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Abstract: As a kind of long-term favorable device, the microelectromechanical system (MEMS)
sensor has become a powerful dominator in the detection applications of commercial and industrial
areas. There have been a series of mature solutions to address the possible issues in device design,
optimization, fabrication, and output processing. The recent involvement of neural networks (NNs)
has provided a new paradigm for the development of MEMS sensors and greatly accelerated the
research cycle of high-performance devices. In this paper, we present an overview of the progress,
applications, and prospects of NN methods in the development of MEMS sensors. The superiority of
leveraging NN methods in structural design, device fabrication, and output compensation/calibration
is reviewed and discussed to illustrate how NNs have reformed the development of MEMS sensors.
Relevant issues in the usage of NNs, such as available models, dataset construction, and parameter
optimization, are presented. Many application scenarios have demonstrated that NN methods can
enhance the speed of predicting device performance, rapidly generate device-on-demand solutions,
and establish more accurate calibration and compensation models. Along with the improvement in
research efficiency, there are also several critical challenges that need further exploration in this area.

Keywords: MEMS sensor; neural network; structural design; fabrication; compensation; calibration

1. Introduction

The sensor is one of the essential components of modern systems, which can pro-
vide abundant original data for information collection, strategic decisions, and intelligent
responses. With the evolution in recent decades, the MEMS sensor has taken up the pre-
dominant position in sensing devices [1]. This technology offers a compact and lightweight
solution for the measurement of physical, chemical, and biological parameters and has
found significant applications in consumer electronics, the automobile industry, IoT, health-
care, environment monitoring, etc. [2–5]. Considering the sensing mechanism, a series of
electrical parameters, including resistance, capacitance, inductance, and electric charge, are
often utilized as the medium to transform measurands into accessible digital/analog signals.
The vigorous development of the MEMS sensor in design, fabrication, and characterization
has become a significant booster for modern society.

In recent years, sophisticated applications have continuously pursued more and more
specific features from MEMS sensors, posing higher requirements for the construction
scheme. Consequently, conventional approaches often fall short of the capacity for rev-
olutionary improvement, necessitating the continuous proposal of innovative solutions.
Taking the piezoresistive pressure sensor as an example, the initial design utilized a flat
diaphragm to capture the fluid pressure [6,7]. However, as the measurement range de-
creased, the flat-diaphragm structure could not achieve a favorable compatibility between
sensitivity and linearity, failing to fully complete the low-pressure testing task. There-
fore, the researchers introduce grooves, bosses, peninsular beams, and paddles into the
diaphragm to produce stress concentration and partial stiffness in the diaphragm, which is
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anticipated when promoting sensitivity and diminishing nonlinearity [8–12]. Despite the
continuous technological innovations in sensor structure, the increased complexity also
causes great burdens in theoretical modeling, finite element simulation, and parameter
optimization [13,14]. In this scenario, the traditional approaches relying on experience
and iterative trial-and-error are becoming inefficient in the design and optimization of
advanced sensor structures [15].

The fabrication and characterization of MEMS sensors also face challenges from the
demand for high-end devices. It is necessary to enhance the processing capability for
realizing diverse tools and detecting capability to identify the possible defects in wafers or
devices. The enhancement of data quality in device characterization requires extra hard-
ware/software modules to achieve decoupling, noise reduction, and drift compensation.
The fulfilling of these tasks also depends on the high-precision models to describe the
involved interrelationships, specialized skills, significant efforts, and prolonged attempts.

As a result, there is a growing need for more efficient design, modeling, and optimiza-
tion techniques that can leverage the latest computational tools and algorithms to achieve
on-demand design/processing capabilities. The last decade has seen a surge in commercial
applications utilizing artificial intelligence (AI) technology, which has delivered ground-
breaking achievements that are revolutionizing the way we live [16,17]. The use of large
AI models will transform our approach to information search and generation [18,19]. As
the core components of current AI technology, the neural network (NN), with its excellent
regression and classification capabilities, has solved a multitude of issues in large-scale
data processing, pattern recognition, and performance prediction, becoming a powerful
computational tool in scientific research [20], medicine [21–23], agriculture [24–26], and
engineering [27–29]. Accordingly, the availability of computational resources, coupled
with the maturation of NN methods, has profoundly impacted the development of sensor
technology. NNs have offered new opportunities to address the challenges in developing
advanced MEMS sensors. Researchers have employed various neural network models
during the design phase to predict device performance, optimize structural dimensions,
and generate structural topology. The decoupling, compensation, and denoising of output
data also receive favorable promotions. These efforts have made significant contributions
to enhancing sensor performance, indicating the fact that NN has become a game changer
in MEMS sensor research.

Along with the emerging achievements in applying NN methods to the development
of MEMS sensors, several review works have been made and published, summarizing the
roles of NN in the development of photoelectric sensors [30], gas sensors [31,32], microwave
sensors [33,34], inertial sensor [35], and biosensors [36]. Some work has also discussed
the intelligentization of MEMS sensors triggered by the ability of intelligent methods to
obtain interested information from output datasets [37,38]. In the meantime, a few reviews
refer to the possible applications of NN in the design, calibration, or compensation of
MEMS sensors, and the perspective on future design paradigms is also discussed [39–41].
However, these papers have not provided a systematic and in-depth insight into the roles
played by NN technology throughout the entire development process of MEMS sensors,
and the latest studies have not been effectively demonstrated. This paper will successively
introduce the neural network technologies available in the design, manufacturing, and
output signal processing of MEMS sensors, focusing on the advantages of this new research
model. It should be noted that this paper mainly emphasizes the achievements pertinent to
sensor functionality and performance enhancement, and the works about further learning
from the processed output signals for certain applications are out of the scope.

In the following parts, this paper will be divided into three modules: the first module,
namely Section 2, provides a brief overview of the development of MEMS sensors and
compares the difference between traditional and NN-based developing approaches; the
second module sequentially discusses the application of NN methods in sensor design
(Section 3), fabrication (Section 4), and output processing (Section 5); the last part discusses
the challenges and prospects for this domain and provides a brief conclusion for this paper.
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2. Overview of the Development of MEMS Sensors

Over the past few decades, MEMS technology has opened new avenues in developing
high-performance sensors for various applications. MEMS sensors were first proposed
in the 1960s and progressively scaled up since the 1980s, following the research and
development in integrated circuit (IC) technology [42]. Additionally, their manufacturing
techniques also inherit the photolithography of ICs, and the MEMS sensors must adhere to
a boundary that the device structures can be defined and manufactured according to the
two-dimensional layouts. Taking the physical sensor as an example, the development of
MEMS sensors typically includes the following steps (as shown in the middle of Figure 1):

(1) Structural design, mainly including clarification of design requirement, selection of
sensing mechanism, design of sensing structure and arrangement of transducing elements.
Firstly, the desired dynamic and static criteria should be extracted from the applications.
Considering the form of the output signal, a proper sensing mechanism is then selected
from piezoresistive, capacitive, piezoelectric, or resonant ways. The design of the sensing
structure should consider the required dynamic (e.g., resonant frequency, bandwidth) and
static (e.g., range, sensitivity, linearity, repeatability, etc.) performances [43]. Concerning
the working mode of different sensing mechanisms, fundamental structural elements (e.g.,
beam, membrane, plate, and block) are combined together with specific dimensions and
locations to effectively capture the targets, where the manufacturability should be treated
as the foundation [44]. Lastly, the transducing elements, e.g., piezoresistor, capacitor,
piezoelectric element, and resonator, are introduced to fulfill the conversion of mechanical
parameters in the sensing structure to the output signals of the sensor [45–47].

(2) Device fabrication. Adhering to the guidelines, the process procedure for fabrica-
tion is determined with mask layouts for photolithography and the main parameters for
implementation. The sensor chip is micromachined by several processes and packaged
after necessary wafer-level and device-level quality inspections [48].

(3) Device test. It is the final step before the sensor reaches the retail shelf, which mainly
conducts the output compensation and calibration. A comprehensive characterization of
the sensor prototypes is conducted to ascertain their dynamic and static parameters and
compensation strategies are proposed to mitigate the output drifts induced by noise,
temperature, and humidity. Thereby, a serviceable and robust sensor product is ready
for listing.
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As shown in the upper part of Figure 1, the conventional heuristic approaches for
sensor design can be regarded as a trial-and-error matter, which largely depends on the
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knowledge, experience, and available tools and often requires a significant investment of
time and resources [49]. Researchers first generate a possible concept with their personal
knowledge and validate its features through mathematical or statistical methods to adjust
the topology and dimensions. Some optimization methods, such as particle swarm opti-
mization (PSO) [50,51], genetic algorithm (GA) [52,53], and gradient-based methods [54],
are utilized to accelerate the design process. During this, inappropriate solutions are con-
tinuously identified and discarded, and a significant amount of time and resources are
consumed in the pursuit of optimized solutions. Moreover, the initial unsuitable scheme
induced by the understanding limitation will further worsen the situation. In the fabrica-
tion of MEMS sensors, the determination of process parameters requires a combination
of empirical and accompanying wafer validation. For the pivotal and difficulty steps, a
pre-fabrication verification for procedure and parameter refinements is more critical. The
detection of fabrication defects also requires the investment of manpower. The calibration
and compensation of MEMS sensors mainly depend on the pre-established empirical model,
and the feature parameters are derived and modified from the combination of this model
and experimental results. Obviously, the deviation of empirical model can significantly
impair the processing performance, which is also a difficult work for the conventional treat-
ments. Furthermore, the illustration merely depicts a single iteration within the research
cycle. It is likely that numerous full-cycle validations are necessary throughout the MEMS
sensor development process to culminate in the final product. Despite rapid progress has
been made in the development of MEMS sensors, great challenges still lie in conventional
researching methods. New developing approaches are critically needed to fulfill the task of
providing schemes on-demand.

The introduction of NN methods in recent years provides a practical path for acceler-
ating the development and improving the performance (down in Figure 1). Benefiting from
the capability to learn and extract high-level features from large-scale data, the NN methods
can obtain convoluted correlations between various parameters to lead researchers toward
the optimized goals in sensor development. These advantages are being demonstrated in
the development of MEMS sensors. Researchers can use trained neural networks to predict
the design performance of a device configuration, and a practical structural solution can
also be generated in real-time according to the required performance; defects in the fabri-
cation can be identified through machine vision methods; the interference information in
output signals can also be effectively identified and separated, thereby establishing a more
accurate model to describe the correspondence between input measurands and output
signals. The NN methods have presented an important opportunity for researchers to think
with a more powerful and unconstrained style about the entity and data of MEMS sensors.
It should be noted that AI is about creating machines or systems capable of performing
tasks that typically require human intelligence, encompassing a wide range of content and
technologies. This article primarily focuses on the application of learning technologies
based on neural networks in the development of MEMS sensors, and the benefits of com-
bining other intelligent methods are also mentioned. The following sections will provide
detailed descriptions of the NN methods in the development of MEMS sensors.

3. NN Methods in the Design of MEMS Sensors

The structural design of MEMS sensors mainly focuses on the sensing structure and
accompanying transduction elements. Generally, the arrangement of transduction elements
is determined after choosing the proper sensing mechanism and structural configuration,
which is commonly finished through a routine procedure. Thus, the design of the sens-
ing structure will be expressed in detail, dealing with the issues in structural geometry
and dimension.

3.1. NN Methods in Dimension Optimization

Ideally, the NNs in dimension optimization can be regarded as a generator to quickly
produce size parameters that can meet the measuring requirements. This work can be
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divided into four steps: (1) the key performances and target dimensions are clarified; (2) a
dataset, containing the correlation between performances and dimensions, is established for
NN training, validation, and test; (3) a proper NN model is constructed, trained and tested
to map the correlations in dataset and predict the device performance under a certain size
combination; (4) the trained NN plays the function of generator to quickly provide practical
dimensions according to the required performance. It is not necessary to fully execute all
these operations in every design, and the role of NNs also varies within different works.

The disk MEMS resonator (DMR) in Figure 2a is taken as an example to show the
operation of establishing a dimension–performance model using the NN method [55]. Six
structural parameters, including structural thickness H, anchor radius r, ring number N,
ring thickness Rw, ring gap G, and spoke width Sw, feature a complicated correlation with
the four core performance indicators, including fundamental frequency f 0, quality factor Q,
mechanical sensitivity S, mechanical thermal noise Ω. Figure 2b shows the process of using
a multilayer perceptron neural network (MLPNN) to correlate the structural parameters
and performance indicators. Firstly, DMRs with random dimensions are produced by
an automatic generator and then passed to the finite element analysis (FEA) tool for
characteristic simulation. A dataset with 4000 groups of correlating data is produced,
among which 3200 sets are randomly chosen as the training set, and the remaining 800 sets
are for testing. In the training phase, the dimensional parameters of MDRs are treated
as the input, and the corresponding performance indicators are treated as the output.
After a 516 min training on GPU (NVIDIA GeForce GTX 1660Ti, Santa Clara, CA, USA),
a predicting model for the performances under different dimensions is obtained with an
error <6% (compared to the FEA results). In terms of predicting speed, the NN method
only consumes 1/15,000 of FEA time (0.033 min vs. 496 min for 200 samples). Although a
certain amount of time is consumed by the preparation of datasets, the NN methods for
DMR prediction still exhibit significant advantages to support the requirements of design
on-demand. Similarly, the back propagation neural network (BPNN) can also implement
the abovementioned modeling, and the speed is several orders of magnitude faster than
FEA with a regression accuracy ≥96% [56].
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Figure 2. The disk MEMS resonator for dimensional optimization with NN method: (a) the structural
diagram (up) and target dimensions (down), (b) the architecture and operating process of simulation
analyzer based on MLPNN. Reproduced under the terms and conditions of the Creative Commons
Attribution license of [55].

Then, it is necessary to fully leverage the obtained NN-based correlation models to op-
timize the structural dimensions according to the required performances. Herein, a simple
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scheme uses the trained NN model as a part of the optimization to replace the theoretical
functions or FEA in conventional methods. Fei’s group has conducted a series of optimizing
works for piezoelectric ultrasonic transducers with the help of NN methods, whose typical
procedure can be shown in Figure 3 [57–59]. Firstly, the performance indicators, such as the
electromechanical coupling coefficient, center frequency, bandwidth, and pulse width, are
correlated to the core dimensions by NN. Then, an optimization algorithm (e.g., PSO) is
conducted based on the preset multi-objective optimality criteria, where the NN is used to
evaluate the deviation between iteration results and desired ones. The validating results
demonstrate that the performance parameters from the developed strategy are in good
agreement with FEA and experimental ones. Moreover, the GA algorithm can be utilized
to set the initial weights of the NN model to enhance its convergence toward the global
optimal solution [58].
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However, the NNs in these abovementioned works still do not function as a dimension
generator, which can directly produce dimensions according to the input performances
(namely, the reverse model of these predictive ones). This proposal may suffer from the
issue that a certain performance can be achieved by different dimensions, which may bring
out the one-to-many mapping non-uniqueness problem in the training of reverse NNs and
make them converge with a large error [60,61]. To address this issue, Zhang et al. merge
a forward prediction model with a reverse generation model to create a tandem network
that can rapidly output the corresponding geometries for the sensing diaphragm in MEMS
capacitive pressure sensors [62]. As shown in Figure 4, the tandem network uses a reverse
network to map from performances to size and a forward network to map from size to
performances, and the output of the reverse network is subsequently input to the latter.
The forward network is independently trained based on the FEA dataset. The weights of
the reverse network are then updated according to the deviation between its inputs and
the performance predicted by the forward network with the dimensions from the reverse
network. After necessary validation and testing, the whole tandem network can fulfill
the function of the dimension generator. In the task for a square sensing diaphragm, the
tandem network can achieve an error of 7.05 × 10−6 after 9.2 × 103 epochs in the measuring
range, sensitivity, and linearity. In contrast, the error of a single inverse network can be up
to 3.71 × 10−2, demonstrating the superiority of this new network model. Additionally,
FEA results show that the generated diaphragm can achieve all these target performances
with an error of <0.91%. Considering the generating speed, the time required by a tandem
network is only 3 ms, while the time consumed by traditional FEM can be up to 103 s. This
tandem network approach features high accuracy and versatility, high design efficiency,
and low computational cost.
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3.2. NN Methods in Geometrical Design

The application of NN methods in geometrical design for MEMS sensors can be a
more promising frontier work. Traditional geometrical design often employs evolutionary
iteration or topology optimization methods to generate structural solutions that can meet
a certain performance requirement [63,64]. These tasks often require extensive iterative
calculations or demand specialized expertise, posing a significant burden for the designers.
In the meantime, many of their results cannot be well compatible with the operating and
micromachining mechanisms of MEMS sensors [54,65–69]. These situations provide a
strong motivation for applying NN methods in the geometrical design of MEMS sensors,
but the implementations are much more complicated than the works for dimension.

Lin’s group from UC Berkeley has constructed a practical approach for generating
MEMS geometries with NNs, and several validations on MEMS resonators have been
conducted. Similar to the dimensional issues, the first work is to determine the correlation
between structural configuration and device performance. Inspired by the fact that MEMS
devices are mostly manufactured based on two-dimensional patterns, 100 × 100 pixelated
binary 2D images are used to represent the resonator body, where the black portions for
the solid structures with a preset thickness and white portions for voids. An effective
depth-first search algorithm is built to generate the geometries and guarantee continuity.
The candidate images are sent to FEA for the variables of interest. Then, a ResNet model is
utilized to connect the labeled FEA results with input 2D images. The structures of the used
strategy can be found in Figure 5. Taking the circular disk resonator, for instance, the ResNet,
after a 300 min training, can predict the first four resonant frequencies of 1000 candidates
within 0.18 min, which is 4000 times faster than FEA with an accuracy >95% [70,71]. This
predicting work provides a foundation for the subsequent generation toward specific
design goals.
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Furthermore, some iterative methods are combined with the pixelated binary 2D
images. For instance, GA can progressively alter the black-and-white status of certain
areas to pursue a new configuration for the target MEMS device. This method has been
used in the design of weakly coupled resonators, and the obtained final coupling factors
are lower than 98% of the initial random designs within 200 generations [72]. In the case
study of circular-shaped MEMS resonators, a conditional generative adversarial network
(CGAN) is used to fulfill the systematic MEMS structure design task [73]. The generator
G and discriminator D form a standard GAN and are updated alternately to ensure the
geometrical similarities between training samples and newly generated candidates. The
predictor Q is a pre-trained network that maps the geometries with physical properties. G
generates the geometry candidate, and D provides the vector that indicates the geometrical
validity of the structure. Based on the distinguishing results between the original dataset
and newly generated ones, the network weights of both G and D are updated and frozen
after sufficient iterations. A favorable generation accuracy for the four resonant frequencies
can be obtained within the range without boundary outliers. Obviously, with the help of
pixelated binary 2D images, a NN-based predictive model, and an outstanding generation
strategy, high-accuracy design generations and experience-free design space explorations
are demonstrated.

A bidirectional neural network is also used in the design of structural geometry. Cao
et al. presented an approach for both forward performance prediction and inverse struc-
tural design based on a symmetric bidirectional neural network (SBNN) scheme, and a
fiber optic vibration sensor was chosen as a design example [21]. A square diaphragm
with various through holes (no holes in the center) is used to sense the acceleration, and
its deflection triggered by accelerations will change the F-P cavity length to produce a
corresponding output signal. Determining the diaphragm size and arranging the holes is
the core task in the design work. The hole parameters are defined by a two-dimensional
10 × 10 2D matrix, where the position of numbers represents the location, and the mag-
nitude represents the diameter (three for no holes and zero to two for holes defined by
preset control strategies). In the forward prediction, a convolutional neural network (CNN)
is firstly exploited to splice together the design parameters (namely 2D matrix, length,
and thickness of diaphragm) and unidimensional performance parameters (characteristic
frequency, sensitivity, and accompanying structural stress), whose dataset is built by sim-
ulating 10,000 randomly generated diaphragms. Then, the correlation between the two
groups of parameters is mapped by an MLP-NN. In the structural design phase, the model
above is symmetrically reversed to produce the inverse design network. In order to avoid
the one-to-many problem, the inverse and forward networks are sequentially connected
to form the SBNN. In the training, a tandem strategy is used, and the loss function is set
as the mean square error between the initially input performances and forward predicted
performances. The network can produce a suitable structure in 7.1 s with an accuracy of
96.2%, which saves 21.1× computational time compared to FEA methods.

3.3. Discussions on the Design Works

The NN methods have achieved favorable results in the generation of dimension
and geometry for MEMS sensors, and the obtained structural schemes can fulfill the
preset performances. These works often begin with the establishment of a labeled dataset
through FEA, and the NNs are then trained to adapt the correlations between structure and
performances. The available solutions are then produced by optimization algorithms or
inverse networks. However, there are still several issues with the use of NN methods in
designing MEMS sensors.

(1) The design work requires a labeled dataset that correlates the structural parameters
and performance parameters. Currently, the available datasets are built through extensive
finite element simulations. This process consumes a significant number of computational
time and resources. At the same time, the coverage of the dataset is also affected by the
simulation models, which may make the network trapped in local optimal solutions and
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lose its convergence. To improve the coverage, Sui et al. transfer the ability of humans
to learn from a trial-and-error process to intelligent structural design [74]. After the
establishment of performance predictors with supervised learning, deep neural networks
are leveraged to constitute new designs to explore the design space efficiently through a
step-by-step, trial-and-error manner, achieving a high generation accuracy of 97.7% based
on prespecified targeted properties. However, there is still no appropriate method to
address the issues in the construction of a FEA-based dataset, and further foundational
investigation is needed.

(2) The treated parameters are limited. As the involved parameters increase, the
workload from FEA also significantly increases. It is necessary to define the structure with
fewer parameters, and the 2D-pixel models are utilized. The NN-generated structures often
feature a dispersed, varied geometry and constant thickness. Inherently, the generation of
more diverse configurations is still hindered by the limitation of treating more parameters.

(3) About the generalization of neural networks. Current design works usually fo-
cus on a specific object, and the specialization increases synchronously with the design
results [75]. When the object changes, the entire process of modeling, FEA, and network
training needs to be re-executed. More substantial datasets and innovated processing
methods are urgently needed to achieve the more powerful AIGC-like tools.

4. NN Methods in the Fabrication of MEMS Sensors

The fabrication of MEMS sensors mainly involves determining the processes and
relevant parameters, producing the mask layouts, chip micromachining, checking, and
packaging. The established procedures and accumulated experiences in various institutions
provide significant support for manufacturing. Inspired by the achievements of AI, several
researchers are attempting to address the issues in sensor fabrication with neural network-
based methods.

4.1. NN Methods in the Determination of Mask Layout and Fabrication Process

In the production of mask layout and fabrication process, Erik K. Antonsson’s group
introduces the evolutionary algorithms to automatically fulfill this task [76,77]. A randomly
generated initial mask layout and process flow are input into the simulation software, and
the obtained processing pattern is then compared with the expected one. The parameters
in GA are updated according to the deviations until the simulated results well match the
expected structures. This approach has demonstrated its precision in the fabrication of
convex corner structures in backside wet etching. Subsequently, the surface processes
in MEMS devices are treated. The substrate, structural layer, and scarifying layer are
determined according to the desired device, and the mask layout and fabrication process
are then generated with the previous method [78–80]. Considering the common features in
this work, some dedicated design tools, such as PROMENADE, have been developed and
productized [81]. However, most of these mentioned works were finished before 2010, and
the used proposals have not yet capitalized on the recent advancements in NN technology.

4.2. NN Methods in the Detection of Fabrication Defects

The ability to accurately detect possible defects plays an essential role in the reliability
evaluation of MEMS sensors. Along with the utilization of NN methods in pictures, defect
detection in the micromachined wafers or packaged chips is also gradually conducted.
Deng et al. proposed a CNN-based method for detecting the defects in the packaging
process of MEMS pressure sensors [82]. The training dataset contained pictures with five
kinds of defects, including chip scratch, chip damage, glue-surface wrinkle, broken gold-
wire bonding, and broken aluminum-wire bonding (Figure 6a). To address the issue of
insufficient datasets and uneven distribution of different defects, random-data augmen-
tation based on image scale, flip, and color gamut distortion was conducted (Figure 6b).
The obtained mean average precision can be 92.4% for the mentioned defects. Concerning
the situation where multiple defects coexist, Yoo et al. constructed a randomized general
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regression network [83] and applied a novel information gain-based splitter [84] to remove
random noise and reduce model bias during training. The detection accuracy can reach
99.8% for the individual defects and 86.17% for the multiple ones. Many similar works have
been reported in the following years, and several practical methods have been proposed
to augment the insufficient datasets [85–90]. However, the mentioned defect detection is
mostly oriented toward the ICs, and there is still an urgent demand on the work specifically
focused on the three-dimensional defects in MEMS sensors.
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In device fabrication, the potential variations in material properties can also impact
device performance. Employing suitable methods to ascertain the parameters of wafers
is very helpful in ensuring the performance of sensors. As shown in Figure 7, a two-scale
multi-physics deep learning model is proposed by combining CNN and MLP to provide
an accurate property-performance mapping for a polysilicon single-axis, resonant Lorentz
force MEMS magnetometer [91,92]. The CNN is firstly utilized to develop a regression
model for mapping the microscale features (e.g., topology and orientation of grains) with
the macroscale mechanical properties (e.g., Young’s Modulus) in polysilicon [93,94]. A set
of statistical volume elements (SVEs) is digitally generated and simulated for the labeled
dataset, which is augmented by proper rotations and flips. Then, a device-level model
is established based on the SVEs with a probability distribution of fabrication detects
for predicting the maximum oscillation amplitude of the clamped-clamped beam in the
magnetometer [95,96].
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4.3. Brief Discussion

Although neural network methods have shown certain application potentials in the
manufacturing of MEMS sensors, they have not yet become an essential approach. Possible
reasons include: (1) the generation of mask layout and process flows is already supported
by some commercial tools, and the results from NN also require researchers to review and
modify, leading to insufficient motivation in practical research and engineering. (2) Defect
detection is essentially an image feature extraction and recognition problem, and it mainly
depends on conventional image-treating methods. The related technologies are already
very mature, but the lack of sufficient valid datasets for MEMS sensors makes this work
not attractive enough to the relevant industries. (3) The lack of effective datasets also limits
the NN methods in predicting the impacts of materials and fabrication parameters, and
the large cost of constructing the datasets further worsens this situation. The solutions for
these issues require further development in MEMS manufacturing technology and effective
data accumulation.

5. NN Methods in the Calibration and Compensation of MEMS Sensors

Compensation and calibration are two critical issues when processing the output of
MEMS sensors. Compensation is a measure to address the fluctuation of sensor outputs due
to various environmental interferences. Appropriate compensation can help to maintain
the device’s stability and reliability under different conditions. In the meantime, calibration
can establish a relationship between output signals and input measurements, which is an
essential step before its application. The two aspects are also the most extensively involved
areas for neural network methods, which fully leverage the advantage of NN in learning
from a large amount of data.

5.1. NN Methods in Compensation

The output compensation mainly involves the removal of interference information
from the output sequences. Due to the diversity and impact-pattern complexity, it is a
significantly challenging work to accurately model them, making it quite difficult work to
finish high-precision compensation with conventional polynomial fitting ways [97–100].
Considering the capacity of NNs in processing large-volume data and discovering hidden
correlations, there have been a significant number of studies using NNs to compensate for
the outputs from MEMS sensors.

Temperature drift is the most encountered issue in the compensation of MEMS
sensors [101,102]. The work primarily relies on the experimental data collected at various
temperatures, which is requisite for training neural networks to identify the affecting pat-
terns of temperature and then remove its influences. Currently, the backpropagation neural
network (BPNN) and long short-term memory (LSTM) are two representative models.

BP neural network is a widely used multi-layer feedforward neural network that has
a strong adaptive capability to deal with complex, high-no-linear issues. The schematic dia-
gram for a basic BPNN is shown in Figure 8a, and more information about its principle can
be found in [103]. The typical procedure for using the BPNN in temperature compensation
can be found in Figure 8b. Zhang et al. utilize a three-layered BPNN in the temperature
compensation of a MEMS gyroscope, in which the network is trained with a dataset of
three signal groups with time-domain outputs and corresponding temperatures. In the
tested temperature of −20–20 ◦C, the forecast error variance for three axes is decreased
from 0.424, 0.3506, and 0.4335 (using the conventional least squares method) to 0.0758,
0.1024, and 0.1122, respectively [104]. In the meantime, Fontanella et al. compensate for
the drift of a three-axis gyroscope bias at the range of −24.4 ◦C to +40.8 ◦C and evaluate
the advantages of the BPNN method using the quaternion approach. The application of
the BPNN renders the MEMS gyroscopes with a longer time for keeping the flight attitude
accuracy above the requirements of current regulations [105,106]. A similar scheme is also
applied in the MEMS mass flow sensor [107]. Since the sensor measures the flow rate
according to the temperature changes detected by internal thermopiles, its output value is
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inevitably affected by variations in ambient temperature [42]. Consequently, the authors
input the testing results of 11 different flow rates at seven ambient temperatures to the
BPNN, and a non-linear mapping relationship between temperature and flow rate can
be established for compensation. Within the temperature of 0–60 ◦C, the relative error
is stabilized at 0.2558% after BPNN compensation, compared to a maximum of 1.1016%
after conventional polynomial fitting (the feature also continually varies with temperature).
These applications demonstrate the superior performance of the BPNN in characterizing
the impact of temperature drift and achieving temperature compensation.
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However, the application of the BPNN in temperature compensation still faces sev-
eral issues that need to be addressed. Firstly, the computation and data storage of the
BPNN require sufficient resources, making it challenging to deploy in low-resource mo-
bile embedded systems. Researchers have attempted to employ the B-spline method to
fit the model of a trained BP neural network [109]. According to the evaluating results,
the fitting method has reduced both computation time and data volume by more than
50%, and its compensation performance still surpasses those of polynomial fitting and
regression tree methods. Then, the BPNN often suffers from its low learning rate and
susceptibility to falling into local minimum [110]. Many efforts have been devoted to
optimizing the initial parameters of the BPNN across a broader range. GA is among the
commonly utilized methods [111]. Figure 8c shows a typical flowchart for the GA-BP in
the sensor temperature compensation. After setting the structure of the BPNN, GA acts to
globally optimize the weight and threshold of the BPNN before the training phase. This
approach has demonstrated its superior feasibility in many MEMS sensors, such as resonant
accelerometers [108], capacitive accelerometers [112], immune microwave sensors [113],
and piezoelectric weight sensors [114], realizing a higher convergence rate and compen-
sation accuracy. In the meantime, some variant searching algorithms also have played
desired roles in initializing the parameters of the BPNN [115–118]. Moreover, data-cleaning
methods (e.g., improved isolation forest algorithm) can help to remove the outliers in the
dataset and prevent possible influences from erroneous data [116].

Although the BPNN has achieved good compensation performances in various sen-
sors, the necessity of temperature information as one input parameter is not weakened.
Meanwhile, the temperature sensor cannot be installed on every occasion because of the
limitations of volume, technique, and cost. It is necessary to further strengthen the process-
ing capacity to compensate for the temperature drift without knowing the temperatures.
In the sensor outputs, the temperature interference and measurand-induced component
are time-domain signals, and their variation tendency can indicate the information about
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temperature changes. In other words, it is possible to find an appropriate method to
characterize the impact of temperature if the interference can be identified. As a continuous
neural network, the LSTM provides an available solution for this situation. The LSTM
network is a variant of RNN, which solves the problems of gradient disappearance and
gradient explosion when the RNN learns long sequences [119,120]. The LSTM has an
advantage in learning the time series volatility. Due to its unique design structure, the
LSTM is suitable for processing and predicting the sensor output in time series without
information on temperature interferences. A simple illustration of using the LSTM in the
temperature compensation of MEMS sensors is shown in Figure 9.
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Concerning the non-temperature circumstances, Cao et al. directly use the time-
domain outputs of fiber optic gyroscope (FOG) as a dataset for the LSTM to complete the
regression prediction of temperature error and eliminate the dependency on the temper-
ature sensor [122]. The output signals under heating, holding, and cooling states endow
the LSTM with a sufficient dataset. Compared with the other methods using temperature
information for prediction and compensation, the LSTM-based method achieves obvious
improvements in bias stability and Allan noise and reduces the complexity of the compen-
sation system. Similar to the BPNN, the temperature can also be a participant in the LSTM.
For instance, Jiang et al. utilize the normalized temperature vector as an input for the LSTM
to compensate for the temperature drift in the scale factor and bias of FOG [123]. Moreover,
the researchers attempt to introduce other algorithms, e.g., convolutional neural networks,
support vector machines, and sparrow search algorithm, into the LSTM to achieve better
noise classification and compensation [121,124–127].

In the output compensation of MEMS sensors, many neural networks are also
employed to treat random drift, humidity-induced drift, noise reduction, and system
errors [128–136]. Table 1 proposes a simple summary of the NN methods in the compen-
sation of MEMS sensors. Regardless of the used models, the compensation is basically
achieved by identifying the influence pattern of interferences on the key performances
(mainly bias and scale factor) of devices and then removing the interferences that conform
to this pattern. Additionally, the network training can be optimized by introducing other
optimizing algorithms to enhance the learning speed. The whole compensation still relies
on a vast amount of characterization results from extensive experiments, which can be a
burden in practical application and desiderates further explorations.
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Table 1. Summary of the NN models in sensor compensation.

NN Model Assisted
Algorithm Device Dataset Ref.

BPNN - Gyroscope Bias and T [104–106]
BPNN - Flow sensor Output and T [107]
BPNN GA Accelerometer Output and T [108]
BPNN B-spline Gyroscope Bias and T [109]
BPNN AGA Accelerometer Output and T [112]
BPNN GA Weight sensor Output and T [114]
BPNN Cuckoo search Pressure sensor Output and T [115]

BPNN IIF and ISSA Laser methane
sensor Output and T [116]

BPNN IFA Accelerometer Output and T [117]
LSTM - FOG Output [122]
LSTM - FOG Output and T [123]

LSTM+CNN PSO-SVM Gyroscope Bias and T [124]
Deep LSTM ISSA Accelerometer Bias and T [121]

LSTM SVM-DBN Gyroscope Output, T and T
CR [125]

LSTM - FOG Output and T CR [126]
GRNN EEMD Accelerometer Bias with error [130]

Deep BPNN SGD NO2 sensor Output, T and H [131]
Acronym list: AGA—adaptive genetic algorithm; IIF—improved isolation forest; ISSA—improved sparrow search
algorithm; IFA—improved firefly algorithm; SVM-support vector machine; DBN—depth belief network; EEMD
SGD—stochastic gradient descent; FOG—fiber optic gyroscope; T—temperature; CR-change rate; H-humidity.

5.2. NN Methods in Calibration

The input to a sensor is the to-be-measured parameter in the time domain, and the
output is a corresponding modulated signal. Sensor calibration is the process that discovers
the correlation between the sensor input and output, making it convenient for users to di-
rectly obtain the measurand information from the captured output. However, there is often
nonlinearity and complex patterns in the correlation, and the possible coupling induced
by multiple inputs can make the situation more serious. Therefore, conventional methods,
e.g., polynomial fitting, often fail to yield satisfactory calibration results. Therefore, the
NN method is frequently employed in the calibration of MEMS sensors to address the
complex correlations in large-scale data. Generally, the calibration process can be divided
into two main categories: inferring the measurand parameters and identifying/classifying
the measurand. In the network training, the sensor outputs usually serve as the network
input, while the expectant measured information can be obtained from the predicted output
of the network.

5.2.1. Inferring the Measurand Parameters

MEMS IMUs are cost-effective, self-contained, small-size, low-power devices used in
various motion tracking and sensing applications. However, the relatively low accuracy
and stability greatly hinder their actions on high-end occasions. It is necessary to propose
a high-performance calibrating method to adopt the precision inertial parameters from
these low-grade output signals, where NNs are greatly involved [137,138]. There are two
examples to show the advantages of utilizing NNs in the calibration of MEMS IMUs.
Firstly, the calibration can be directly conducted based on the original sensor outputs. Li
et al. proposed a lightweight and efficient deep convolutional neural network (DCNN),
called Calib-Net, for low-cost IMU calibration [139]. The temporal measurements of the
gyroscope and accelerometer are taken as the inputs, and the trained Calib-Net can output
a corresponding compensation part for angular velocity measurements, which will be used
to improve the test quality of angular velocity based on the intrinsic calibration matrix
of IMU (Figure 10). This scheme shows an obvious promotion in orientation estimation
and is comparable with the state-of-the-art visual inertial odometry methods. Then, the
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measurements of high-grade IMUs can be utilized as a participant in the calibration work.
Mahdi et al. propose an adaptive neuro-fuzzy inference system (ANFIS), a technique that
fusing the ANN and fuzzy inference system, to leverage the performance of low-grade
IMUs. In this work, the ANFIS is trained with the high-end IMU signals as output and the
low-grade IMU measurements as input. The results show that the RMSE of IMU signals is
obviously decreased by the new method, and an improvement of 70% in the 2D positioning
and of 92% in the 2D velocity of the INS solution were attained when compared with the
value from raw data. The NN-based method also plays its role in the calibration of single
MEMS accelerometers. Soriano et al. input the test values of a two-axis accelerometer to
the neural network, and the actual loaded accelerations are used as outputs in the training.
The nonlinearity is corrected, and measuring characteristics are successfully calibrated. The
results showed that 90% of the sensor’s nonlinearity is corrected, and the maximum error
in testing is reduced by 99% [140].
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Similar calibration methods can also be used to determine the concentration of mate-
rial under test (MUT) by measuring the dielectric constant with microwave sensors [113].
The working principle of these devices can be found in the relevant references [141,142].
Chaisaeng et al. use the soluble solid content (SSC) of a sugar solution and the correspond-
ing intermediate frequency of an X-band sensor as the dataset to train an ANN. A predicting
accuracy of 92.98% for the SSC is achieved, endowing the low-cost X-band sensor with the
ability of classifying SSC level determination in real-time [143]. A similar approach can
be found in the in-vivo test for non-invasive monitoring of glucose in humans [144]. The
whole process of this work is indicated in Figure 11. The |S11| of a coupled SRR/Patch
under a fingertip press is used as the input of the LSTM to detect possible anomalies in
blood GL and predict its future values. The resultant sensing system has demonstrated its
great potential for being deployed in highly sensitive applications for noninvasive inter-
rogation of ambient interstitial glucose levels. Albishi modulates the frequency response
frequency responses of microwave near-field sensors based on a two-port microstrip line to
characterize the material parameters [145]. A Bayesian regulation backpropagation artificial
neural network (BRANN) produces a robust model to predict the dielectric constants of
different MUTs (obtained by adjusting the ratio of chloroform and cyclohexane) through
the frequency responses of sensor. The realized accuracy for analyzing MUT composition
can be up to 99.97%.
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5.2.2. Material Identification

Testing and recognizing the appeared gases is a common task for material identifica-
tion [31,146,147]. The highly selective detection can be achieved by leveraging the distinct
influence patterns of gases on a single sensor or array [32,148–150]. Figure 12a–c indicates the
response curves of different gases from 12 commercial metal oxide gas sensors [151]. It can
be observed that the responses evidently vary with the gas composition and concentration,
which provides a strong marker for the identification. Consequently, the authors employed
the LeNet-5, a gradient-based learning structure, to identify three gases, namely pure CO,
pure CH4, and mixtures of CO and CH4 (Figure 12d). A response matrix (480 × 12) X = xi,j
is proposed to show the normalized response values of the 12 sensors (sensor number is
indicated by subscript j) over a 480-s time period (time is indicated by subscript i). Figure 12e
shows some typical patterns (12 × 12) of CH4, CO, and gas mixtures obtained through down-
sampling the matrix with an interval of 40. Each preprocessed grayscale pattern represents the
information of the sensor array corresponding to the test analyte. After dataset augmentation
with translation and cropping, the obtained 1000 matrixes are input to the LeNet-5. After
a 12.73s training period, the model can achieve an identification accuracy of 99.67% within
a time frame of 0.01553 s. Although the training time is slightly longer than conventional
methods (e.g., MLP and SVM), the recognition accuracy has been significantly improved
(enhanced by 10% at least), while the testing time shows no significant change. Similarly, Peng
et al. use the DCNN in treating the responses of electronic noses to realize a high-performance
detection of carbon monoxide, methane, hydrogen, and ethylene, and the accuracy is also
higher than simple network models [152]. These works obviously distinguish the superiority
of deep networks in gas identification. One of the possible reasons is that the sensor responses
can be interfered using ambient noises, which may bring about false features if the treating
capacity is limited by the simple models.

In the meantime, some attempts have been devoted to the data preprocessing before net-
work training. For example, Kim et al. propose an identification module in Figure 13 [153].
They preprocess the signal with the smoothed moving average (SMMA) to facilitate data
smoothing, noise elimination, and filtering. Then, GA adopts the data with high fitness
from the received ones, and the generated gradient is passed to the BPNN for odor detection.
The developed recognition module can extract patterns with greater reliability and then
realize a high success rate in detecting several gases. Moreover, the fuzzy neural network
has proved to be a powerful tool in identifying the MUT through high-noise data [154]. The
accurate MUT identification offers a dependable benchmark for devising the operational
strategies of environmental monitoring nodes, enabling the timely optimization of data
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acquisition precision and transmission volume for better energy efficiency [155]. These
works will be of meaningful assistance to IoT-compatible device technologies.
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5.2.3. Data Supplement in the Calibration

The datasets in the abovementioned works are all based on the measured responses,
and their establishment often requires substantial time and manpower/material resources.
As mentioned in [151], the acquirement of each response curve requires 28 min for sensing
with extra time for chamber cleaning and a three-day warmup at the beginning of each
experiment batch. Coupled with the extensive data required by neural networks, this poses
a considerable challenge for research endeavors. Therefore, researchers have attempted to
find a theoretical or simulation model to preliminarily create the input–output data, which
can be the footstone for training datasets [156]. The experimentally obtained data will only
serve as a medium for validating the invented models in the transfer learning ways, whose
essential volume can be greatly decreased.

Ghommem et al. conducted a series of meritorious works investigating the features of
cantilever sensors with a scheme combining physics-based modeling and deep learning,
which successfully solves the issues during calibrating flow, temperature, and gas sensors.
For instance, Figure 14 shows a process of using this method in a pressure-temperature
sensor [157]. The static and dynamic responses of arch resonators under different condi-
tions are firstly simulated by the physics physics-based model to generate the raw data.
Necessary feature extraction and selection are conducted, and the obtained features (reso-
nant frequency and quality factor here) are passed to the fully connected neural networks
for training. Then, the trained network can output the predicted pressure and temperature.
Before training, the sensor responses from the physics-based model should be validated
by the existing experimental results to ensure its accuracy. Similar pre-validation with
experimental results also appears in the measurements of flow density/viscosity, gas
concentration, and nonlinearity of resonant cantilever [158–161].
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The response model form simulation is another available source for data supple-
ment [162]. A full MEMS-ASIC system for a capacitive accelerometer is modeled in Mat-
lab/Simulink to provide the required dataset for NN. Then, the experimental results of the
known device are transferred to the NN for fine-tuning parameters. Thus, the fine-tuned
NN can predict the core parameters of sensors based on a limited amount of experimental
data. This work can further facilitate the inspection of wafer-level MEMS devices. In
the meantime, a high-frequency full-wave solver based on FEM (e.g., HFSS) is used to
capture the transmission response of a complementary split-ring resonator (CCSRR) sensor



Micromachines 2024, 15, 1368 19 of 26

underwater, ethanol, methanol, and their mixtures. The obtained frequency, amplitude,
and quality factor are input to DNN/CNN for predicting concentrations [163]. Further-
more, the sensing features predicted by NN in the design phase and augmented data from
generative adversarial networks can also be used to supplement the dataset to promote
sensor calibration [164,165].

5.3. Brief Summary and Discussion

Both compensation and calibration focus on the processing of sensor outputs, which
complement each other in the development of high-performance MEMS sensors. In sum-
mary, applying neural network-based methods to this domain may involve the following
three aspects:

(1) NNs have played prominent roles in the sensor compensation. This operation can
provide stable and reliable data for characterizing the measurand, and the deviations of the
sensor at bias and operation states have been well treated. It is worth noting that the drift in
the scale factor can only be compensated after obtaining the bias drift and operation data.

(2) The main target of output processing focuses on the establishment of a correct
and reliable correlation between measured parameters and sensor outputs. It is better to
conduct the calibration after necessary compensation, but the additional workloads may
impede this procedure. Therefore, it is more practical to comprehensively consider the data
amount, consumed resources, and target measuring performances when determining the
processing method.

(3) A desired scheme for compensating unknown interferences in a new environment
is using the pre-calibrated model as a reference to assess the interference situation, which
can simplify the reorganization of the interfering pattern and further accelerate the sec-
ondary compensation. However, the published papers mainly focus on compensation and
calibration under known interferences. The trial for unknown interferences is still waiting
for further investment.

Meanwhile, NN heavily relies on the volume of obtained experimental data. Although
some theoretical and simulation predictive models can be a supplement, the establishment
of these models still requires additional work. The quality of these generated data may
suffer from the coverage and accuracy. These issues are still awaiting a more convenient
solution to produce supplemental data that closely align with actual experimental results.

6. Challenges

Although many milestones have been achieved, NN-based methods in the devel-
opment of MEMS sensors still require great devotion. Its progress journey may face the
following challenges:

(1) More comprehensive development. Current NN-based methods only focus on one
aspect of sensor development, and a more comprehensive NN model to cover the interfaces
between design, fabrication, and device testing is still urgently needed. Furthermore, the
measuring characteristics of sensors are often indirectly assessed using several interme-
diate parameters, such as structural deformation, stress/strain, and resonant frequency.
There is a significant gap between prototype experimental results and design parameters
that hinders comprehensive development in this domain. These challenges require more
effective modeling and design methods (e.g., combining NNs and the Design Technology
Co-Optimization concept in the semiconductor industry), as well as advanced training
approaches, to support the comprehensive development of MEMS sensors.

(2) The dataset generation. The data used to train neural networks in current devel-
opments mainly comes from FEA and actual experiments. The data generation consumes
a significant amount of manpower/material resources and takes a lot of time to fulfill
this task. Although the efficiency of trained NNs is significantly higher than traditional
methods, the dataset generation still reduces the development cost and cycle for MEMS
sensors. Physical models may be an available data supplement, but the involved multiple
parameters make the establishment a highly professional task. The accuracy of proposed
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models across the entire design space also significantly affects the prediction capacity of
NNs. More appropriate methods that better combine theoretical models, simulation models,
and experimental data could be helpful in generating effective datasets and accelerating
the development process.

(3) Universal evaluation for network performance. This paper shows that neural
networks have exhibited the desired performance in various MEMS sensors. However, the
execution of each task often depends on self-built datasets, and the performance evaluation
often relies on the comparison with traditional solutions. The lack of a universal benchmark
makes it challenging to compare the performances of different reported network models.
The application of NN in image, video, text, and speech has accumulated a wealth of
general datasets for evaluating different models. The research on NNs in MEMS sensors is
still in an early stage, and the diversity of investigated sensors also causes great difficulties
in this issue. The establishment of general datasets for universally evaluating the networks
in MEMS sensors still requires significant manpower and long-term commitment.

(4) Generalization of neural network models. Limited by the lack of a general dataset,
the trained networks only exhibit well in addressing a certain problem in certain MEMS
sensors and cannot migrate to other unseen ones with existing knowledges. It is challenging
to achieve a balance between the capacity to address specific predicting demands and
the versatility to adapt to a wide range of scenarios. Establishing appropriate datasets,
optimizing network parameters, and achieving better network generalization will be
an inevitable problem in the future. The recently developed Physics-Informed Neural
Networks can encode the physical model equations as a component of the neural network
and could be a potential solution for a desirable generalization [166].

7. Conclusions

The methods based on NNs have played a distinguished role in the development of
MEMS sensors. As for the structural design, NN models have effectively described the rela-
tionship between structural parameters and device performance, enabling the optimization
of key size parameters. Furthermore, some improved models, e.g., tandem networks, have
been used to achieve viable structural generators. The device fabrication has also received
certain assistance in material assessment and defect detection. When processing sensor
outputs, neural networks have demonstrated their significant advantages. The BPNN can
accurately recognize the patterns of temperature impact and compensate for the resulting
drifts in bias and scale factor. The LSTM can even perform temperature compensation
without the information from the temperature sensor. With appropriate data processing,
NN models can calibrate the detection characteristics of various sensors to establish stable
input–output relationships or identify the characteristics of MUTs. Obviously, neural net-
work methods have brought about great innovation and a high tempo for the development
of MEMS sensors. However, current research still faces challenges in comprehensive design
capability, dataset generation, universal evaluation, and generalization, and continued
efforts are needed to make NNs a more powerful game changer in the development of
MEMS sensors.
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