Quick-Delivery Mold Fabricated via Stereolithography to Enhance Manufacturing Efficiency
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Tensile Test
2.3. Differential Scanning Calorimeter (DSC) Analysis
2.4. Thermomechanical Analyzer (TMA) Analysis
2.5. Injection Molding Test
3. Results and Discussion
3.1. Mechanical Properties Before and After Heat Treatment
3.2. DSC Analysis Before and After Heat Treatment
3.3. TMA Analysis Before and After Heat Treatment
3.4. Injection Molding Test of SLA Mold
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendible, G.A.; Rulander, J.A.; Johnston, S.P. Comparative study of rapid and conventional tooling for plastics injection molding. Rapid Prototyp. J. 2017, 23, 344–352. [Google Scholar] [CrossRef]
- Surace, R.; Basile, V.; Bellantone, V.; Modica, F.; Fassi, I. Micro injection molding of thin cavities using stereolithography for mold fabrication. Polymers 2021, 13, 1848. [Google Scholar] [CrossRef]
- Ma, H.; Fang, X.; Yin, S.; Li, T.; Zhou, C.; Jiang, X.; Yang, D.; Yin, J.; Liu, Q.; Zuo, R. Preparation and characteristics of honeycomb mullite ceramics with controllable structure by stereolithography 3D printing and in-situ synthesis. Ceram. Int. 2024, 50, 3176–3186. [Google Scholar] [CrossRef]
- Ge, Q.; Li, Z.; Wang, Z.; Kowsari, K.; Zhang, W.; He, X.; Zhou, J.; Fang, N.X. Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2020, 2, 022004. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.S.; Zheng, W.; Wu, J.M.; Yan, C.Z.; Shi, Y.S. Effects of particle size distribution and sintering temperature on properties of alumina mold material prepared by stereolithography. Ceram. Int. 2022, 48, 6069–6077. [Google Scholar] [CrossRef]
- Jnr, M.H.; Gunbay, S.; Hayes, C.; Moritz, V.F.; Fuenmayor, E.; Lyons, J.G.; Devine, D.M. Stereolithography (SLA) utilised to print injection mould tooling in order to evaluate thermal and mechanical properties of commercial polypropylene. Procedia Manuf. 2021, 55, 205–212. [Google Scholar]
- Guevara-Morales, A.; Figueroa-López, U. Residual stresses in injection molded products. J. Mater. Sci. 2014, 49, 4399–4415. [Google Scholar] [CrossRef]
- Riccio, C.; Civera, M.; Grimaldo Ruiz, O.; Pedullà, P.; Rodriguez Reinoso, M.; Tommasi, G.; Vollaro, M.; Burgio, V.; Surace, C. Effects of curing on photosensitive resins in SLA additive manufacturing. Appl. Mech. 2021, 2, 942–955. [Google Scholar] [CrossRef]
- Miedzińska, D.; Gieleta, R.; Popławski, A. Experimental study on influence of curing time on strength behavior of SLA-printed samples loaded with different strain rates. Materials 2020, 13, 5825. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Felipe, C.; Patrocinio, D.; Laza, J.M.; Ruiz-Rubio, L.; Vilas-Vilela, J.L. Evaluation of postcuring process on the thermal and mechanical properties of the Clear02™ resin used in stereolithography. Polym. Test. 2018, 72, 115–121. [Google Scholar] [CrossRef]
- Zirak, N.; Shirinbayan, M.; Benfriha, K.; Deligant, M.; Tcharkhtchi, A. Stereolithography of (meth) acrylate-based photocurable resin: Thermal and mechanical properties. J. Appl. Polym. Sci. 2022, 139, 52248. [Google Scholar] [CrossRef]
- Gheisari, R.; Bártolo, P.; Goddard, N.; Domingos, M.A.D.N. An experimental study to investigate the micro-stereolithography tools for micro injection molding. Rapid Prototyp. J. 2017, 23, 711–719. [Google Scholar] [CrossRef]
- Kampker, A.; Triebs, J.; Kawollek, S.; Ayvaz, P.; Beyer, T. Direct polymer additive tooling–effect of additive manufactured polymer tools on part material properties for injection moulding. Rapid Prototyp. J. 2019, 25, 1575–1584. [Google Scholar] [CrossRef]
- Krizsma, S.; Kovács, N.K.; Kovács, J.G.; Suplicz, A. In-situ monitoring of deformation in rapid prototyped injection molds. Addit. Manuf. 2021, 42, 102001. [Google Scholar] [CrossRef]
- Zhang, Y.; Pedersen, D.B.; Gøtje, A.S.; Mischkot, M.; Tosello, G. A Soft Tooling process chain employing Additive Manufacturing for injection molding of a 3D component with micro pillars. J. Manuf. Process. 2017, 27, 138–144. [Google Scholar] [CrossRef]
- ASTM Subcommittee D20; 10 on Mechanical Properties. “Standard Test Method for Tensile Properties of Plastics”. American Society for Testing and Materials: West Conshohocken, PA, USA, 1998.
- Shirinbayan, M.; Zirak, N.; Saddaoui, O.; Mammeri, A.; Azzouz, K.; Benfriha, K.; Tcharkhtchi, A.; Fitoussi, J. Effect of build orientation and post-curing of (meth) acrylate-based photocurable resin fabricated by stereolithography on the mechanical behavior from quasi-static to high strain rate loadings. Int. J. Adv. Manuf. Technol. 2022, 123, 1877–1887. [Google Scholar] [CrossRef]
- Bute, I.; Tarasovs, S.; Vidinejevs, S.; Vevere, L.; Sevcenko, J.; Aniskevich, A. Thermal properties of 3D printed products from the most common polymers. Int. J. Adv. Manuf. Technol. 2023, 124, 2739–2753. [Google Scholar] [CrossRef]
- Weng, Z.; Zhou, Y.; Lin, W.; Senthil, T.; Wu, L. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Compos. Part A Appl. Sci. Manuf. 2016, 88, 234–242. [Google Scholar] [CrossRef]
- Cingesar, I.K.; Marković, M.P.; Vrsaljko, D. Effect of post-processing conditions on polyacrylate materials used in stereolithography. Addit. Manuf. 2022, 55, 102813. [Google Scholar] [CrossRef]
Specimen | Degree of Cure |
---|---|
0.5 W | 91.14% |
Heat-treated 0.5 W at 80 °C | 96.43% |
Heat-treated 0.5 W at 100 °C | 98.16% |
Specimen | Tg | CTE (30~Tg ℃) |
---|---|---|
0.5 W | 58.53 °C | 100.1 ppm/℃ |
Heat-treated 0.5 W at 80 °C | 66.57 °C | 93.05 ppm/℃ |
Heat-treated 0.5 W at 100 °C | 72.71 °C | 77.95 ppm/℃ |
Specimen | ITS (First Heating/Cooling Cycle) | ITS (Isothermal Heating Process) |
---|---|---|
0.5 W | 0.83% | 1.06% |
Heat-treated 0.5 W at 80 °C | 0.53% | 0.62% |
Heat-treated 0.5 W at 100 °C | 0.23% | 0.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Park, S.; Lim, J.T.; Yoon, H.S.; Choi, J.W.; Ha, C.W.; Park, J. Quick-Delivery Mold Fabricated via Stereolithography to Enhance Manufacturing Efficiency. Micromachines 2024, 15, 1345. https://doi.org/10.3390/mi15111345
Lee JH, Park S, Lim JT, Yoon HS, Choi JW, Ha CW, Park J. Quick-Delivery Mold Fabricated via Stereolithography to Enhance Manufacturing Efficiency. Micromachines. 2024; 15(11):1345. https://doi.org/10.3390/mi15111345
Chicago/Turabian StyleLee, Jae Hyang, Seonghwan Park, Jeon Taik Lim, Hyung Sun Yoon, Jae Won Choi, Cheol Woo Ha, and Jiyong Park. 2024. "Quick-Delivery Mold Fabricated via Stereolithography to Enhance Manufacturing Efficiency" Micromachines 15, no. 11: 1345. https://doi.org/10.3390/mi15111345
APA StyleLee, J. H., Park, S., Lim, J. T., Yoon, H. S., Choi, J. W., Ha, C. W., & Park, J. (2024). Quick-Delivery Mold Fabricated via Stereolithography to Enhance Manufacturing Efficiency. Micromachines, 15(11), 1345. https://doi.org/10.3390/mi15111345