electrical and mechanical domains, typically using
LTspice 24.0.9 simulation software. Based on the structural parameters of the MEMS
resonator from Reference [46], an equivalent BVD model of the 1-degree-of-freedom (DOF)
resonant system, including various parasitic capacitances that cause leakage current, is
established, as shown in Figure 5. In this model, Rr, Lr, and Cr represent resistance,
inductance, and capacitance in the circuit, respectively. Cpd, Cps, and C f t represent the
parasitic capacitances from the drive and sense pads to the grounded substrate and the
feedthrough capacitance from the drive port to the sense port via the resonator body.
Table 1 lists the corresponding relationships between the parameters of the mechanical and
electrical systems.

In the equivalent BVD model of the 1-DOF resonant system shown in Figure 5, the ef-
fective impedance (ZR) and transfer function of the resonator part (YR) can be expressed as:
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ZR = Rr +

1
jωCr

+ jωLr

YR =
i(jω)

v(jω)
=

1
Rr +

1
jωCr

+ jωLr

(11)

GND

Cft

Lr CrRr

Cps

Drive

GND

Cpd

Output

Figure 5. BVD model corresponding to a 1-DOF resonant system.

Table 1. Parameters of the mechanical system and their corresponding electrical system parameters.

Mechanical System Electrical System

Force (F) Voltage (V)
Velocity (v) Current (I)
Stiffness (k) Capacitance (C)

Mass (m) Inductance (L)
Damping (c) Resistance (R)

Based on the transfer function of the 1-DOF resonator, the equivalent spring, mass,
and damping values can be transformed from the mechanical domain to the electrical
domain as follows:

Rr =

√
km

Qη2 (12a)

Lr =
m
η2 (12b)

Cr =
η2

k
(12c)

where m and k denote the effective mass and the effective stiffness of the resonators,
respectively; Q represents the Q-factor associated with the damping constant; and η is the
electro-mechanical transduction coefficient. For the structure described in Reference [46],
the system is a symmetric capacitive transducer, where the electro-mechanical coupling
coefficient is determined by the electrode area A, electrode gap g, drive voltage V and the
permittivity ϵ of the working medium. It can be described as:

η =
ϵAV

g2 (13)

In the BVD model, the effect of parasitic capacitance is usually negligible compared
to the significant impact of feedthrough capacitance [54]. Therefore, only the effect of the
feedthrough capacitance C f t is considered when simulating the BVD model based on the
structural parameters. The circuit shown in Figure 5 is simulated using LTspice software,
and the magnitude–frequency response is compared with and without the presence of
feedthrough capacitance, as illustrated in Figure 6. From the simulation results, it is evident
that the feedthrough current induces an anti-resonance peak in the frequency response of
the resonator. The occurrence of this anti-resonance appears before or after the resonance
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peak—depending on the direction of the feedthrough current. The total output current of
the resonator can be expressed as:

i0 = ir + i f =
v(jω)

ZR//Z f t

= v(jω)
[1−ω2C f t Lr+

C f t
Cr +jωRrC f t ]

Rr+j(ωLr− 1
ωCr )

=
(Vbias+Vac)[Rr+j(ωR2

r C f t−ϵΨ)]

R2
r+ψ2

(14)

where ir represents the effective motion current, which is the current signal caused by the
movement of the sensing capacitor, while i f t represents the driving feedthrough current.
The feedthrough capacitance determines the magnitude of the feedthrough current. And
ϵ = 1 − ω2C f tLr + C f t/Cr, ψ = (ωLr − 1/ωCr). At the resonator’s Eigen-frequency
(ω =

√
k/m =

√
1/LrCr), the output current of the resonator can be expressed as:

|i0| ∝
√

1 + C2
f t/Q2C2

r /Rr (15a)

φ = arctan(
C f t

QCr
) (15b)

It can be observed that: (1) the feedthrough current affects both the amplitude and
phase of the resonator’s output current; (2) the larger the Q-factor, the smaller the impact
of the feedthrough current. Therefore, the impact of feedthrough capacitance must be
considered when designing MEMS resonance devices.

(b) With feedthrough (a) Without feedthrough 

Figure 6. Frequency response simulation based on the 1-DOF BVD model.

2.3. Micro-Field-Mills

As shown in Figure 7, the surveyed micro-field-mills show that 88.7% are in-plane
vibrating types, 4.8% are torsional, and 7.1% are rotary. The classic in-plane vibrating micro-
field-mills dominate the market due to their simple structure, low power consumption
and costs. In addition, the micro-field-mills developed by X.L. Wen et al. for measuring
atmospheric electric fields and static electricity have been commercialized [46].

Several typical in-plane vibrating micro-field-mill structures have been developed
to achieve high-precision electric field measurements over the past three decades. These
structures are typically fabricated using Silicon-on-Insulator (SOI) technology. The main
components consist of various types of resonant beams, proof masses, and sensing elec-
trodes that interact with the electric field. The sensors typically use capacitive sensing
mechanisms, such as parallel plate or comb-finger structures, to detect changes in ca-
pacitance. Other key components include comb-drive electrodes for resonator actuation,
shielding electrodes with a movable shutter, and vacuum packaging for stability enhance-
ment. Several optimizations have been implemented in the design of these micro-field-mills
to enhance electric field measurement performance. The key structural variations include
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folded beams, double-clamped thin beams, parallel plate capacitive membrane sensing
structures, and comb-finger capacitive sliding film sensing structures.

Torsional vibrating

In-plane vibrating

Rotary vibrating Multi-axis sensing

Micro Electric 

Field Mill
High-charge 

induction efficiency

Low power 

consumption
(a) (b)

Figure 7. Classification (a) and proportion (b) of micro-field-mills based on different vibration modes
and structures. Among the micro-field-mills reviewed, more than 80% of micro-field-mills utilize the
classic in-plane vibrating structure, which is the most widely used design.

2.3.1. Folded Beam Micro-Field-Mills

A resonator with folded beams typically features a central mass, as depicted in
Figure 8e. The two ends of the mass are connected to rectangular folded beams (spring
beams), which are anchored at their opposite ends. Spring beams have been a funda-
mental part of micro-field-mill design from the beginning, and over 60% of the reviewed
micro-field-mills utilize this folded beam configuration. In 1991, C.H. Hsu et al. first
reported an electrostatic voltmeter utilizing a folded beam as a key element of the voltmeter,
demonstrating a sensitivity of 20 µV/V [61]. P.S. Riehl et al. reported a similar structure
for an electrostatic charge and micro-field-mill in 2003 [19], which improved the SNR.
This design employed a combination of fluid self-assembly JFET and SOI microstructure
technology and integration techniques involving CMOS and polysilicon. It achieved a
charge resolution of 4.5 aC rms within a 0.3 Hz bandwidth and an electric field resolution
of 630 V/m, showcasing some of the best performance data available at the time.

(c) (d)

(b)(a)

Vibration

(e)

Anchors

Mass

Folded Beam

Figure 8. Four micro-field-mill structures using folded beams, with (a–d) corresponding to [24,62–64],
respectively, and a schematic of the folded beam (e).

In 2006, C.R. Peng et al. proposed a micro-field-mill structure for atmospheric electric
field detection [24], fabricated using a three-layer polysilicon surface micromachining
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process, as shown in Figure 8a. Fixed with a 25 V direct current (DC) and a 0.3 V AC
drive signal, the sensor exhibited its highest sensitivity at a working frequency of 4.13 kHz.
Testing revealed an electric field resolution of less than 100 V/m and an uncertainty of
less than 5%. In the same year, they conducted a more detailed characterization of the
structure [25], achieving the best resolution performance for a MEMS-based EFS in ambient
air at room temperature, with a resolution of 200 V/m, and attained a nonlinearity of 1.8%
within the measurement range of 0–10 kV/m. Subsequently, X.X. Chen et al. reported
a thermally actuated micro-field-mill structure [26] that utilized a compact bent-beam
thermal actuator. The driving method can achieve a drive voltage amplitude of ±2 V, and
the micro-field-mill achieves a resolution of 240.8 V/m at a working frequency of 40 kHz.

B. Bahreyni et al. reported a micro-field-mill structure in 2008 [32], as shown in
Figure 9b, which employs multiple folded beams and a thermal actuator to drive the shut-
ter. This design effectively reduces the amplitude of the driving signal and minimizes
signal interference. The sensor achieved a resolution of 42 V/m, representing a significant
improvement over previous sensors. In 2010, C.R. Reng et al. proposed a micro-field-mill
suitable for electrical engineering applications [35]. Under a vacuum of approximately
1 mTorr and with a low driving voltage, this sensor achieved a Q-factor of 31,034. The
electric field measurement range reached 50 kV/m, with a resolution better than 50 V/m.
In 2015, P.F. Yang et al. reported a micro-field-mill designed for lightning hazard warning,
which is an optimized version of previously reported structures. This sensor boasts ex-
cellent performance metrics, including a minimum detectable electric field of 10 V/m, an
uncertainty of 0.67% over a range of 0 to 50 kV/m, and power consumption of only 0.62 W.

(a) (b)

(c) (d) (e)

Anchors

Mass

Beam

Vibration

Figure 9. Four micro-field-mill structures using Double-clamped beams, with (a–d) corresponding to
[39,43,65,66], respectively, and a schematic of the Double-clamped beam (e).

In 2021, X.L. Wen et al. reported a type of MEMS-based electric field sensor utilizing
a spring beam as the resonant element, as shown in Figure 8b [62]. This micro-field-mill
has a measurement range of −30–30 kV/m, with a power consumption of 0.6 W at 1 Hz,
and operates within a temperature range of −40–55 ◦C. The electric field resolution is
approximately 5 V/m, and the RH range (%RH) is 0–100. C.R. Peng et al. (2022) reported a
micro-field-mill structure [63] as shown in Figure 8c. This is a novel wafer-level vacuum-
packaged micro-field-mill that offers a higher Q-factor and lower power consumption
compared to previously reported micro-field-mills. The micro-field-mill utilizes a differen-
tial amplifier circuit to enhance the SNR, with a natural frequency of approximately 5369 Hz,
and the micro-field-mill features a measurement range of 0–50 kV/m with a sensitivity of
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0.16 mV/(kV/m). It maintains a Q-factor greater than 5000, showing no decline over a
50-day testing period. Furthermore, the microsensor demonstrates a linearity of 1.62% and
an uncertainty of 4.42%. In 2023, S.P. Chen et al. reported a micro-field-mill composed of
folded beams that operate under atmospheric pressure, as shown in Figure 8d [64]. Using
a coupled electrostatic-flow-structural 3D finite element model, the resonant displacement
is directly calculated, accounting for changes in the system’s effective mass and resonant
frequency due to variations in structural parameters. The experimental results demonstrate
a significant performance improvement.

2.3.2. Double-Clamped Beam Micro-Field-Mills

Micro-field-mills composed of double-clamped beams generally include two such
beams, with both ends of the beams anchored and a central mass (fitted with the elec-
trode device) connected between them, as shown in Figure 9e. The double-clamped beam
design emerged earlier in micro-field-mills, and while similar research continues, it is
less frequently reported compared to folded beam designs. In 2004, C. Gong et al. first
proposed two types of micro-field-mill structures based on double-clamped beams, one
utilizing a parallel vibration mode and the other a vertical vibration mode. Simulations
and comparisons of the two structures showed that the induced currents in both designs
are measurable [20]. Y. Zhu et al. reported a resonant MEMS electrostatic charge sen-
sor [33] in 2008 similar to the one shown in Figure 9c, which modulates the DC charge to
be measured and converts it into an AC voltage output, thereby improving the SNR. In
an air environment, the sensor operates at a frequency of 3.2 kHz, achieving a charge-to-
voltage conversion gain of 2.06 nV/e and demonstrating an excellent background noise
performance of 52.4 e/rtHz. A. Menzel et al. studied a sensor for detecting biomolecules
and electrochemical charges in 2011 [39], as shown in Figure 9a. Under room tempera-
ture and ambient pressure conditions, this micromechanical electrometer demonstrated
a resolution of 3 e/

√
Hz and the ability to detect single-charged molecules bound to the

electrode surface.
In 2013, G. Jaramillo et al. reported an electrometer utilizing two double beams as

the resonant elements [43], with its structural schematic diagram shown in Figure 9c. This
electrometer achieved approximately three times improvement in resonator responsivity
through an optimized circuit layout, with a resonant frequency of 2.3 kHz. By reducing the
electrode size, the electrometer lowered the capacitance of the porous sampling electrode
to 2–3 pF, achieving a resolution of approximately 1 fA and a 5-fold increase in sensitivity.

J. Jalil et al. reported a high-sensitivity and high-resolution electrostatic testing system
based on a double-clamped beam resonator in 2018 [65], utilizing Silicon-on-Glass (SOG)
MEMS technology, as shown in Figure 9b. Replacing the silicon substrate with a glass sub-
strate effectively reduced parasitic capacitance, significantly enhancing charge sensitivity.
The system achieved a sensitivity of 1.43× 1011 V/C with an improved amplification circuit.
Additionally, it demonstrated an optimal charge resolution of 1.03 e/

√
Hz at 5.7 kHz under

room temperature and atmospheric pressure conditions. In 2021, H.C. Lei et al. reported a
type of micro-field-mill with a resonant element consisting of two double-clamped thin
beams and a mass, utilizing a piezoelectric drive, as indicated in Figure 9d [66]. In this
micro-field-mill, the mutually shielded electrodes function both as sensing and shielding
electrodes, with the movable electrode being driven vertically by piezoelectric means.
This mutual shielding design effectively doubles the sensing area of the micro-field-mill,
ultimately enhancing the sensor’s sensitivity.

2.3.3. Parallel Plate Capacitive Membrane Sensing Micro-Field-Mills

Early micro-field-mills mostly used parallel plate capacitors for membrane sensing
due to their structural simplicity and reliable long-term stability. As early as 2001, M.
N. Horenstein et al. reported a micro-aperture electrostatic field mill using parallel plate
capacitive membrane sensing [15], as shown in Figure 10a. The device was constructed
using a silicon surface micromachined MEMS fabrication process. The micro-aperture
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refers to a moving shuttle with a 10 µm × 10 µm observation aperture that periodically
exposes and covers the charge-sensing electrodes, enabling the measurement of electrostatic
field strength. This micro-field-mill is driven by an AC actuator, operating stably at its
natural frequency of 7.6 kHz. The sensor exhibits a sensitivity of 35 µV/(kV/m) and offers
an ultra-wide measurement range of 500 kV/m.

(a) (b)

(c) (d)

Figure 10. Four micro-field-millstructures using Parallel-plate capacitive membrane sensing struc-
tures, with (a–d) corresponding to [15,32,44], respectively.

In 2006, C.R. Peng et al. reported a design of a resonant miniature electrostatic field
sensor with feedback driving and detection [23], which has a structure similar to that
shown in Figure 8a. This design uses closed-loop control, enabling the sensor to self-
oscillate at its resonant frequency of 4.13 kHz. The main demodulation function is achieved
using a digital lock-in amplifier (LIA), and a nonlinearity of 1.8% was measured within
a measurement range of 0–10 kV/m. In the same year, T. Denison et al. introduced a
self-resonant MEMS-based electrostatic field sensor [22] with a sensitivity of 4 V/m/

√
Hz,

featuring a similar structure. The design primarily consists of three modules: a MEMS
shutter, a sensing interface, and a self-resonant circuit that feeds back to the MEMS shutter,
all designed to maximize electric field sensitivity. Test results showed that the sensor
achieved high sensitivity, with a reference input noise of 4 V/m/

√
Hz, a measurement

range of −700 kV/m to 700 kV/m, and an RMS field error of less than 40 V/m.
A schematic of a field-chopping electric field sensor based on thermal actuators with

mechanically amplified response reported by B. Bahreyni et al. [27] in 2007 is shown in
Figure 10b. In this design, an incident electric field is chopped using a perforated shutter,
and the induced charges on two sets of electrodes beneath the shutter are differentially
measured to detect the electric field. Thermal actuators are used to maintain the structure
in resonance, reducing the drive requirements. A resolution of 42 V/m was achieved under
good linearity conditions. The following year, X.X. Chen et al. introduced a thermally
driven resonant miniature electric field sensor with feedback control [31]. The sensor,
excited by a 20 kHz square wave and with a natural frequency of 40 kHz, achieved a
resolution of 101.7 V/m and a sensitivity of 98.32 µV/(kV/m).

T. Chen et al. reported a new micro-field-mill structure for measuring a DC electric
field in 2014 [44]. This micro-field-mill uses thermal actuators to vertically drive a shutter,
periodically modulating the charge on the underlying sensing electrodes to measure the
amplitude of the DC electric field. This new structure compensates for the interference
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from high voltage actuators and the displacement of the shutter under strong electric fields
by adjusting the vertical movement of the shutter. Simulation results show that an output
current of approximately 1 pA can be achieved with the shutter operating at 7 kHz under
a 1 kV/m DC electric field. In 2018, A. Kainz et al. developed a passive optomechanical
electric field strength sensor with built-in vibration suppression. This sensor features a
suspension system designed to effectively suppress vibration cross-sensitivity and achieves
distortion-free and temperature-stable measurements. Results show that the sensor has a
resolution of 737 V/m/

√
Hz, with a theoretical limit resolution of 59.3 V/m/

√
Hz.

Vacuum packaging technology effectively reduces air damping, minimizes energy
loss, and increases the Q-factor of the device, enabling the resonator to operate with greater
amplitude and for longer durations. This not only enhances the dynamic response of
the sensor but also significantly improves the overall performance of resonant sensors
and extends their lifespan. Consequently, vacuum packaging technology has been widely
adopted in the design of resonant MEMS EFSs. Most existing studies have focused on
horizontal resonant structures, whereas vertical resonant MEMS EFS can significantly
enhance sensor sensitivity by modulating the electric field distribution on the sidewalls and
top surfaces of sensing electrodes. Developing wafer-level vacuum packaging technology
for vertical resonant micro-field-mills is expected to further optimize sensor performance
and improve the accuracy and stability of electric field detection.

As shown in Figure 10d, Y.H. Gao et al. reported a wafer-level vacuum-packaged
vertical resonant electric field microsensor that uses a three-layer stack structure of glass in
silicon anode bonding, SOI, and glass on silicon (GIS-SOI-GOS) in 2024 [67]. In this new
structure, GIS is used to fabricate the external drive electrodes for driving the resonator, SOI
is used to create the sensitive part of the device layer, and GOS is used for the electric field
signal conversion part. Under a pressure of 5 pA, with a fixed 7 V DC voltage and a 70 mV
AC voltage, the resonator operates stably at its natural frequency of 5648.9 Hz. Within a
measurement range of 0–50 kV/m, the sensor achieves a sensitivity of 0.31 mV/(kV/m),
a linearity of 5.84%, a Q-factor of 5071, and a resolution of 230 V/m. To enhance the
sensitivity of EFSs, Y.H. Gao et al. subsequently proposed an innovative vertical resonant
MEMS electric field sensor based on Through Glass Via (TGV) technology [68]. This
microsensor consists of an electric field sensing cap, a driving cap, and an SOI-based
microstructure between them. Within a measurement range of 0–50 kV/m, the sensor
achieved a sensitivity of 0.82 mV/(kV/m) and a linearity of 0.65%, which is more than
twice the sensitivity compared to their previous work [63].

2.3.4. Comb-Finger Capacitive Sliding Film Sensing Micro-Field-Mills

To overcome the limitations of parallel plate capacitive membrane sensing structures,
such as high air damping and limited displacement range, the comb-finger capacitive
sliding film sensing structure is another commonly used design. This structure alters the
capacitance through a pair of interdigitated comb electrodes that slide relative to each other,
offering a larger linear displacement range and greater stability. In 2005, C. Gong et al.
reported a novel miniature interlacing vibrating EFS [21]. This sensor utilizes a comb-finger
structure for both the sensing and shielding electrodes, significantly enhancing the sensing
signal. It achieves large displacements under a low driving voltage of 2 V, effectively
reducing crosstalk interference. The design offers good dynamic stability, a high SNR, and
a high resolution of 100 V/m.

The schematic of the novel closed-loop SOI MEMS resonant electrostatic field sen-
sor [34] reported by C.R. Peng et al. is shown in Figure 11a. The sensing electrodes use
a differential comb-finger structure consisting of a positive sensing electrode (+) and a
negative sensing electrode (−) to achieve maximum sensitivity to the electric field. Within
a measurement range of 0–50 kV/m, the sensor achieved a resolution of 50 V/m, with
uncertainty increased by 2.1%. In 2011, P.F. Yang et al. developed a high-sensitivity EFS
with a novel comb-shaped microelectrode based on this structure [38]. The introduction of
the comb-shaped microelectrode improved the charge-sensing efficiency. Test results in an
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air environment showed a resolution of 40 V/m and an uncertainty of 1%. Compared to
previous designs, the performance was enhanced, and the sensor was successfully used to
detect ice formation on high-power cables. Later, they reported an SOI-based resonant elec-
tric field microsensor with coplanar comb-shaped electrodes [42]. Using this structure, they
proposed a demodulation method for AC and DC electric fields [60] and a non-invasive
DC voltage measurement method [69], achieving an electric field measurement range of
0–667 kV/m and a voltage measurement range of −1000 V to 1000 V, respectively. In 2021,
X.L. Wen et al. reported a resolution-enhancing structure for an electric field microsensor
chip [46], as shown in Figure 11b, and applied it to atmospheric electric field research [70].
This structure achieved a sensitivity of 465 mV/kV/m and a resolution better than 10 V/m.

(a) (b) (c)

Figure 11. Three micro-field-mill structures using Comb-finger capacitive sliding film sensing
structures, with (a–c) corresponding to [34,46], respectively.

2.4. Torsional and Rotary Vibrating MEMS EFSs

A novel micro-field-mill structure based on torsional resonance [30] was proposed
by Z.Z. Chu et al. in 2017, and its schematic is shown in Figure 12a. The structure mainly
consists of a torsional shutter composed of shielding electrodes and torsional beams,
along with two fixed sensing electrodes. The torsional shutter is driven by a push–pull
electrostatic mechanism. Its working principle is similar to that of traditional micro-field-
mill designs, where two identical sensing electrode arrays are symmetrically distributed
on both sides of the grounded shielding electrode. The torsional shielding electrode and
the sensing electrodes are arranged in the same plane in an interdigitated configuration.
When the sensor is placed in a vertical electric field, the two sensing electrodes generate
induced charges. According to Gauss’s law, the amount of induced charge can also be
determined. As the torsional shutter vibrates periodically, the charges on the sensing
electrodes vary periodically, generating an induced current. Simulation results indicate
that the torsional shutter exhibits a high charge-sensing efficiency, with an experimentally
measured efficiency of 48.19 pA/(kV/m). Within a measurement range of 0–50 kV/m, the
structure achieves a sensitivity of 4.82 mV/(kV/m) and a linearity of 0.15%. Compared
to previously reported micro-field-mills, these performance metrics show a significant
improvement.

(a) (b)

Figure 12. Schematic diagrams of torsional vibration (a) (after [30], modified) and rotary vibration (b)
(after [28,30], modified) in micro electric field mills.

Y. Wang et al. reported a novel X-Y biaxial EFS based on in-plane rotational vibra-
tion [28,29] in 2014, with its structural schematic shown in Figure 12b. The sensor consists
of serpentine springs, angular drive comb fingers, and differential sensing elements, al-
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lowing for large in-plane rotations, which enhance vibration amplitude and generate more
induced charges. Two pairs of sensing elements are positioned differently, forming a cross
shape, with each pair sensing the X and Y components of the electric field, respectively.
The resonator operates at a frequency of 799 Hz, and within a measurement range of
0–25 kV/m, it achieves an X-axis sensitivity of 0.675 mV/(kV/m), a Y-axis sensitivity of
0.689 mV/(kV/m), and demonstrates good linearity.

2.5. Micro-Cantilever EFSs

As shown in Figure 13, various types of cantilever beam structures based on piezoelec-
tric and electrostatic actuation have been proposed over the past 20 years due to their simple
structure, light weight, and high rigidity, which contribute to low energy consumption.
Between 2008 and 2013, T. Kobayashi et al. proposed and developed a piezoelectric-driven
MEMS cantilever beam EFS [16,36,37]. This sensor consists of a probe for detecting electro-
static fields and a self-sensitive piezoelectric micro-cantilever beam with a PbO3 (PZT) thin
film used for sensing and actuation. At a resonance frequency of 1875 Hz, it exhibits good
linearity within a measurement range of −3 kV to 3 kV. In 2015, J.A. Huang et al. reported a
high-sensitivity EFS for low-frequency AC field measurements based on a piezoelectric can-
tilever beam [71] with an electrostatic bias, as shown in Figure 13b. The sensor comprises a
polyvinylidene fluoride (PVDF) piezoelectric cantilever beam and a polytetrafluoroethylene
(PTFE) electrode. Theoretical analysis indicates that this structure has higher sensitivity.
Experimental results show that the sensor operates at a natural frequency of 25.8 Hz, with
a measurement range of 180 kV/m and a sensitivity of 0.84 mV/(kV/m).

In 2023, Z.F. Han et al. reported a micro-cantilever beam EFS based on electrostatic
actuation and piezoresistive sensing [72]. As shown in Figure 13c, this sensor utilizes four
cantilever beam structures that undergo displacement under the influence of electrostatic
forces. The resulting strain is converted into a measurable signal through piezoresistive
materials, enabling electric field measurement. Experimental results indicate that this
EFS features a wide measurement range from 1.1 kV/m to 1100 kV/m, a resolution of
112 V/m·

√
Hz, a cutoff frequency of 496 Hz, and a high SNR, demonstrating excellent

performance.

(a) (b) (c)

Figure 13. Three micro-field-mill structures based on different Optimized cantilever beams driven
by PZT, with (a–c) corresponding to [36,37,71,72], respectively.

3. Frequency-Modulated Electric Field Microsensors

This section focuses on high-sensitivity electric field measurements based on frequency
modulation. Frequency shift output sensors offer several advantages, including enhanced
stability, compact size, and low power consumption. First, the vibration theory and sensing
principles of frequency shift sensors are introduced. Then, measurement schemes and sen-
sor prototypes for axial and lateral stiffness perturbations are reviewed, including a lateral
perturbation electrostatic meter based on a single-anchored circular beam resonator and
a parallel plate capacitor transducer. Developing high-performance micro-electrometers
facilitates further research on more precise voltmeters and ammeters.
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3.1. Vibration System and Working Principle

The resonator is the key component of sensors that use frequency shift as the output
metric. Mechanical resonators are favored for their high Q-factor, which allows the input
energy to be confined within a narrow bandwidth, resulting in excellent SNR and frequency
stability. For frequency-modulated sensors, the primary working principle is that an
external input to be measured causes a change in the stiffness of the resonator, leading to
a shift in its resonant frequency. This frequency shift varies linearly with the measured
input, enabling high-sensitivity sensing. This section introduces the resonance principle of
resonators and the primary working mechanism of frequency shift sensors.

3.1.1. Resonance Overview

In a mechanical resonance system, the resonator is an energy storage unit that continu-
ously converts energy between kinetic and potential forms. Each resonant frequency of
the resonator corresponds to a different vibration mode. In real-world physical systems,
energy dissipation is always present. For resonant motion, whether a simple single-beam
resonator or a complex tuning fork resonator, a bending mechanical beam can be described
as a mass-spring-dashpot vibration system, as shown in Figure 14. Using Newton’s laws of
motion, the dynamic response of a 1-DOF mechanical resonator can be expressed as:

me f f ẍ(t) + ce f f ẋ(t) + (ke f f + ∆k)x(t) = F(t) (16)

where me f f , ce f f , and ke f f represent the effective mass, damping coefficient, and stiffness of
the resonator, respectively. x(t) and F(t) denote the displacement of the resonator and the
driving force as functions of time. Assume that the vibration of the resonator is harmonic,
x(t) = xAsin(ω0t − ϕ), where t is time and xA is the amplitude at the Eigen-frequency; ϕ
is the phase determined by the initial state of the resonator. Assuming the driving force
F(t) balances the system’s damping to maintain resonance, and in the absence of any
perturbation, the equation reduces to:

me f f ẍ(t) + ke f f x(t) = 0 (17)

Then, by substituting the harmonic displacement x(t) into Equation (17), we obtain
the analytical solution for the natural angular frequency ω

unperturbed
0 :

ω
unperturbed
0 =

√
ke f f

me f f
(18)

The equation indicates that a resonator’s frequency response can be modulated by
altering its effective mass or stiffness. In resonant sensing, the quantity to be measured
is typically converted into one of these two parameters for measurement. Generally, in
electric field measurements, the electrostatic force generated by induced charges causes
a stiffness variation of ±∆k in the initial mechanical stiffness ke f f of the resonator, as
shown in Figure 14c. This variation enhances or reduces the overall stiffness, thereby
altering the resonator’s initial Eigen-frequency. Considering the vibration of the resonator
without stiffness perturbation, assume that the resonator is driven by a driving force
F(t) = Fsin(ωt), where ω is the frequency of the driving force F. The displacement x(t)
will also follow a harmonic curve. The equation of motion can be expressed as follows:

me f f ẍ(t) + 2ζω0 ẋ(t) + ω2
0x(t) = Fsin(ωt) (19)
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(a) (b)

keff

Fin

ceff

Δk

(c)

meff

Figure 14. In-plane flexural vibration modes of a single beam resonator (a) and a tuning fork
resonator (b), along with a mass-spring-dashpot model used to describe the resonance of mechanical
resonators (c).

Here, ζ represents the damping ratio of the vibration system, given by ζ =
ce f f

2mω0
,

which can also be expressed as ζ = 1
2Q . The term Q refers to the Q-factor of the system,

which is defined as:

Q = 2π
Energy(average stored)
Energy(lost per cycle)

=
f0

∆ f−3dB
=

mω0

ce f f
(20)

where ∆ f−3dB denotes the −3dB bandwidth centered around the resonant frequency. By
solving Equation (19), the corresponding amplitude and phase responses of the resonator
can be determined as:

xA(ω) =
F/k√

(1 − (ω/ω0)2)2 + 4ζ2(ω/ω0)2

ϕ(ω) = arctan(
2ζω/ω0

1 − (ω/ω0)2 )

(21)

According to the analytical solutions for amplitude and phase, the amplitude–frequency
and phase–frequency responses under normalized forcing frequency ω/ω0 for different
damping ratios are shown in Figure 15. When the driving frequency is near the Eigen-
frequency, the amplitude–frequency response of the resonator is significantly larger than the
static displacement xA(0) = F/k. As shown in Figure 15, due to the presence of damping,
the peak amplitude of the resonance does not occur exactly at the natural frequency but
rather near it.
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Figure 15. Amplitude (a) and phase (b) responses of a 1-DOF resonator under different damping
ratios. A lower damping ratio corresponds to a higher Q-factor.
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3.1.2. Working Mechanism of the Sensor

The fundamental principle of EFSs based on a frequency shift output metric is that, un-
der an applied electric field, induced charges are generated on axially or laterally perturbed
electrodes, which cause a perturbation in the stiffness of the resonator. This perturbation
leads to a change in the Eigen-frequency of the resonator. The frequency shift exhibits a
linear relationship with the electric field input, thereby enabling the measurement of the
electric field. As shown in Figure 14c, when a 1-DOF resonant system experiences a stiffness
perturbation, the dynamic equation, considering the forced vibration with damping, can be
expressed as:

me f f ẍ(t) + ce f f ẋ(t) + (k + ∆k)x(t) = F(t) (22)

where ∆k is the stiffness perturbation. In the Laplace domain, this equation is expressed as:

me f f s2X(s) + ce f f sX(s) + (ke f f + ∆k)X(s) = F(s) (23)

This equation and corresponding transfer function can be derived as follows:{
H(s)X(s) = F(s)

H(s) = me f f s2 + ce f f s + (ke f f + ∆k)
(24)

The frequency response of the resonator under stiffness perturbation is solved using
the transfer function, as shown in Figure 16. Under ±5% stiffness modulation, opposite
spectrum shifts, including amplitude and phase responses, are observed. This indicates a
significant opposite change in the resonant frequency depending on the positive or negative
stiffness caused by the measured charge.
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Figure 16. Amplitude (a) and phase (b) responses of a 1-DOF resonator under different stiffness
adjustments.

Assuming the driving force F(t) balances the system’s damping to maintain reso-
nance, and considering a stiffness perturbation ∆k, the frequency derived from solving
Equation (22) is:

ω =

√
ke f f + ∆k

me f f
(25)

Since the stiffness perturbation ∆k is much smaller than the effective stiffness k of the
resonator, it follows that:

∆ω = ω − ω0 =

√
ke f f + ∆k

m
−

√
ke f f

m
≈ ω0

2
∆k

ke f f
(26)
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The sensitivity of a frequency shift output sensor to stiffness perturbation is given by:

Sk =
∆ω

∆k
=

ω0

2ke f f
(27)

3.2. Axial Stiffness Perturbation Method for Electric Field Measurement

The axial force stiffness perturbation scheme is typically implemented using a bending
resonant beam with a high length-to-width ratio to produce a significant axial direction
under a uniformly applied force. Figure 17a shows a classic resonator structure for tuning
stiffness with an axial force FA, where one end of the double-beam resonator is fixed, and
an axial force FA is applied to the other end, resulting in a change in the beam’s stiffness.
By deriving the axial force generated in the bending vibration of the resonator, the change
in stiffness of the resonator under axial force can be calculated:

∆kaxial =
12FA

π2l
(28)

where l is the length of the resonator, and its stiffness is:

kmech =
192EI

l3 (29)

where E is the Young’s modulus, and I is the moment of inertia. Therefore, the effective
stiffness of the resonator is:

ke f f = kmech + ∆kaxial =
192EI

l3 +
12EI
π2l

(30)

(b)

Axial Force (FA)

d

(a)

Lateral Force (FL)

Vibration

Figure 17. A simple design of a double-ended tuning fork resonant electrometer based on axial (a)
and lateral (b) strain modulation schemes.

Therefore, the influence of the axial force on the stiffness of the resonator increases
its effective stiffness, raising the resonant frequency. This is a method of positive stiffness
tuning.

In 2008, J.E.-Y. Lee et al. reported a micromechanical electrometer [47] based on axial
stiffness perturbation using a dual-end tuning fork resonator as a charge-sensing element,
as shown in Figure 18a. The addition of charge to the input capacitor induces axial tensile
strain in the resonator’s prongs, resulting in a change in the resonant frequency. Under
a 3.0 V DC bias voltage and 4 mTorr pressure, the sensor exhibited a high Q-factor of
80,000 at a frequency of 154 kHz. When embedded in a closed-loop circuit, the resonator
achieved a nonlinear oscillator with a short-term frequency deviation of 3.1 mHz (20 ppb).
The noise-limited minimum detectable charge was 4 fC, corresponding to a noise force of
0.725 nN and a strain resolution of 23.4 pE .
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As shown in Figure 18b, in 2015, J.X. Zhao et al. reported an electrostatic charge
sensor based on MEMS resonator axial strain modulation [48]. This sensor uses a dual
micro-lever design to enhance sensitivity. The amplification factor can be further increased
by introducing multi-stage micro-lever structures. The core element of the sensor is a
dual-end tuning fork resonator operating in an out-of-phase mode at 138.9 kHz, with a
Q-factor of about 4900 under an operating pressure of 40 mTorr. The change in resonant
frequency is proportional to the axial force induced by the added charge, which is then
converted through a dual micro-lever with an amplification factor greater than eight. The
measured response is 1.3 × 10−3 Hz/fC2, and the sensitivity is 21 fC with a frequency
fluctuation of 4 ppm.

The schematic of the electrometer reported by D.Y. Chen et al. [73] in 2017 is shown
in Figure 18c. This sensitivity modulation electrostatic measurement scheme is based
on mechanical resonators and actuators. The device consists of a dual-end tuning fork
resonator with symmetrically distributed levers and sensing capacitors and an adjustable
capacitor controlled by a comb-drive actuator. The dual-end tuning fork resonator has a
Q-factor close to 10,000 and a motion resistance below 0.5 MΩ. The charge-sensing function
based on axial strain modulation provides a high resolution of 2.6 fC with a frequency
fluctuation of 0.46 ppm. By adjustment, the sensitivity was linearized and further reduced,
extending the dynamic range by 358.47% to 12.38 pC. Meanwhile, the frequency fluctuation
remains stable below 70 mHz, demonstrating outstanding charge-sensing performance.

(a) (b) (c)

Figure 18. Microscope image of electrometer structure based on axial stiffness perturbation, with
(a–c) corresponding to [47,48,73], respectively.

3.3. Lateral Stiffness Perturbation Method for Electric Field Measurement

Different from the changes in the mechanical properties of the beam under axial force,
a force applied laterally from the direction of vibration can introduce a negative stiffness
perturbation to the resonant system, thereby modulating the resonant frequency. For
electrometry, the lateral stiffness perturbation scheme exhibits higher sensitivity and better
performance, which will be illustrated in this section using beam resonators as examples.
As shown in Figure 17b, in the lateral force stiffness perturbation scheme, the distance
between the resonator and the electrode is d. Due to the gap and potential difference
between the resonator and the fixed electrode, the electrode exerts an electrostatic attractive
force on the resonator, and the magnitude of this electrostatic force is given by:

FL =
1
2

∆V2 ∂Cd
∂x

(31)

where ∆V represents the potential difference between the two plates, Cd = ϵ0 A/d is the
capacitance between the resonator and the electrode, A is the effective area between the
resonator and the electrode, and d is the effective gap between the sensing electrode and
the resonator. From the above expression, it can be seen that the electrostatic force is
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a displacement-dependent quantity. Therefore, according to Hooke’s law, the stiffness
perturbation of the resonator due to the axial force input can be expressed as:

∆klateral = −∂F
∂x

= − ϵA∆V2

d3 (32)

Therefore, the effective stiffness of the resonator is the sum of the electrostatic negative
stiffness and the mechanical stiffness of the resonator, i.e.:

ke f f = kmech + klateral = kmech −
ϵA∆V2

d3 (33)

The electrostatic negative stiffness effect is a method to soften the effective stiffness of
a resonator. Electrostatic negative stiffness reduces the resonant frequency of the resonator,
making it a negative tuning method for stiffness parameters. We can adjust the effective
stiffness of the resonator by varying the potential difference ∆V between the resonator and
the fixed electrode or by changing the gap d between the resonator and the electrode.

In 2017, D.Y. Chen et al. reported a high-sensitivity resonant electrostatic charge-
sensing scheme based on a simple twin-beam lateral stiffness perturbation [49], as shown
in Figure 19a. The input charge generates a lateral electrostatic force that alters the effective
stiffness of a double-ended tuning fork resonator, offering higher sensitivity than traditional
axial strain sensing methods. The frequency sensitivity of the sensor is 4.4 × 10−4 Hz/fC2

and is almost unaffected by polarization voltage, with a relative frequency sensitivity
of 9.1 ppb/fC2. By measuring the standard deviation of the output frequency, a charge
resolution of 32.6 fC is obtained. This sensing scheme also creates an additional energy
transfer path within the device, enhancing the Q-factor and stabilizing frequency fluctua-
tions. Compared to the amplitude modulation method, the frequency modulation method
shows better performance in terms of resolution and stability.

(b) (c)(c)(a)(a)

Figure 19. Lateral stiffness perturbation electrostatic measurement scheme based on a simple double-
beam resonator (a), a single-beam resonator (b), and a single-ended anchored circular beam resonator
(c) (modified from [49,74,75]).

X.M. Liu et al. proposed a MEMS EFS based on a simple single-beam structure with
lateral strain modulation [75] in 2023, as shown in Figure 19b. This sensor utilizes the
resonant frequency as the output signal to eliminate feedthrough interference from the
driving voltage. The sensor consists of a resonator, driving electrode, sensing electrode,
transition electrode, and electric field sensing plate. Its working principle is that when an
electric field is present, induced charges appear on the surface of the sensing plate, generat-
ing electrostatic stiffness in the resonator, which causes a shift in the resonant frequency.
Experimental results show that the sensor has a sensitivity of 0.1384

√
Hz/(kV/m) and a

resolution better than 10 V/m.
The schematic of the MEMS frequency-modulated electrometer prototype based on

a pre-bias charging mechanism [74] reported by H.Y. Chen et al. in 2022 is shown in
Figure 19c. This electrometer is a lateral-force stiffness perturbation scheme based on a
single-anchor circular beam resonator structure for electrostatic charge measurement. The
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single-anchor circular beam design overcomes the issue of uneven energy distribution in the
traditional axially extended tuning fork structures and reduces geometric nonlinearity. Ex-
perimental results show that as the pre-bias charge increases, the resonator transitions from
a low-sensitivity to a high-sensitivity regime. In open-loop measurements, the sensitivity
of the SACB electrometer is 5.14 ppm/fC at a bias of 1.416 pC, while in closed-loop mea-
surements, the sensitivity is 4.52 ppm/fC. As the bias increases from 0.708 pC to 1.416 pC,
the charge resolution improves nearly 20 times, and the dynamic range expands by 131%.
The pre-bias mechanism can also be applied to other resonant sensing applications to
enhance performance.

4. Mode-Localized Electric Field Microsensors

Mode localization refers to a phenomenon in which, in a mechanically identical and
symmetric coupled resonator system, the vibrational energy of a given mode is evenly dis-
tributed across the resonators. The vibration mode extends uniformly across all resonators
when the system maintains dynamic symmetry. However, when the coupling coefficient
between the resonators is small, and a perturbation occurs in the mechanical parameters of
one resonator, breaking the system’s symmetry, the vibrational energy becomes confined to
a single resonator. This energy confinement can be measured through eigenstate or am-
plitude ratio analysis, known as mode localization. This section introduces the theoretical
analysis and principles of mode localization and reviews prototype instantiations of its
application in charge and electric field measurements.

4.1. Theoretical Analysis

Several different methods have been previously studied and implemented to model
weakly coupled mode-localized systems and strongly coupled multi-DoF systems. Al-
though these methods remain effective in modeling the mechanical behavior of such
systems, their utility is limited in constructing integrated models for practical applications
because MEMS devices require models that can capture both mechanical and electrical be-
haviors, including electronic interfaces. This section evaluates three modeling approaches
applicable to mode-localized resonator systems: (1) eigenvalue analysis, which predicts
the eigenvalues and eigenvectors of a coupled system under perturbation; (2) the transfer
function method, which simplifies the mechanical dynamics of resonators into a transfer
function to predict the amplitudes of two resonators under different perturbation states;
and (3) the BVD electrical model, which enables the resonators to be integrated into systems
with readout electronics and closed-loop oscillator circuits. The combination of these three
methods helps to predict the behavior of practical MEMS sensors more accurately.

4.1.1. Eigenvalue Analysis

Mode localization can be observed in a lumped model consisting of multiple 1-DoF
micromechanical resonators connected by weak coupling springs. Considering a 2-DOF
weakly coupled resonator as an example, its spring-mass-dashpot model is shown in
Figure 20. In this model, the resonators have masses m1 and m2, stiffnesses k1 and k2,
and damping coefficients c1 and c2. It is assumed that these parameters are similar (i.e.,
m1 = m2 = m, k1 = k2 = k, c1 = c2 = c), and the stiffness of the coupling spring is much weaker
than that of the resonators themselves (i.e., kc ≪ k). Disorder in the system is introduced
by adjusting the stiffness of one of the resonators, represented as a perturbation ∆kp on one
of the springs, while ∆kt is used to adjust for system imbalance caused by process errors. It
should be noted that in practical sensors, ∆kp serves as a proxy for the measurement. In
the absence of damping and external forces, the equations of motion for the system can be
described as follows: {

mẍ1 + (k + kc)x1 − kcx2 = 0

mẍ2 + (k + kc + ∆kp)x2 − kcx1 = 0
(34)
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It can be expressed in matrix form as:[
m 0
0 m

][
ẍ1
ẍ2

]
+

[
k + kc −kc
−kc k + ∆kp + kc

][
ẍ1
ẍ2

]
=

[
0
0

]
(35)

c1 c2

Δkt Δkpk1 k2

m1 m2

kc

x1 x2

F1 F2

Figure 20. Lumped spring-mass-dashpot model of 2-DOF coupled system.

Assuming harmonic displacement, [x1x2]
T = une(iωt)(n = 1, 2), the eigenvalues of the

system can be found by setting the determinant of the system as equal to zero.∣∣∣∣−ω2m + k + kc −kc
−kc −ω2m + k + ∆kp + kc

∣∣∣∣ = 0 (36)

The eigenvalues and eigenvectors of the system can be obtained.
ω2

i =
2k + 2kc + ∆kp ±

√
∆k2

p + 4k2
c

2m
(i = 1, 2)

u1 =
xi2
xi1

=
∆kp ∓

√
∆k2

p + 4k2
c

2kc
(i = 1, 2)

(37)

Assuming ∆kp = 0 in the unperturbed case, the eigenvalues, eigenvectors, and
amplitude ratio of the two modes are as follows:

ω2
01 =

k
m

; ω2
02 =

k + 2kc

m
;

u01 =
1√
2
[1; 1]; u02 =

1√
2
[1;−1];

AR01 = 1; AR02 = −1;

(38)

Define the relative sensitivity as the rate of relative frequency change and AR per unit
input. For mode 1, the relative frequency change rate and the relative AR change rate can
be expressed as:

Vω1 =
ω1 − ω0

ω0
≈ 1

4
(2κ + ∆kp −

√
∆k2

p + 4κ2) (39)

Vu1 =
u1 − 1

1
=

1
2κ

(−∆kp +
√

∆k2
p + 4κ2 − 2κ) (40)

where κ = kc/k is the coupling coefficient. Then, we obtain the sensitivity of the frequency
and amplitude ratio to stiffness changes as:

Sω1 =
∂Vω1

∂∆kp
=

1
4
(1 −

∆kp√
∆k2

p + 4κ2
)

SAR1 =
∂Vu1

∂∆kp
=

1
2κ

(−1 +
∆kp√

∆k2
p + 4κ2

)

(41)
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Then, the relative value of AR sensitivity to frequency sensitivity is:∣∣∣ SAR1
Sω1

∣∣∣ ≈ 2
κ
=

2k
kc

(42)

For weak coupling, where kc ≪ k, we can conclude that the AR sensitivity is much
higher than the frequency sensitivity. This is the fundamental principle behind the sig-
nificant sensitivity improvement in weakly coupled resonant sensors based on mode
localization.

4.1.2. Transfer Function Analysis

In a weakly coupled mode-localized resonant system, we can construct transfer func-
tion equations to integrate mechanical and electrical behavior, enabling an in-depth analysis
of the system’s overall dynamic characteristics. This method can simulate the variation
in vibration amplitude under input disturbances and accurately describe the complex
noise processes within the system. The model of the 2-DOF weakly coupled system can be
established using the forced vibration dynamic model shown in Figure 20. Assuming a
single-end driving approach (F2 = 0, the equation for the forced vibration of the resonant
system is:

mẍ1 + cẋ1 + (k + kc)x1 − kcx2 = F1(t) (43a)

mẍ2 + cẋ2 + (k + kc + ∆kp)x2 − kcx1 = 0 (43b)

The equation can be expressed in the Laplace domain as:

ms2x1(s) + csx1(s) + (k1 + kc)x1(s) = F1(s) + kcx2(s) (44a)

ms2x2(s) + csx2(s) + (k2 + kc + ∆kp)x2(s) = kcx1(s) (44b)

This can be simplified to:

H1(s)x1(s) = F1(s) + kcx2(s) (45a)

H2(s)x2(s) = kcx1(s) (45b)

where H1(s) = ms2 + cs+ (k1 + kc) and H2(s) = ms2 + cs+ (k1 + kc +∆kp) are the transfer
functions. The displacement response of each resonator to each applied force can be derived
using Cramer’s rule as follows:[

H1(s) −kc
−kc H2(s)

][
X1(s)
X2(s)

]
=

[
F1(s)

0

]
(46)

x1 =

∣∣∣∣F1(s) −kc
0 H2(s)

∣∣∣∣∣∣∣∣H1(s) −kc
−kc H2(s)

∣∣∣∣ ; x2 =

∣∣∣∣H1(s) F1(s)
−kc 0

∣∣∣∣∣∣∣∣H1(s) −kc
−kc H2(s)

∣∣∣∣ ; (47)

x1 =
F1(s)H2(s)

H1(s)H2(s)− k2
c

; x2 =
F1(s)kc

H1(s)H2(s)− k2
c

; (48)

Based on the transfer function of a weakly coupled resonant system, the frequency
response of two resonators under a single-end drive with stiffness perturbation can be
simulated. As shown in Figure 21, without stiffness perturbation, the two resonators are
in symmetric resonance. After applying stiffness perturbation, the resonators shift to an
asymmetric state, clearly showing the mode localization phenomenon. Additionally, the
transfer function equation can also be used to simulate the frequency response under a
double-end drive.
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Figure 21. Frequency response of a 2-DOF weakly coupled resonant system in both symmetrical (a)
and asymmetrical (b) conditions, obtained using the transfer function equation.

4.1.3. Butterworth–Van Dyke Model Analysis

By coupling the two 1-DOF resonators shown in Figure 5 through a coupling capacitor
component, the mechanical model in Figure 20 can be transformed into a BVD model
to analyze the effective output current of the 2-DOF weakly coupled micromechanical
resonators. The coupling capacitance must be very small to ensure the weak coupling of
the two resonator systems. The equivalent RLC circuit, including two parasitic capacitors,
is shown in Figure 22. Based on the deductions in Section 2.2 regarding the equivalent RLC
circuit of a 1-DOF resonator, the output currents of the two resonators in the 2-DOF weakly
coupled mode-localized resonator system at their eigenfrequency points are:

is1 ∝
1
Ξ
[(2 +

k2C2
f t1

Qη2 ) +
jk(Θ − Qη2C f t2

m )
√

Qη
] (49a)

is2 ∝
1
Ξ
[(2 +

k2C2
f t1

Qη2 ) +
jkΘ√

Qη
] (49b)

where Θ = 4C f t2 + C f t1 −
k2C2

f t1C f t2

Qη2 , and Ξ = Rr(1 +
Lr R2

r C2
f t1

Cr
). The analysis of the output

currents of the two resonators reveals the following effects of feedthrough capacitance on
the weakly coupled resonant system: (1) when driving resonator 1, the real part of the
output current from both resonators is only affected by the feedthrough capacitance of
resonator 1, while the feedthrough capacitance of both resonators influences the imaginary
part; (2) the presence of feedthrough capacitance causes the resonant frequency points of
the two resonators that are not to coincide, which introduces errors when measuring the
AR, severely affecting the accuracy of weakly coupled resonant sensors. These effects are
critical for mode-localized resonant sensors, and it is essential to account for the impact
of feedthrough capacitance in chip design, taking measures to eliminate or minimize
its influence.

Rr1
Cr1

Cc

Lr1Lr1

GND

Cft1

Rr2
Cr2

Lr2Lr2

Cft2

Cp

Drive

Figure 22. BVD model corresponding to a 2-DOF weakly coupled resonant system.
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4.2. Prototype Instantiation for Mode-Localized Microsensor

Various structures, methods, and features of mode-localization have been employed
to enhance the performance of weakly coupled sensors, including multi-DOFs and non-
linearity [76,77]. Different structures and multi-DOFs result in varying performance for
mode-localized EFSs and electrometers. To illustrate the current performance of mode-
localized EFSs and electrometers and to clarify the future applications of this technology,
this paper discusses the most common parameters of mode-localized electrometers and
EFSs, such as sensitivity, bias instability, noise spectral density, resolution, measurement
range, and bandwidth.

4.2.1. A 2-DOF Mode-Localized Resonant Microsensor

In 2010, P. Thiruvenkatanathan et al. first reported an ultrasensitive prototype mode-
localized micromechanical electrometer [18], utilizing the phenomena of mode-localization
and curve veering to detect small changes in charge on the input electrode. As shown in
Figure 23a, this electrometer consists of two nearly identical double-ended tuning fork
(DETF) resonators connected by a weakly coupled mechanical beam. The input charge
induces a differential axial stiffness perturbation between the two resonators, leading to
mode-localization. Experimental results demonstrate that for the same charge input, the re-
sulting eigenstate shifts are nearly three orders of magnitude larger than the corresponding
changes in resonant frequency, which is consistent with the theoretical predictions.

(a) (b) (c)

Figure 23. Implementation of 2-DOF weakly coupled mode-localized resonant electrometers (a,b)
corresponding to [18,51] and charge sensors (c) [78].

In 2016, H.M. Zhang et al. reported a high-sensitivity resonant electrometer based
on the mode-localization phenomenon [51], as shown in Figure 23b. This electrometer
measures changes in the input charge by detecting variations in the AR. Experimental
results indicate that the relative AR sensitivity is 663,751 ppm, which is 2341 times greater
than the relative frequency shift sensitivity of 283.56 ppm. In the same year, H.M. Zhang
et al. conducted a more comprehensive performance characterization of the structure. They
developed a theoretical model of the electrometer through transfer functions and estab-
lished design rules for the coupling factor based on the −3 dB bandwidth, AR measurement
error, and frequency mismatch between the resonators. Experimental results showed that
the AR sensitivity was 2151 times higher than the frequency shift sensitivity, achieving
an AR-based resolution of 1.269 fC. The resolution can be further improved by enhancing
sensitivity and reducing amplitude noise, while optimizing device topology and operating
pressure to increase the Q-factor is highly beneficial for noise reduction.

The schematic of the novel ultrasensitive single-electron detection charge sensor [78]
reported by X.F. Wang et al. is shown in Figure 23c. This charge sensor utilizes nonlinearity
to significantly enhance resolution and sensitivity, revealing the great potential of nonlinear
applications. A real-time closed-loop measurement circuit was developed for charge
detection. Experimental results demonstrated that the sensor achieved single-electron
charge detection at room temperature, with a resolution of 0.197 ± 0.0056 e/

√
Hz.

4.2.2. Multi-DOF Mode-Localized Microsensor

Unlike conventional 2-DOF mode-localized EFSs and electrometers, multi-DOF mode-
localized resonant EFSs and electrometers are achieved by increasing the number of weakly
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coupled resonators. Adding more resonators to the weakly coupled system effectively improves
the sensitivity and resolution and enables additional functionalities [50,79–83]. This section
describes the 3-DOF and 4-DOF structures of mode-localized electrometers and EFSs.

In 2017, C. Zhao et al. reported the first novel 3-DOF mode-localized MEMS electrical
potential sensor [50]. As shown in Figure 24a, the sensor consists of three mechanical
resonators placed side-by-side and coupled through capacitive coupling. Unlike the 2-DOF
structure, resonators 1 and 3 are used for potential detection, while the middle resonator 2
is weakly coupled to the two outer resonators via capacitors. Based on the 3-DOF mode
localization, the AR sensitivity is:

S3DOF =
∣∣∣ ∂(AR)

∂(∆k/k)

∣∣∣ = k(k2 − k + kc)

k2
c

(50)

where k, k2, and kc represent the stiffness of the suspension beam of resonator 1 (and
3), resonator 2, and the coupling spring, respectively, with k2 > 2k. Compared to the
2-DOF mode-localized AR sensitivity in equation 42, the sensitivity of this design can be
increased by a factor of k2−k+kc

4kc
. The 3-DOF design demonstrates an improvement of two

orders of magnitude in sensitivity. Moreover, experimental results show that the maximum
sensitivity is over 123 times higher than the most advanced 2-DOF mode-localized sensors.
The noise floor for potential sensing is estimated to be 614 µV/

√
Hz, while the noise floor

for charge sensing is 57.6 e/
√

Hz, with a dynamic range of up to 66.3 dB.

(e)

(a) (b)

(d)

(c)

(f)

Figure 24. Schematic diagrams of 3-DOF and 4-DOF (f) weakly coupled mode-localized resonant
EFSs and electrometers, with (a–f) corresponding to [50,79–83], respectively.

J. Yang et al. reported a micro resonant electrometer in 2018, achieving a resolution of
nine electrons at room temperature. As shown in Figure 24b, the electrometer utilizes a
3-DOF weakly coupled resonator as the sensing element, with the input charge-inducing
mode localization. Closed-loop test results showed that the relative AR sensitivity was 900
times higher than the relative frequency shift sensitivity, with a resolution of 9.21 e/

√
Hz.

Z.L. Wang et al. proposed a novel high-sensitivity mode-localized EFS structure [84]
based on closed-loop feedback, as shown in Figure 24c. Test results under vacuum condi-
tions demonstrated that this EFS achieved a DC electric field resolution of 10 V/m, 5.3%
accuracy, and 0.56% repeatability (2021). Subsequently, X.M. Liu et al. reported a sensitivity
and stability-enhanced EFS based on this structure. The mode-localized EFS operates at



Micromachines 2024, 15, 1333 27 of 32

15,893 Hz and 15,896 Hz in in-phase and out-of-phase eigenmodes, achieving an electric
field sensitivity of 0.0032 /(V/m) and a resolution better than 10 V/m.

The schematic of the micro-resonant DC EFSs [80] based on the mode localization
phenomenon reported by Z.M. Yan in 2019 is shown in Figure 24d. The sensor employs a
3-DOF weakly coupled resonator as the mechanical sensing element, with comb capacitors
on both sides to convert the electric field into stiffness perturbations. Experimental results
within the measurement range of 7 kV/m demonstrate that the AR-based sensitivity is
1720 times higher than that based on frequency shift, with a resolution of 20.4 V/m

√
Hz. In

2022, Y.C. Hao et al. reported a mode-localized DC EFS based on this structure [83]. Within
the electric field range of 0–7 kV/m, a sensitivity of 0.76 /(kV/m) was measured. The noise
was 11.5 (V/m)/

√
Hz, the resolution was 22.9 V/m, and the stability was 9.1 V/m.

In 2021, Y.C. Hao et al. reported a high-resolution voltmeter based on the application
of mode localization in a 3-DOF weakly coupled resonator system [82], as shown in
Figure 24e. The input voltage induces stiffness perturbations in the resonators, leading
to mode localization and enabling voltage detection. The sensor operates at eigenmodes
of 19,626 Hz and 19,639 Hz, with a measured Q-factor of 32,000. The AR sensitivity is
2918 times higher than the frequency sensitivity. The bias instability is 42.6 µV, AR noise
is 1.02 × 10−4/

√
Hz, resolution reaches 3 µV/

√
Hz, and both repeatability and hysteresis

errors are below 3%.
In 2020, H. Kang et al. reported the first novel 4-DOF micromachined electrometer

with room temperature resolution of 0.256 e/
√

Hz [81]. As shown in Figure 24f, the sensor
consists of four mechanical resonators placed side-by-side and coupled through capacitors.
Unlike the 2-DOF structure, resonators 1 and 4 are used for potential detection, while
resonators 2 and 3 are weakly coupled to the outer resonators through capacitors. The
mode-localized AR sensitivity based on the 4-DOF configuration is:

S4DOF =
∣∣∣ ∂(∆u/u0)

∂(∆k/k)

∣∣∣ ≈ 5k2
mk − 9kmk2 + 4k3

5k3
c

(51)

where km is the stiffness of resonators 2 and 3. Compared to the 2-DOF mode-localized AR
sensitivity in Equation (42), the sensitivity of this design can be increased by a factor of
5k2

m−9kmk+4k2

10k2
c

. The 4-DOF design demonstrates an improvement of orders of magnitude in
sensitivity. The structure operates at eigenmodes of 14,569.95 Hz and 14,571.56 Hz under
room temperature conditions, featuring a measurement range of over 500,000 electrons, a
dynamic range of 136.7 dB, a sensitivity of 0.047 V/fC, and a resolution of 0.256 e/

√
Hz.

5. Discussion

This paper conducts a comprehensive overview of various resonant electric field
micro-sensors, including micro-field-mills, micro-cantilever EFSs, frequency-modulated
EFSs, and mode-localized EFSs. These sensors have been successfully used in atmospheric
electric field measurements and static charge detection.

In electric field sensors, different working principles and sensing structures signifi-
cantly impact sensitivity, primarily depending on the structural design and the sensor’s
ability to sense charges. For in-plane vibrating micro-field-mills based on charge induction,
parallel plate capacitive sensing and comb-finger capacitive sensing are common configura-
tions. The parallel plate capacitive structure is simple in design and offers good stability,
but its sensitivity is limited due to the restricted electrode area. In contrast, the comb-finger
structure increases the sensing area by adding multiple interdigitated electrodes (combs),
thus significantly enhancing the sensitivity for electric field measurement. Table 2 also
highlights the high sensitivity characteristic of comb-finger sensing in micro-field-mills.

Torsional vibrating electric field sensors, compared to in-plane vibrating ones, demon-
strate higher charge-sensing efficiency, resulting in greater sensitivity, as reflected in the
performance parameter comparison in Table 2. However, in terms of fabrication, in-plane
vibrating electric field sensors can be directly realized through electrostatic actuation and
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detection, making them easier to produce compared to torsional vibrating sensors. In
comparison to both of these types, rotational vibrating electric field sensors offer unique
advantages, as they achieve dual-axis electric field detection while maintaining high sensi-
tivity and a wide measurement range on a single chip. In the future, realizing single-chip
three-dimensional electric field measurements could become a key research direction.

The frequency-modulated and mode-localized electric field sensors are based on
stiffness perturbations in the resonators caused by external electric fields. Frequency-
modulated EFS typically requires specially designed sensing structures to enhance charge
detection capabilities or improve the quality factor to enhance sensor sensitivity. However,
mode-localized EFS, which relies on amplitude ratio output, exhibits significant amplitude
ratio changes when the coupling structure in the system is perturbed. Compared to
frequency-modulated sensors, mode-localized sensors generally offer higher sensitivity
by measuring the amplitude ratio of coupled resonators. Additionally, they demonstrate
superior common-mode rejection and environmental noise immunity.

Table 2. The performance of resonant MEMS EFS with different structures and principles.

Sensitivity Measurement Range Structural Characteristics Resolution

Mirco Field Mill
EFS by Peng et al. [24] - 0–50 kV/m parallel plate sense 100 V/m
EFS by Wen et al. [70] - −1–+1 kV/m comb-finger sense 5 V/m
EFS by Liu et al. [63] 0.16 mV/(kV/m) 0–50 kV/m parallel plate sense -

EFS by Bahreyni et al. [32] 0.16 mV/(kV/m) 0–5 kV/m parallel plate sense 42 V/m
Charge sensor by Zhu

et al. [33] 1.58 nV /e - parallel plate sense 68.3 e/
√

Hz

EFS by Gao et al. [67] 0.31 mV/(kV/m) 0–50 kV/m parallel plate sense 230 V/m
EFS by Wen et al. [46] 465 mV/(kV/m) 0–100 kV/m comb-finger sense 10 V/m

EFS by Chu et al. [30] 4.82 mV/(kV/m) 0–50 kV/m torsional resonant and
parallel plate sense -

EFS by Wang et al. [28,29] 0.675 mV/(kV/m) 0–25 kV/m rotary resonant and
comb-finger sense -

EFS by Huang et al. [71] 0.84 mV/(kV/m) 0–1 kV/m micro-cantilever -
EFS by Han et al. [72] - 1.1–1100 kV/m micro-cantilever 112 V/m/

√
Hz

Frequency-Modulated

Electrometer by Lee et al. [47] - 0–200 fC axial strain modulated and
tuning fork 4 fC

Electrometer by Chen
et al. [73] - 12.38 pC adjustable capacitor and

tuning fork 2.6 fC

EFS by Liu et al. [75] 0.1384
√

Hz/(kV/m) 0–10 kV/m lateral modulated and
double-clamped beam 10 V/m/

√
Hz

Mode-localized
Electrometer by Zhang

et al. [51,52] 663,751 ppm/C 0–144 fC weakly coupled tuning fork 1.269 fC

electrical potential sensor by
Zhao et al. [50] - −6–+2 V three electrically coupled

resonators 614 µV/
√

Hz

Voltmeter by Hao et al. [82] 34/V 0–0.25 V three mechanically coupled
resonators 3 µV/

√
Hz

EFS by Liu et al. [85] 3.2/(kV/m) 0–11 kV/m three electrically coupled
resonators 10 V/m/

√
Hz

EFS by Hao et al. [83] 0.76/(kV/m) 0–7 kV/m three mechanically coupled
resonators 11.5 V/m/

√
Hz

6. Conclusions

This review provides an analysis of the principles and performances of resonant
MEMS EFSs over recent decades, with a particular focus on their structural characteris-
tics and resonance behaviors. Table 2 compares the performance metrics of MEMS EFS
with different working principles and sensing structures. Research on micro-field-mills
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has shown that they feature various sensitive structures and vibration modes, achieving
high sensitivity and wide measurement ranges, and they have been successfully applied
in power-grid monitoring and atmospheric electric field measurements. Although there
has been less research on frequency-modulated electric field sensors, the optimization of
sensitive structures has led to improvements in sensitivity and other performance metrics.
Mode-localized electric field sensors, based on amplitude ratio output, significantly en-
hance sensitivity and resolution. These performance improvements are primarily attributed
to their structural design and coupling mechanisms. While mode-localized electric field
sensors have not yet seen broad application in electric field measurements, further research
may enable their future use. Utilizing parametric actuation and nonlinearity can signif-
icantly improve the performance of mode-localized sensors, enhancing their sensitivity
and energy exchange capabilities, which could foster further studies in this area. Currently,
there are few reports on electric field sensors based on these principles, but their potential
for highly sensitive electric field measurements in industrial applications is promising.
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