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Abstract: The objective of this paper is to explore the potential of integrating three distinct function-
alities into a thin, single-layer metasurface. Specifically, the study introduces a metasurface design
that combines absorption, polarization conversion, and transmission capabilities. The proposed
structure consists of a double square loop disposed on a dielectric substrate, which is covered by a
superstrate. In this study, the traditional ground plane was replaced with a periodic array, selectively
reflecting frequencies of interest. Then, the absorption and polarization conversion characteristics
were achieved by introducing the resonators in the front layer. By introducing asymmetry to the
resonators and integrating PIN diodes for control, we demonstrated that the metasurface could
efficiently absorb electromagnetic waves (with PIN diodes in the ON state), convert polarization
(with PIN diodes in the OFF state), and enable signal transmission in a different frequency range. The
numerical results indicated excellent performance in both absorption and polarization conversion. At
a frequency of 3.05 GHz, the absorption rate reached 97%, while a polarization conversion rate of 98%
was achieved at the resonance frequency of 4.37 GHz. Moreover, the proposed structure exhibited a
thickness of λ/30.7 at the absorption peak.

Keywords: linear polarization converter; metasurface; absorber

1. Introduction

A metamaterial is a material composed of a mixture of metals and dielectrics. These
materials are typically arranged periodically on scales much smaller than the wavelength
of the phenomena with which they interact. The properties of metamaterials arise from the
characteristics of the substrate, as well as its geometry, size, orientation, and arrangement.
When the sizes of the meta-atoms are sufficiently small compared with the wavelength
of interest, the macroscopic approach for describing the electromagnetic wave material
properties can be applied to metamaterials composed of meta-atoms, similar to materials
made of atoms or molecules [1].

Metasurfaces are two-dimensional versions of metamaterials that have become more
popular than 3D materials due to their simplicity in the manufacturing process and numer-
ous practical applications [2]. In various applications, metasurfaces can replace metamateri-
als. Some of their advantages include occupying less physical space than 3D metamaterial
structures and forming structures with fewer losses.

Due to their ability to manipulate polarization, which is one of the most important
properties of electromagnetic (EM) waves, metasurfaces have enabled new applications in
many areas, such as flat lensing, low-profile and low-weight absorbers, beam-switching
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antennas, and polarization converters [1–5]. Low loss and light weight are attractive
features of metasurfaces for applications in diverse frequency ranges of the electromagnetic
spectrum [6–10]. However, most metasurfaces provide only a single function per device,
which restricts their application to specific frequency ranges. In this sense, the number
of researchers interested in developing multifunctional structures using metasurfaces has
grown rapidly, opening many new perspectives in different fields of research. As an
example, metasurfaces have been efficiently applied to switch between absorption and
polarization conversion or to achieve different polarization conversions, such as circular to
circular, linear to circular, and linear to cross-linear polarizations [11–16]. Many techniques
have been developed in addition to designs, both varying according to frequency range
and application. Some of the most recent research is presented below.

In [17] the authors propose an active metasurface that can have the functions of
absorption and polarization conversion. Switching between different functionalities is
achieved by controlling the different states of PIN diodes, which are inserted into the unit
cell elements. The proposed structure is dual-band and operates in the Ku band. To achieve
multifunctionality, square loops with different dimensions and different dielectric layers
were used.

Also, through the implementation of the PIN diode, in [18] the authors propose a
multifunctional metasurface for broadband polarization conversion and perfect absorption.
The unit cell, with a periodicity of 24 mm, is formed by four layers: the upper layer is
composed of a fishbone-like resonator (FLR) combined with a diamond cross resonator
(DCR), incorporated by grouped resistors and PIN diodes, etched into the substrate FR-4
dielectric with a thickness of 1.6 mm, and then an air spacer layer with a thickness of 8.5 mm
is introduced between the FR-4 substrate and the back composed of FR-4 double-sided
copper coated with 0.8 mm thickness. The resonators and metal plate are made of copper
with a thickness of 0.035 mm and a conductivity of 5.8 × 107 S/m. The permittivity and
loss tangent are 4.3 and 0.02, respectively. The proposed structure operates in the range of
2.97 to 6.03 GHz in polarization conversion mode and in a range covering conversion from
2.56 to 7.62 GHz for absorption mode.

In [19] the authors also designed a configurable metasurface using a PIN diode to
obtain the absorption and polarization conversion functions with reasonable results for
oblique incidence up to 60◦, operating at a frequency of 5.4 GHz for both functions. Its
structure, with a periodicity of 16 mm, is composed of a ring and a ring resonator supported
by two parallel bars, and the substrate is composed of FR-4, where the permittivity and the
loss tangent are 4.2 and 0.025, respectively.

Another technique that can also be used to obtain function integration is structure
superposition, used by the authors in [20] for the absorption and polarization conversion
functions. The first structure consists of a ¼ circle resonator on two diagonals and the
second with a square loop rotated by 45o. Both structures have an FR-4 substrate of 3.2 mm
(structure 1) and 0.8 mm (structure 2) with a dielectric constant of 4.3 and a loss tangent of
0.025. The ground plane is composed only of copper. With this configuration, conversion at
a frequency of 6.1 GHz and polarization conversion in the frequency band of 7.8–11.9 GHz
are obtained. The results demonstrated angular stability of up to 70o for absorption and
50o for polarization conversion.

A metasurface with single-band absorption or dual-band polarization conversion
functionalities is proposed in [11]. The different operating states of the proposed structure
are achieved by varying the bias voltage applied to varactor diodes and capacitors inserted
into the unit cell elements on a flexible substrate. Absorption of 90% is achieved at the
3.9 GHz frequency, while polarization conversion ratios of 96% and 92% are obtained at
the 4.6 and 5 GHz frequencies, respectively. The structure has simple geometry, but it
is necessary to include different lumped elements in the unit cells. Other examples of
metasurfaces that have been efficiently applied for absorption and polarization conversion
functions, or even to achieve different polarization conversions, such as from circular to
linear and linear to cross-linear, have been developed in [19,21–24].
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To obtain the functional structure, the proposed structures became increasingly robust,
in periodicity and thickness, in addition to more complex geometries and increasing the
number of resonators. Another important point is that all recently designed structures
allow for a maximum of two functions. All these points motivated the creation of the
structure presented in this work, a structure with triple function and a single layer.

Therefore, to create structures with simultaneous absorbing and transmitting capa-
bilities, a frequency-selective surface (FSS) in a Dielectric-Metal-Dielectric-Metal (DMDM)
composition can be utilized. Breaking the symmetry of these structures results in reduced
co-polarization reflection but significantly increased cross-polarization reflection, effectively
transforming the structure into a polarization converter.

This work proposes a thin, multifunctional structure capable of serving as an absorber,
transmitter, and polarization converter. Multifunctional metasurfaces are crucial for advanc-
ing wireless communication and radar technologies. They enable innovative approaches to
designing systems that operate in dynamic environments with varying frequency require-
ments. Another significant advantage is the versatility that metasurfaces offer. Their ability
to perform multiple functions within a single structure facilitates integration into various
devices and systems, such as antennas, filters, modulators, and sensors.

Additionally, the cost savings and manufacturing simplicity are notable benefits of
multifunctional metasurfaces. By consolidating several functions into one structure, these
surfaces reduce overall production costs and design complexity. This leads to simpler and
more cost-effective manufacturing processes, benefiting both the industry and end con-
sumers with compact, multifunctional devices that require less material and assembly time.

Therefore, the use of multifunctional metasurfaces represents a critical advancement in
telecommunications. They provide significant improvements in the efficiency, compactness,
performance, and flexibility of systems, with the potential to transform the design and
application of communication technologies, radar, and other systems reliant on advanced
electromagnetic wave control.

The structure comprises an array of double square loops arranged on a dielectric
substrate, with the complete ground plane replaced by a periodic array reflecting only the
desired frequencies. When the PIN diode is in the on state, maintaining symmetry, the
structure functions as an absorber at 3.05 GHz, achieving an absorption rate greater than
97%, while simultaneously enabling transmission at 4.5 GHz. Thus, with the PIN diode on,
the structure can absorb and transmit at two distinct frequencies. Conversely, when the PIN
diode is in the off state, the broken symmetry transforms the structure into a polarization
converter, reaching a polarization conversion rate of 98% at 4.37 GHz. The design and
analysis of absorption, transmission, and polarization conversion were performed using
HFSS software, Version 2014.

This paper is organized as follows. Section 2 presents the project to generate the differ-
ent functions of the structure. Furthermore, the optimal geometric parameters associated
with the structure are described. Section 3 presents the comparison of the behavior of the
proposed structure with an equivalent RLC circuit, and its parameters are optimized using
the ADS Software, Version 2020. Section 4 presents the analyses of the numerical results
referring to each functionality through the effective medium theory, as well as the physical
mechanisms associated with absorption and polarization conversion. Additionally, the
present work compares the designed multifunctional metasurface with recently reported
works. Conclusions about the study carried out in this work are made in Section 5.

2. Design

The unit cell of the proposed multifunctional structure is a typical DMDM structure,
seen in Figure 1. Figure 1a,c depicts the unit cells comprising the structures in the absorption
and polarization conversion configurations, respectively. Figure 1b presents the ground
plane view, while Figure 1d illustrates the side view of the proposed structure. To achieve
efficient operation, the dielectric thickness was kept much smaller than the wavelength to
prevent phase shifts of EM waves and multiple reflections. The proposed structure in this
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paper used FR-4 as a dielectric layer, with relative permittivity of 4.4 and a loss tangent of
0.02. Additionally, metallic copper with a conductivity σ of 5.8 × 107 S/m and a thickness
t of 0.035 mm was employed in both layers (back plane and resonators). The geometric
dimensions of the structure, as shown in Figure 1, were as follows (all dimensions in
mm): d1 = 12.4, d2 = 8.2, w1 = 2, g1 = 15, g2 = 8.5, and wg = 0.5. The periodicity of the
structure was p = 17 mm. The side view of the metasurface, seen in Figure 1d, shows
that the structure was composed of two dielectric layers (substrate and superstrate) with
thicknesses h1 = 2.4 mm and h2 = 0.8 mm. Both layers were composed of the low-cost
FR-4 substrate.
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Figure 1. (a) Absorber unit cell, (b) ground plane view, (c) polarization converter unit cell, and
(d) side view of the structure.

The electromagnetic characteristics, encompassing properties such as complex perme-
ability (µ) and permittivity (ε), can be assessed through either the analytical Drude–Lorentz
model [25] or the S-parameter retrieval method [26–30]. The Drude–Lorentz approach
exhibits limitations, particularly when applied to metamaterial unit elements of intricate
design. Conversely, the S-parameter retrieval method relies on extracting S parameters
directly from the physical structure, thereby yielding more precise determinations of permit-
tivity and permeability. These S parameters were derived from HFSS, a robust commercial
finite element method (FEM)-based full-wave simulator. The S parameters were used to
calculate the refractive index (n) and the impedance (Z), and finally, these were related to
find the values of the effective permittivity (εeff) and effective permeability (µeff). Through
structure simulations, the values were optimized. The effective permittivity (εeff) and effec-
tive permeability (µeff) were related to the refractive index and impedance by the following
expressions [31]:

εe f f =
n
Z

(1)

µe f f = nZ (2)

where these relationships are dimensionless, provided that the impedance Z is normalized.
In the unit cell was used the BAR64-03W silicon PIN diode, and it was characterized

by two distinct states, which were modeled differently. In its off state, it behaved like a
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parallel circuit with parameters Roff = 3 K Ω and Coff = 0.17 pF. Conversely, in its on state,
it acted like a series circuit with parameters Ron = 0.85 Ω and Lon = 1.8 nH. Figure 2 [32]
illustrates the equivalent circuit depicting these two states of the PIN diode.
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The proposed multifunctional metasurface was composed of simple resonator ele-
ments. The unit cell of the proposed structure consisted of a double square loop printed on a
substrate, which was covered by a superstrate and backed by a frequency-selective metallic
ground plane. When an incident wave hit the structure and the loops were complete, it
generated an absorption peak at the design frequency. On the other hand, breaking the
symmetry of the elements of the array allowed the structure to offer efficient polarization
conversion for the incident wave. In addition, the main objective of this study was to create
a structure that allowed absorption and polarization conversion functions while allowing
signals from other frequency bands to travel through the structure with minimal or no
interference. Therefore, the full ground plane was replaced by a selective ground plane,
which was designed to reflect only the frequency bands of interest.

3. Equivalent Circuit of the Unit Cell

The unit cell designed and presented in the previous section can be represented by
an equivalent electrical circuit, whose main elements are resistors (R), capacitors (C), and
inductors (L). Consider that a thin grounded dielectric slab behaves as an inductor if its
thickness is less than λ/4 at normal incidence. A single ring-shaped FSS (frequency selective
surface) array behaves as a capacitor, so the impedance of a single resonant FSS can be
readily modeled with a series LC circuit. In this sense, the number of resonances is related
to the number of rings present in the unit cell. Thus, Figure 3 shows the equivalent circuit
designed in the ADS Software, where the top part of the unit cell was represented by two
parallel LC circuits, composed of elements L1, C1, L2, and C2, with each LC set representing
a ring. Similarly, the ground plane was also represented by two parallel LC circuits, L3, C3,
L4, and C4. Finally, these circuits from the top part and the ground plane were grouped in
series, with resistances added to account for losses. The steps to determine this circuit will
be presented next [33].
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Determining L and C for Resonance Frequencies

Each resonator of the unit cell (top part and ground plane) has an inductive value,
which can be determined by the following equation [34–36]:

Lms = 0.00508L
[

ln
(

2l
W + D

)
+ 0.5 + 0.2235

(
W + D

↕

)]
(3)

where Lms is the inductance per unit length of the microstrip (µH), ↕ is the length of the
strip (inches) obtained from the dimensions of the coils specified earlier, W is the width of
the strip (inches), and D is the distance between the stripline and the ground plane.

The capacitance values can be obtained using the following equation [37]:

C =
1

4π2 f 2Lms
(4)

Considering the case of the absorber, with an operating frequency of 3.05 GHz,
and using Equation (3), the following capacitance values were found: C1 = 0.01103 pF,
C2 = 0.1154 pF, C3 = 0.0646 pF, and C4 = 0.0535 pF. Additionally, applying Equation (4), the
following inductance values were determined: L1 = 24.7 nH, L2 = 9.9 nH, L3 = 17.7 nH,
and L4 = 50.8 nH. The resistance values were determined using optimization in the ADS
software, resulting in R1 = 5.48756 Ohms and R2 = 11.5699 Ohms.

After determining the equivalent circuit, the S11 parameter values were extracted, and
finally, the comparative graph of the S11 parameters of the structure designed in HFSS and
the S11 of the equivalent circuit, both varying with frequency, is presented in Figure 4. It can
be observed that both exhibited similar behavior, particularly at the absorber’s resonance
frequency of 3.05 GHz.
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It is important to emphasize that, despite the similarity in the behavior of the S
parameter for the absorber function of the unit cell and the equivalent circuit, a direct
comparison between the full electromagnetic wave simulation model and the circuit model
was not entirely valid. The circuit model did not account for the generation of reflected
waves with both co-polarization and cross-polarization, which limited the accuracy of such
a comparison.
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4. Numerical Results
4.1. Absorber Analysis

The first analysis to be performed was whether the proposed absorber should be
considered a metamaterial or an FSS, according to the definitions presented in Section 2.
Consider the periodicity of the cell p = 17 mm, or in terms of the wavelength at the operating
frequency (3.05 GHz), 0.1729λ. Thus, the periodicity of the absorber was much smaller
than the wavelength and met the periodicity requirement of a metamaterial. Furthermore,
the thickness of the absorber was 0.0244λ, which meant its thickness was also much smaller
than the wavelength. Based on these considerations, this absorber could be considered a
metasurface, a 2D version of a metamaterial, since its dimensions were subwavelength,
unlike an FSS, whose design frequency was directly associated with the electrical length of
the structure.

To analyze the behavior of the designed structure, simulations were conducted using
the HFSS software environment. The simulation template was adjusted to achieve the
desired parameters. After constructing the 3D model of the proposed structure, boundary
conditions for the unit cell were incorporated to simulate a periodic arrangement. The
boundary conditions, illustrated in Figure 5, included a waveguide port along the z-axis for
the incidence of the plane wave. Regarding the boundary conditions, two methods were
used to achieve periodicity. The combination of perfect electric (PE) and perfect magnetic
(PM) boundary conditions simulated periodic boundaries by leveraging the symmetry of
the metamaterial through repeated unit cell placement [31]. In addition to these perfect
boundary conditions, HFSS provided master–slave boundary conditions to implement
periodicity. In this setup, the conditions applied at the master boundary were replicated
on the slave boundary, creating an infinitely repeating pattern. While both approaches
were effective for cubic unit cells, master–slave boundary conditions also handled complex
polygonal structures well [38]. For the unit cell analysis presented, master–slave boundary
conditions were employed, as illustrated in Figure 5.
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Subsequently, the structure was simulated, and the results of the absorptivity in the ab-
sorber configuration for the TE and TM modes are depicted in Figures 6 and 7, respectively.
The absorptivity curves for normal incidence of the EM wave and variation of the polariza-
tion angle are shown in Figures 6a and 7a. In this study, the E and H fields were rotated in
φ. The figures show that there was no change in the absorption coefficient. For oblique
angles of incidence, the absorptivity showed little variation, even for large incident angles,
indicating that the proposed structure was insensitive to polarization. The absorptivity as a
function of the oblique angle of incidence is shown in Figures 6b and 7b. As noted, as the
angle of incidence increased, the absorption peak remained almost unchanged for angles
of incidence up to 60◦, which showed wide-angle stability.
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To analyze the absorption performance, the theory of the effective medium [39,40]
could be used since the metasurface was a periodic structure of subwavelength. Therefore,
the absorption rate could be calculated by the following equations [41]:

A(ω) = 1 − R(ω) − T(ω), (5)

where, ω represents the angular frequency, and R(ω) = |ryy|2 + |rxy|2 and T(ω) = |tyy|2 +
|txy|2 denote the reflectivity and transmissivity components, respectively. Here, ryy = Eyr/Eyi
and rxy = Exr/Eyi represent the co-polarization and cross-polarization components, respec-
tively. Due to the presence of the lower metallic backplate, T(ω) tended to approach zero.

The absorption performance of the metasurface is illustrated in Figure 8. It can be
observed that ryy and rxy caused reflections below −10 dB within the frequency ranges of
3.02 to 3.08 GHz and 4.38 to 4.69 GHz, respectively. While the transmission remained close
to zero in the lower frequency range, its value increased at higher frequencies. Consequently,
an absorption peak was observed at 3.05 GHz, with an absorption rate of 97%.

To gain a deeper understanding of the absorption mechanism of the proposed metama-
terial, surface current distributions at the top and ground plane at the absorption frequency
of 3.05 GHz were plotted, as depicted in Figure 9. This graph was essential for confirm-
ing the presence of electric and magnetic dipoles, which contributed to the electrical and
magnetic resonance responses, respectively. Comparing the top layer with the ground
plane, it was evident that the surface current intensity on the ground plane was weaker.
This decrease in intensity was due to the attenuation of the incident wave as it propagated
through the structure. Additionally, antiparallel currents could be observed, resulting in
the circulation of current perpendicular to the applied magnetic field within the structure,
thereby exciting a magnetic dipole. Consequently, a magnetic resonance was identified at
3.05 GHz.
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While surface current density graphs were effective in indicating the presence of mag-
netic and/or electrical resonance in the absorber, they alone were insufficient to determine
whether the proposed structure was primarily driven by an electric and/or magnetic field.
To overcome this limitation, we utilized the single-layer effective medium (SLEM) model,
a common approach in the existing literature [41–43]. Although our absorber comprised
three layers, as detailed in Section 2, employing the SLEM model allowed us to interpret it
as a single layer of homogeneous medium. This layer was characterized by its effective
relative permittivity (ϵef f ), permeability (µef f ), and normalized input impedance (Zef f ).

Figure 10 illustrates the simulated normalized input impedance Zef f . Here, the real
part of Zef f hovered around unity, while the imaginary part approached zero at the ab-
sorption peak. This configuration minimized reflection and maximized absorptivity, as
described by Equation (3). This behavior stemmed from the reflection coefficient equation,
Γ = (Zef f − 1)/(Zef f + 1).

Moreover, Table 1 provides the real and imaginary parts of the impedance for the
metamaterial absorber (MMA) at 3.05 GHz, obtained using the SLEM model. Additionally,
Figure 11a,b depicts the real and imaginary parts of µef f and ϵef f , respectively.

Table 1. Constitutive electromagnetic parameters of the proposed metasurface absorber.

Frequency (GHz)
Real Part Imaginary Part

ϵef f µef f Zef f ϵef f µef f Zef f

3.05 0.598 3.473 0.8891 16.71 12.91 −0.0968
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effective permittivity ϵef f .

In the frequency range from 3.00 GHz to 4.5 GHz, a magnetic response was evident,
as indicated by the variation from negative to positive values of the real part of µef f
(Figure 11a). Conversely, no significant variation was observed in the real part of ϵef f
(Figure 11b), indicating the absence of an electrical response. This result corroborated the
analysis conducted based on surface currents.

Understanding the influence of the absorber’s main components on the absorption of
the incident electromagnetic wave was crucial. Therefore, the absorptivity of the proposed
structure was calculated, considering a substrate and dielectric superstrate without losses.
However, it is important to note that a loss tangent of tanδ = 0.025 was utilized in the project.
The analysis revealed that absorption primarily occurred within the substrate, as evidenced
by the low absorptivity level, less than 40%, for the substrate without losses at the main
absorption frequency (Figure 12). This underscored the significant role played by the loss
tangent of FR-4 in absorption.
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Figure 12. Comparison of absorptivity between an absorbing structure with substrate and superstrate
with and without losses.

As expected, most of the incident wave was absorbed within the substrate. Figure 13
illustrates the performance of the proposed absorber as a function of the substrate loss
tangent. It is evident that absorptivity increased rapidly from tanδ = 0 to approximately
tanδ = 0.025, reaching a maximum value of 98%. However, for high loss values, the
absorptivity decreased exponentially, dropping below 50%. Thus, it could be concluded
that a higher value of tanδ did not necessarily lead to greater absorption, as it could affect
the input impedance of the absorber, resulting in significant energy reflection.
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Figure 13. Variation of absorptivity in relation to loss tangent.

Figure 14 illustrates the distribution of the electric field in the structure, assuming
an electromagnetic wave with normal incidence in the x-direction. The electric field
was predominantly concentrated at the edges of the cell, indicating a strong electrical
coupling between adjacent elements. This observation suggested the presence of magnetic
resonances within the structure.
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4.2. Polarization Converter Analysis

Thus far, the designed structure has demonstrated capabilities as an absorber and trans-
mitter. However, the objective was to optimize the structure to accommodate additional
functionalities. By breaking the symmetry of the resonators, the proposed metasurface
could also serve as a polarization converter. When symmetry breaking occurred, the co-
polarized reflection component remained low over a wider frequency range, while the
cross-polarized reflection component became significantly higher. Consequently, structures
with asymmetric resonators exhibited lower absorption levels. The integration of PIN
diodes completed the functionality of the structure. When the PIN diode was in the on
state, symmetry was maintained, and the structure behaved as an absorber. Conversely,
when the PIN diode was in the off state, the symmetry of the array was broken, causing the
structure to function as a polarization converter. A detailed analysis of this phenomenon
will be presented later.

To understand the response of the metasurface conversion and cross-polarization
mechanism, the incident electromagnetic wave, polarized along the y-axis, could be decom-
posed into two components, u and v, forming an angle of ±45◦ relative to the y-axis, as
depicted in Figure 15.
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Figure 15. Proposed structure with incident and reflected electric field decomposed into u and v for
conversion of polarization y to x.

Numerical simulations of the unit cell were conducted with plane wave incidence,
considering polarization along the u and v axes. The results, shown in Figure 16, revealed
a phase difference of approximately 180◦ between the u and v components from 4.24 to
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4.45 GHz. This indicated that the metasurface met the conditions for cross-polarization,
suggesting efficient polarization conversion within this frequency range.
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To demonstrate the efficient polarization conversion capability of the proposed meta-
surface, we calculated the polarization conversion ratio (PCR) for an incident wave polar-
ized along the y-axis, defined as [44]

PCR =

∣∣rxy
∣∣2∣∣ryy

∣∣2 + ∣∣rxy
∣∣2 , (6)

The results are shown in Figure 16, where the phase difference between the u and v
components was approximately 180◦ from 4.24 to 4.45 GHz. In this sense, the metasurface
met the cross-polarization conditions, indicating the possibility of polarization conversion
in this frequency range. The arrows indicate what axis must be observed for each curve.

As shown in Figure 17, the PCR was greater than 90% in the frequency range 4.24–4.45 GHz,
which implied that the linear polarization was properly converted to its cross-polarization
waveform and that the device acted as an efficient linear polarization converter. The PCR
value at resonance points was 99.8%. We also investigated the PCR for oblique incidence.
The obtained results showed that the oblique incidence did not influence the polarization
conversion bandwidth.
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Also, as analyzed for the absorber, to better understand the conversion mechanism of
the proposed metamaterial, the surface current distributions at the top and ground plane
at the central conversion frequency of 4.3 GHz were plotted, as can be seen in Figure 18.
This graph was important to verify the presence of electric and magnetic dipoles, which
provided electrical and magnetic resonance responses. Analyzing the surface currents,
it was possible to note that the current densities were antiparallel, and thus, a magnetic
resonance was identified at 4.3 GHz.
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Figure 19 shows the distribution of the electric field in the structure, considering an
EM wave with normal incidence in x. The electric field was mainly in the turns and edges
where there were no gaps, and a strong electrical coupling between adjacent elements could
be observed, indicating the presence of magnetic resonances.
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4.3. Transmitter Analysis

In conversion mode, the structure also worked by performing transmission, which
can be calculated by [44]:

T =

√
|txx|2 +

∣∣txy
∣∣2 (7)
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By applying Equation (5) and varying the loss tangent and substrate size (h1), we
obtained the graphs shown in Figures 20 and 21. The ideal frequency for transmission
was 4.5 GHz. It was observed that transmission reached its peak for the case of a lossless
structure. However, to fulfill all functions of the structure (including absorption and
conversion), a loss tangent of 0.025 was utilized, maintaining transmission above 80%, as
depicted in Figure 20. Similarly, when varying the thickness of the substrate, transmission
exhibited minimal variations, as illustrated in Figure 21.

Figure 20. Transmission versus frequency with variation in loss tangent.

Figure 21. Transmission versus frequency with varying substrate thickness.

4.4. Comparison of Results with Previous Work

In Table 2, a series of recent studies related to metasurfaces are presented and were
selected due to their functions being similar to those of the structure designed in this work.
For the analysis, factors such as functions, number of layers, number of subresonators in
the unit cell, absorption frequency, and the relationships between thickness and periodicity
with wavelength were considered.

According to the comparison presented in Table 2, a clear improvement could be
observed, indicating that the design of this work surpassed previously reported designs by
one or more of the mentioned parameters.
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Table 2. Comparison of results with previous work.

Ref. Functions Number of
Layers

Number of
Resonators in the

Unit Cell

Operating
Frequencies

[GHz]

Cell
Thickness/λ Periodicity/λ Technique

[17] Absorption
Conversion 5 2 15.0

17.00 165.25 0.5000 PIN Diode
and Layers

[18] Absorption
Conversion 5 2 2.56 to 7.62

2.97 to 6.03 16.4617 0.2048 PIN Diode

[19] Absorption
Conversion 3 4 5.40 85.9489 0.2883 PIN Diode

[20] Absorption
Conversion 5 3 6.10

7.80 to 11.90 83.4689 0.3050 Layers

[11] Absorption
Conversion 3 5 3.90

4.60 and 5.00 26.9180 0.3186 Flexible
substrate

[21] Absorption
Conversion 4 3 6.50 to 9.30

12.7 to 17.2 88.256 0.368 Resistor

[22] Absorption
Conversion 4 2 5.80 to 9.40

16.10 to 16.90 78.686 0.1933 Water-based
resonator

[19] Absorption
Conversion 3 4 5.40 59.919 0.2883 PIN Diode

[23]

Multiband
and multi-
functional

polarization
converter

3 3

15.50 to 16.50
16.00
13.00
18.00

106.950 0.3100 Asymmetric
metasurface

[24]

Absorption
and cross-

polarization
conversion

6 2 16.50 to 24.00
4.38 to 11.90 85.702 0.2394 Water-based

resonator

This
work

Absorption
Conversion

Transmission
4 4

3.05
4.37
4.50

33.2452 0.1728 PIN Diode

5. Discussion

This study developed a multifunctional structure capable of functioning as an absorber,
transmitter, and polarization converter. The designed structure comprised a series of
double square resonators arranged on a dielectric substrate. To selectively reflect only
the frequencies of interest, the complete ground plane was replaced by a periodic array,
resulting in an absorber configuration. Furthermore, by breaking the symmetry of the
structure, it functioned as a polarization converter. The structure design and comprehensive
analysis of absorption, transmission, and polarization conversion were conducted using
HFSS software. The key features of the structure include its simple design, compact
size, and multifunctional operation, enabling absorption, polarization conversion, and
transmission across different frequency bands.

The multifunctionality of the structure was achieved through the asymmetry and
breaking of symmetry of the resonators, facilitated by the use of a PIN diode. Simulation
results demonstrated an absorption rate exceeding 97% at a frequency of 3.05 GHz, a
polarization conversion ratio exceeding 98% at 4.37 GHz, and transmission within the
frequency range of 4.5 GHz. The absorption function exhibited a bandwidth of 60 MHz,
while the polarization conversion function achieved a bandwidth of 210 MHz. Leveraging
impedance matching characteristics, ohmic loss at low frequencies, and strong electromag-
netic resonance at high frequencies, the proposed structure seamlessly integrated the triple
function of absorption and polarization conversion.
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As a future direction, efforts will focus on increasing the bandwidth for polarization
conversion, as well as constructing and validating a prototype.
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