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Abstract: Current wireless capsule endoscopy (WCE) is limited in the long examination time and low
flexibility since the capsule is passively moved by the natural peristalsis. Efforts have been made to
facilitate the active locomotion of WCE using magnetic actuation and localization technologies. This
work focuses on the motion control of the robotic capsule under magnetic actuation in a complex
gastrointestinal (GI) tract environment in order to improve the efficiency and accuracy of its motion
in dynamic, complex environments. Specifically, a magnetic actuation system based on a four-
electromagnetic coil module is designed, and a control strategy for the system is proposed. In
particular, the proportional–integral–derivative (PID) control parameters and current values are
optimized online and in real time using the adaptive particle swarm optimization (APSO) algorithm.
In this paper, both simulations and real-world experiments were conducted using acrylic plates
with irregular shapes to simulate the GI tract environment for evaluation. The results demonstrate
the potential of the proposed control methods to realize the accurate and efficient inspection of the
intestine using active WCE. The methods presented in this paper can be integrated with current WCE
to improve the diagnostic accuracy and efficiency of the GI tract.

Keywords: WCE; magnetic actuation system; magnetic field modeling; APSO algorithm

1. Introduction

Magnetic actuation technology has extensive applications in microscale robotics and
the biomedical field [1,2]. In particular, recently researched magnetically actuated devices,
such as capsule endoscopy robots, magnetic catheters, and surgical needles, are being
considered for minimally invasive or noninvasive treatments and diagnoses [3,4]. A
new type of WCE has been utilized for examining the human GI tract. It is ingested
orally to capture images of the GI tract, which doctors use to assess its condition [5].
Compared to traditional endoscopy, WCE can alleviate the pain and discomfort experienced
by patients during GI tract examinations [6]. Advancing through the GI tract, the capsule
robot efficiently identifies suspicious lesions, reducing the examination time [7]. This
solution can minimize medical errors that might occur due to the lack of experience among
surgeons and trainees. Given that most clinical operations [8,9] are performed through
direct manipulation by clinicians, remote actuation [10,11] is a feasible method for the
clinical application of WCE. The WCE requires a magnetic actuation system to generate the
magnetic field necessary for remote actuation or other practical functions.

In order to provide the required magnetic field, a magnetic actuation system with
multiple fixed electromagnetic coils has been designed and implemented. Helmholtz
coils, along with combinations of Helmholtz [12,13] and Maxwell coils [14], are widely
used to provide the necessary magnetic force and torque. Compared to fixed systems,
mobile magnetic actuation system can generate the required magnetic field over a larger
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operational area. Magnetic fields are typically generated using either permanent magnets or
electromagnetic coils. In mobile systems based on permanent magnets, the magnetic field is
adjusted by changing the relative position between the permanent magnet and the capsule
endoscope [15]. However, the spatial gradient of the magnetic field is large and unevenly
distributed, making the capsule endoscope susceptible to various nonlinear interferences.
In contrast, mobile systems based on electromagnetic coils can generate a more controllable
magnetic field with the coils being movable and offering a larger operational space.

The essential requirements for a magnetic actuation system include stability, as well
as the ability to quickly track desired trajectory signals, suppress disturbances, and avoid
oscillations during transient processes. Therefore, careful design of the magnetic actuation
system is necessary to achieve better dynamic response. Alireza et al. [16] proposed an
adaptive fuzzy sliding mode control method to solve the motion control problem of magnet-
ically actuated microrobots in the presence of input saturation constraint. Huang et al. [17]
introduced a model-free control method with a state observer to achieve the path-following
control of the team. Zhao [18] proposed a data-driven model predictive control method
to control a milli-scale spiral-type magnetic swimmer. Despite the development of many
advanced control techniques in the literature, the classic PID controller remains a popular
choice due to its simple structure and robustness. However, its gains remain constant
during execution, which may reduce the overall performance of the closed-loop system.

To achieve optimal performance, PID parameters must be adjusted and optimized in
real time, and many methods have been proposed for this purpose. In addition to the classic
Cohen–Coon method, neural networks and artificial intelligence techniques have been
utilized. Neural network methods include deep deterministic policy gradient (DDPG) [19],
convolutional neural network and long short-term memory (CNN-LSTM) [20], and ar-
tificial neural networks (ANNs) [21], while artificial intelligence methods include fuzzy
logic [22,23] and intelligent optimization algorithms such as genetic algorithm (GA) [24],
particle swarm optimization (PSO) [25], chaos ant colony search [26], artificial bee colony
(ABC) algorithm [27], and gravitational search algorithm (GSA) [28], among others, to
optimize PID controller parameters.

Although neural networks offer strong adaptability and effective handling of nonlin-
earities, their limitations in computational resources, data requirements, training complex-
ity, susceptibility to local optima, and interpretability restrict their widespread application.
On the other hand, intelligent optimization methods, with their simplicity of implemen-
tation, strong global optimization capability, low computational resource requirements,
and real-time performance, provide a more flexible and efficient means of solving complex
multi-objective optimization problems in control systems. To expand the working space of
the magnetic actuation system, the movement of electromagnetic coils is often achieved us-
ing a robotic arm as a carrier. By controlling the movement of the robotic arm, the magnetic
field can be adjusted, enabling the capsule endoscope to perform targeted inspections and
drug delivery tasks. In a system where the magnetic field varies with the spatial position of
the robotic arm–electromagnetic coil setup, controlling and optimizing the trajectory of the
robotic arm is crucial for improving the uniformity and stability of the magnetic field [29].
Wang et al. [30] proposed an oscillation attenuation control strategy to optimize the joint
motion trajectory of the robotic arm, while Wang et al. [31] introduced a variable universe
fuzzy control method with an online optimized scaling factor to track the trajectory of the
robotic arm.

Aiming to investigate the above problems of the magnetic actuation system and
inspired by the above ideas, in this paper, we design a four-electromagnetic coil module
that allows the WCE to complete steering at any angle around the origin. The APSO
algorithm is employed to optimize the current values required for the WCE to perform real-
time, online steering at any angle. Additionally, the motion characteristics of the WCE in
the complex environment of the GI tract are studied, and a method is devised for the WCE
to perform inspections in square trajectory, infinity trajectory, and circle trajectory patterns
based on spatial planarization, simplifying the operational steps for medical personnel.
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A spatially movable magnetic field platform based on a robotic arm–electromagnetic coil
system is constructed, and a mobile electromagnetic coil actuation system based on a PID
controller is designed. The APSO algorithm is used to optimize the main parameters in
the controller in real time, preventing the parameters from getting trapped in local optima,
thereby effectively improving the dynamic response, steady-state performance, and overall
control accuracy of the magnetic actuation system.

The following is the arrangement of the rest of this article: In Section 2, the magnetic
field model and current calculation equation are derived. In Section 3, the design of the
APSO algorithm and controller is described. In Section 4, the structure of the experimental
platform is introduced, and the performance of the controller is verified through both
simulation and real-world experiments.

2. Magnetic Field Modeling and Current Calculation

In this section, a magnetic field model is established and solved orthogonally using the
Gauss–Legendre method. Using this method, we derive the current calculation formulas
needed for the WCE to complete arbitrary angle steering around the origin based on the
magnetic field model. For a single-turn electromagnetic coil, the magnetic field generated
at any point in space after a current is applied can be described using the Biot–Savart law
as follows:

dB⃗ =
µ0

4π

∮
s

Id⃗l × r⃗0

|r⃗0|3
(1)

where Id⃗l is the element current, r⃗0 is the vector from the current element on the wire
loop to any point (x, y, z), s is the infinitely thin path length of the circular wire, and
µ0 = 4π × 10−7 Tm/A is the permeability of free space.

The analytical model of the cylindrical electromagnetic coil is based on the Biot–Savart
law. To improve the accuracy of the magnetic field description and to extend the effective
space where the magnetic field is accurately described, the model in this article takes into
account the length and thickness of the electromagnetic coil. The structure of the coil is
shown in Figure 1.

Z

Y
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( , , )P x y z

1r
2r 0r
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0dz



Figure 1. Coil’s structural model whose length and thickness are considered.

As shown in Figure 1, r is the radius of the single-turn coil; θ is the angle between
radius r; and vector r0, r1 and r2 are the inner and outer radius of the coil; L is the length
of the coil; dz0 is the thickness of the single-layer thin coil; and P a point in space with
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coordinates (x, y, z). Substituting the relevant variables into Equation (1), the magnetic
field generated by a single-turn coil of length L at point P is given as follows:

Bemx =
µ0NR Ns I

4π

∫ L/2

−L/2
dz0

∫ r2

r1

dR
∫ 2π

0

R(z − z0) cos θ

[(x − R cos θ)2 + (y − R sin θ)2 + (z − z0)2]
3/2 dθ

Bemy =
µ0NR Ns I

4π

∫ L/2

−L/2
dz0

∫ r2

r1

dR
∫ 2π

0

R(z − z0) sin θ

[(x − R cos θ)2 + (y − R sin θ)2 + (z − z0)2]
3/2 dθ

Bemz =
µ0NR Ns I

4π

∫ L/2

−L/2
dz0

∫ r2

r1

dR
∫ 2π

0

(R2 − Rx cos θ − Ry sin θ)

[(x − R cos θ)2 + (y − R sin θ)2 + (z − z0)2]
3/2 dθ

(2)

where NR is the radial coil density, and Ns is the axial coil density, which is the number of
coils per unit length along the length of the coil.

Since the coil is sufficiently dense, it can be assumed that there are no gaps between
them. However, it is very difficult to directly solve Equation (2) through integration. To
reduce computational effort, the Gauss–Legendre quadrature method is employed for
numerical solution, and the final expression is expressed as follows:

B⃗ = (Bemx, Bemy, Bemz) = g(x, y, z) (3)

where Bemx, Bemy, and Bemz are given as follows:

k1 =
µ0NRNs I

4π

Bemx = k1

n

∑
i=1

Ai

[
n

∑
j=1

Aj

(
n

∑
k=1

gx(x, y, z, xi, xj, xk)

)]

Bemy = k1

n

∑
i=1

Ai

[
n

∑
j=1

Aj

(
n

∑
k=1

gy(x, y, z, xi, xj, xk)

)]

Bemz = k1

n

∑
i=1

Ai

[
n

∑
j=1

Aj

(
n

∑
k=1

gz(x, y, z, xi, xj, xk)

)]
(4)

where Ai and Aj are Gauss coefficients; n is the number of Gauss nodes; xi, xj, and xk are
the Gauss nodes; and the expressions for gx, gy and gz are as follows:



T2 =
(r2 − r1)t2

2
+

r2 + r1

2

T3 =

[
(x − T2 cos(πt1 + π))2 + (y − T2 sin(πt1 + π))2 +

(
z − L

2
t3

)2
]3/2

gx(x, y, z, t1, t2, t3) =
T2

(
z − L

2 t3

)
cos(πt1 + π)

T3

gy(x, y, z, t1, t2, t3) =
T2

(
z − L

2 t3

)
sin(πt1 + π)

T3

gz(x, y, z, t1, t2, t3) =
T2

2 − T2x cos(πt2 + π)− T2y sin(πt1 + π)

T3

(5)

This paper involves the design of a four-electromagnetic coil module to control the
WCE in completing arbitrary angle steering around the origin. The coil numbering and co-
ordinate system are shown in Figure 2. Assuming that there is an arbitrary point D(x, y, z)
in the global coordinate system O − XYZ, a local coordinate system Oe

i − Xe
i Ye

i Ze
i is estab-

lished for each coil, with the center of each coil as the origin.
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Figure 2. Diagram of the four-electromagnetic coil coordinate system.

An arbitrary point D(x, y, z) in the global coordinate system can be transformed into
the coil coordinate system, where D′

i(i = 1, 2, 3, 4) represents the coordinates of point
D(x, y, z) in the coordinate system of each coil. The θi(i = 1, 2, 3, 4) values represent the
tilt angles of the four coils relative to the mounting plane, with θ1 = θ4 = −30◦ and
θ2 = θ3 = 30◦, where i denotes the coil index. The resultant magnetic field at the point
produced by the four coils can then be calculated using the magnetic field calculation
formula for electromagnetic coils given in Equation (6).

Bx =
4

∑
i=3

Ii fem(D′
i) sin θi

By =
2

∑
i=1

Ii fem(D′
i) sin θi

Bz =
4

∑
i=1

Ii fem(D′
i) cos θi

(6)

Here, fem(x, y, z) is the result obtained by substituting the coordinate values into
Equation (4) for calculation.

Because the position of the WCE changes every moment, the expected magnetic field
changes every moment as well; when the desired magnetic field at the target point is
(B∗

x , B∗
y , B∗

z ), the following equation is satisfied:

(
B∗

x , B∗
y , B∗

z

)
=

 0 0 fem(D′
3) sin θ3 fem(D′

4) sin θ4

fem(D′
1) sin θ1 fem(D′

2) sin θ2 0 0
fem(D′

1) cos θ1 fem(D′
2) cos θ2 fem(D′

3) cos θ3 fem(D′
4) cos θ4




I1

I2

I3

I4

 (7)

To determine the relationship between the desired magnetic field and the currents
through each coil, we need to solve this equation. However, since this is an underde-
termined system, with four unknowns but only three equations, it is impossible to find
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a unique solution. To address this, we employ an optimization algorithm, where the
conditions above are treated as constraints. The objective function is defined as follows:

min F = (|I1| − Ia)
2 + (|I2| − Ia)

2 + (|I3| − Ia)
2 + (|I4| − Ia)

2

s.t. 0 < Ii < 1
(8)

where Ii represents the currents of four coils (i = 1, 2, 3, 4), and Ia represents the control
current obtained in the experiment, with Ia = 0.3A.

Assuming the WCE remains at the central control point O, and due to the geometric
symmetry of the system, the distances from each coil to the central control point are equal.
Under this symmetric configuration, the contribution of each coil to the magnetic field can
be approximated as equal. Therefore, Equation (9) simplifies to the following form:

fem(D′
1) = fem(D′

2) = fem(D′
3) = fem(D′

4) = p (9)

This symmetry assumption greatly simplifies the calculation of the magnetic field
contributions, allowing the contribution from each coil to be represented by the same
constant p, thus simplifying the computation process.

Then, the Equation (7) can be transformed into the following:

(
B∗

x , B∗
y , B∗

z

)
=

 0 0 1
2 p − 1

2 p
− 1

2 p 1
2 p 0 0√

3
2 p

√
3

2 p
√

3
2 p

√
3

2 p




I1
I2
I3
I4

. (10)

The relationship between the reverse-solved current and the magnetic field is pre-
sented below, and the current for the four actuating coils can be expressed as follows:

I1 = ID

I2 =
2
p

B∗
y + ID

I3 =

√
3

3p
B∗

z +
1
p

B∗
x −

1
p

B∗
y − ID

I4 =

√
3

3p
B∗

z −
1
p

B∗
x −

1
p

B∗
y − ID

(11)

In Equation (11), the currents I1, I2, I3, and I4 are the control variables. By adjusting
these currents, different magnetic fields can be generated. The reference current ID serves
as the excitation current, defined as ID = I1. The desired magnetic field components B∗

x ,
B∗

y , and B∗
z represent the state variables and outputs of the system. These state variables

describe the magnetic field distribution at a specific moment. By fine-tuning the currents,
the system induces corresponding changes in the magnetic field, thus controlling the
orientation of the WCE.

3. Optimization Algorithm and Controller Design

In this section, the control parameters of the system, including the current values for
the four coils and the X and Y coordinates of the robotic arm, are determined to ensure the
precise control of the WCE.

The system designed in this paper consists of four main structures: host computer,
magnetic field generation system, mechanical actuation system, and localization devices. In
this design, the calculation process is distributed to different subsystems to reduce mutual
interference and increase speed. The localization of the WCE [32], the values of the four
coil currents, and optimization on coils’ positions are calculated in the host computer. The
optimal parameters for the coils’ positions are sent to the mechanical actuation system
for further processing. The angles of each motor are calculated by the motor controller
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and then executed by the robot arm. The current values required to generate the magnetic
field for the WCE to complete its steering are sent to the magnetic field generation system,
where the current controller produces the necessary current based on the specified angles.
A schematic diagram of the system is shown in Figure 3.

WCE system

Sensors array

Current 

controller

4-Electromagnetic 

coils module

Motor 

controller
Robotic arm

Magnetic field generation system

Mechanical actuation system

APSO 

algorithm

Magnetic 

field 

parameters

Optimal

control parameters

Demanded rate 

of each motor

Actuate the coils to 

demanded  position
Requirements

Host computer

1 2 3 4, , ,I I I I

Figure 3. The system’s schematic diagram.

The values of the currents for the four coils are optimized using the APSO algorithm
during each experiment to ensure that the WCE achieves optimal performance during
directional changes. The rotational angle of the WCE is defined as the angle between the
north pole of the permanent magnet inside the capsule and the positive X-axis of the global
coordinate system. First, the host computer sets the desired steering angles based on the
target trajectory of the WCE. These steering angles are then input into the APSO algorithm,
which dynamically computes the optimal current values for each coil. The APSO algorithm
iterates current values and evaluates them based on how well they generate the magnetic
field required for the specified angles. Eventually, the algorithm converges to the current
values that best match the target steering angles. These optimized current values are then
applied to the coils in real time, enabling the system to adjust the steering direction of the
WCE with high precision and stability.

The X and Y coordinates of the robotic arm are precisely controlled with a PID con-
troller to maintain accurate control of the WCE. Based on real-time feedback from the WCE
system, the PID controller continuously adjusts the position of the robotic arm, ensuring
precise corrections to accurately track the target trajectory.

3.1. APSO Algorithm

The PSO algorithm [33] is a stochastic search algorithm inspired by the hunting
behavior of bird flocks. In the PSO algorithm, the update equation for the i th particle at
the k th iteration is given as follows:{

Vi(k + 1) = ωVi(k) + c1r1[Pi(k)− Xi(k)] + c2r2[Pg(k)− Xi(k)]

Xi(k + 1) = Xi(k) + Vi(k + 1), i = 1, 2, . . . , m
(12)

In Equation (12), ω is the inertia weight, c1 and c2 are the learning factors, and r1 and
r2 are random numbers uniformly distributed in the range [0, 1]. Pi = (pi1, pi2, . . . , pid)
represents the best position of the individual, and Pg = (pg1, pg2, . . . , pgd) represents the
global best position. However, the standard PSO algorithm often struggles to effectively
balance global and local optima.

Therefore, this article proposes the APSO algorithm that increases the inertia weight
nonlinearly. The expression is expressed as follows:
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ω =



ωmin k ≤ a

ωmin + (ωmax − ωmin) ∗
(k − a)2

(c − a)(b − a)
a < k ≤ b

ωmax − (ωmax − ωmin) ∗
(c − k)2

(c − a)(c − b)
b < k ≤ c

ωmax k > c

(13)

where k is the iteration number, and a, b, and c satisfy ωmin < a ≤ b ≤ c < ωmax. In
this case, a = 0.2kmax, b = 0.6kmax, and c = 0.9kmax. Assuming the maximum number of
iterations kmax = 400, Figure 4 shows the variation curves of different inertia weights ω.

Ⅰ Ⅱ Ⅲ Ⅳ

Figure 4. The curve shows the variation of ω with the iteration number.

Figure 4 shows how the inertia weight ω changes as the number of iterations increases,
broken down into four distinct phases, with each phase corresponding to specific iteration
intervals. In region I, ω remains constant at its minimum value ωmin. At the start of the
optimization process, keeping ω low encourages the algorithm to explore a wide area of
the search space, reducing the likelihood of early convergence to suboptimal solutions. In
region II, as the number of iterations increases, ω starts to rise nonlinearly. This gradual
increase in ω accelerates the convergence process by focusing the search more narrowly,
increasing the chances of identifying regions near the global optimum. In region III,
ω continues to increase as the iteration count grows. This stage shifts the focus from
global exploration to local exploitation, enhancing local search capabilities while avoiding
premature convergence. The search speed decreases as ω increases, allowing for more
fine-grained searches. In region IV, ω reaches its maximum value ωmax and stabilizes. In
this final phase, the constant ωmax value enables precise fine-tuning around the optimal
solution, ensuring that the search converges smoothly and accurately.

Through the dynamic adjustment of ω based on iteration count, the APSO algorithm
is able to balance global exploration and local exploitation. This ensures that the algorithm
avoids premature convergence and fine-tunes the solution in the later stages, leading to
both effective and precise optimization.

As indicated by Equation (11), there is a complex coupling relationship between the
four current values. This implies that during the optimization process, any change in one
current value will trigger a chain reaction affecting the other current values, thereby increas-
ing the complexity of the optimization problem. The traditional PSO algorithm is typically
only capable of handling simple optimization problems. When faced with such highly
coupled systems, their fixed inertia weight and lack of dynamic adjustment often result in
premature convergence to local optima, leading to suboptimal optimization outcomes. In
contrast, the APSO algorithm dynamically adjusts the inertia weight in real time, achieving
a better balance between global and local searches, which makes it particularly suitable for
handling complex optimization problems with coupled relationships. This significantly
increases the likelihood of escaping local optima. Therefore, when dealing with optimiza-
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tion problems involving complex coupling relationships, the APSO algorithm not only
better addresses the coupling between current values but also ensures that the optimization
results for the currents align more closely with expectations, thereby improving the overall
performance of the system. This demonstrates the APSO algorithm’s greater adaptability
and superiority in solving complex, multivariable optimization problems.

3.2. Motor Controller Design

To ensure the WCE operates stably within the human GI tract, precise control is essen-
tial to reduce internal viscous resistance and avoid external disturbances. The actuation
control of the WCE involves managing several complex variables, including speed control
in the narrow and curved sections of the GI tract and the ability to adapt to external distur-
bances. Although some advanced control methods, such as signal control [34], can achieve
high precision under certain conditions, they often rely on idealized hardware setups to
deliver optimal performance. Given the complexity of physical environments, we adopt the
widely validated PID controller, which is known for its low hardware requirements, simple
structure, and reliability. The PID controller delivers consistent control in dynamic and
complex environments, ensuring that the system meets performance expectations across
various real-world applications.

However, the traditional PID controller, with its fixed parameters, often lacks adaptabil-
ity in complex dynamic environments, making it difficult to adjust parameters effectively
and handle nonlinear system characteristics or varying external disturbances.

These limitations prevent traditional PID controllers from delivering optimal control
in complex vivo conditions. To address these challenges, this study utilizes the APSO
algorithm to dynamically optimize the six PID control parameters, enabling the WCE to
swiftly and accurately follow desired trajectory signals. This approach enhances the safety
and effectiveness of GI tract inspection. The APSO-PID actuation system block diagram is
shown in Figure 5.

Reference model

PID controller

APSO-based  optimizer

+

+

-

+

-

Sensors array

Robotic arm
WCE 

system 

4-Electromagetic

coils module

Mobile-coil system

( )r t

( )d t

( )y t

( )e t

( )ry t

( )n t

Figure 5. APSO-PID control system’s block diagram.

In the mobile-coil system illustrated in Figure 5, the robotic arm is coordinated by
X- and Y-axis motors, ensuring that the WCE can swiftly and accurately track various
inspection paths. To navigate the complex environment and unpredictable external distur-
bances in the GI tract, this study utilizes a discrete positional PID controller. This controller
effectively captures the difference between the current state and the target state by ac-
cumulating previous errors through its integral term, thus enabling precise control. The
discrete positional PID controller, with its unique algorithmic design, allows the magnetic
actuation system to respond rapidly, adapting nimbly to the complex internal environment
of the body. It achieves high control precision, which is crucial for tasks such as inspecting
small lesions, while also delivering robust steady-state performance. This ensures that the
system remains stable during prolonged operation within the body, unaffected by dynamic
physiological changes. The formulation of the controller is as follows:

ui(k) = Kpi ei(k) + Kii

n

∑
k=1

ei(k)T + Kdi

ei(k)− ei(k − 1)
T

(14)
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where T is the time step; when i is X or Y, ui(k) represents the control input for the X-
or Y-axis motor, which adjusts the rotation speed of the corresponding motor to control
the position of the WCE along the X or Y axis; ei(k) represents the difference between the
desired position produced by the expected model on the X or Y axis and the actual position
of the WCE, the error function is expressed as follows:

ei(k) = yri (k)− yi(k) (15)

The smaller the error, the closer the controlled system is to the ideal desired model.
Therefore, the performance index J can be used to evaluate the controller.

J(Kpi , Kii , Kdi
) =

∫ t

0
t[yri (t)− yi(t)]

2dτ (16)

The above equation illustrates the degree of proximity between the controlled system
and the ideal desired model, including Kpx , Kpy , Kix , Kiy , Kdx , and Kdy , which represent
the six adjustable parameters. These six adjustable parameters are closely interrelated,
leading to strong coupling among them. The complexity and nonlinearity of the system,
along with the tedious and uncertain nature of manual tuning and the inadequate adaptive
response in dynamic environments, make it difficult for traditional fixed-parameter PID
control to achieve optimal results. To address these challenges, this paper introduces the
APSO algorithm to dynamically optimize the PID controller parameters. The APSO-PID
parameter optimization problem is thus framed as a multi-objective optimization problem,
as expressed in the following equation:

(K∗
pi

, K∗
ii , K∗

di
) = arg min J(Kpi , Kii , Kdi

) (17)

where K∗
px , K∗

py , K∗
ix

, K∗
iy , K∗

dx
, and K∗

dy
represent the PID parameters optimized by the APSO

algorithm. The flow of the algorithm is shown in Figure 6.
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Figure 6. Flowchart of APSO algorithm.
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4. Results and Analysis

A cylindrical permanent magnet was mounted in the WCE to control its movement by
actuating the magnet. Three different controllers were used in both system simulations and
real-world experiments to validate the performance of the designed controllers.

To achieve optimal control performance, we conducted multiple simulation exper-
iments using a predefined trajectory with disturbances. During these simulations, the
results were used as inputs for the optimization algorithms, allowing for parameter tuning
based on the response of the system to each trajectory. The final optimized PID parameters
obtained from this process were then applied consistently across all trajectory tracking
tasks presented in this study. This approach ensures that the control methods are evaluated
under uniform conditions, providing a reliable basis for comparing their performance.

4.1. Simulation Results and Analysis

To evaluate the control performance of the APSO-PID controller and validate the
effectiveness of the APSO algorithm, comparisons were conducted with PSO-PID and
ZN-PID [35] controllers. ZN-PID refers to a PID controller whose parameters are tuned us-
ing the Ziegler–Nichols method. This classical method is one of the most widely used tech-
niques for determining the proportional, integral, and derivative gains of a PID controller.
The Ziegler–Nichols method provides a systematic way to set the controller parameters
based on the response of the system to a step input, aiming for a balance between stability
and responsiveness. The PID parameters were optimized separately using three distinct
methods including ZN, PSO, and APSO algorithms, according to the degree of deviation of
the WCE from its desired trajectory. In each experiment, ZN, PSO, and APSO algorithms
were individually applied to optimize the PID parameters, thus enabling a comparative
analysis of their effectiveness in maintaining accurate control. ZN and PSO algorithms were
used for static parameter optimization, while the APSO algorithm dynamically adjusted
the parameters in response to trajectory changes, allowing for a comprehensive evaluation
of the performance of each method across different trajectories. The parameter settings for
the APSO-PID controller are detailed in Table 1.

Table 1. Control parameters and specifications.

Item Specifications

Control parameters 45 ≤ Kp ≤ 75, 15 ≤ Ki ≤ 29, 0 ≤ Kd ≤ 2

Parameters

Swarm size: m = 100;
Dimension: D = 6;
The maximum iteration: kmax = 400;
Learning factors: c1 = c2 = 2;
The inertia weight increases nonlinearly from: ωmin = 0.4 to
ωmax = 0.9 in accordance with Equation (13);
a = 0.2kmax, b = 0.6kmax, c = 0.9kmax.

In order to prevent the WCE from failing to accurately track the predefined trajectory
at the inflection points of the square, infinity, and circular trajectories, and to reduce
system response lag, the range of the three PID parameters was determined after several
simulations and experiments, as follows: 45 ≤ Kp ≤ 75, 15 ≤ Ki ≤ 29 and 0 ≤ Kd ≤ 2.

When there are no external disturbances in the system, the unit step response curves
of the magnetic actuation system using different controllers were plotted, which are shown
in Figure 7.

In Figure 7, the system output represents a combined metric that includes both the
orientation of the WCE and a calculated value based on its X and Y positional coordinates.

For the purpose of evaluating the dynamic response performance of different con-
trollers under disturbance, two types of disturbance signals were introduced at the signal
input for simulation testing. Disturbances were introduced at the control inputs of the
X and Y motors, which led to changes in motor speed and subsequently influenced the
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position of the WCE. The first disturbance signal was a composite disturbance consisting
of two parts. A downward step disturbance was applied at 2 s, followed by an upward
step disturbance at 4 s. The input disturbance signal and the response curves of the three
controllers are shown in Figure 8.

Figure 7. The step response of the magnetic actuation system with different controllers (no disturbance).

Figure 8. Composite disturbance signal and controller response curves.

The second disturbance signal was a random disturbance. Between 2 and 5 s, a random
disturbance signal was applied to the controller. The form of the random disturbance signal
and the output response curves of the three controllers are shown in Figure 9.

In Figures 8 and 9, the system output reflects a combined metric that takes into account
both a calculated value based on its X and Y positional coordinates and the orientation of
the WCE.
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Figure 9. Random disturbance signal and controller response curves.

Table 2 provides a comparison of the performance of the three controllers in the
magnetic control system, under conditions with no disturbance as well as two different
types of disturbances.

Table 2. Performance comparison.

Disturbance Types Controller Overshoot
(Mp)

Setting Time
(ts)

Steady-State Error
(Ess)

No disturbance
ZN-PID - 0.20259 0.001311
PSO-PID 2.6% 0.088 0.000085
APSO-PID 0.6% 0.065726 0.000355

Composite disturbance
ZN-PID - 0.28575 0.001408
PSO-PID 2.2% 0.10422 0.00098
APSO-PID 0.6% 0.08061 0.000954

Random disturbance
ZN-PID - 0.182 0.001059
PSO-PID 2.33% 0.073 0.00023
APSO-PID 0.545% 0.07 0.000212

(1) Analysis of Tracking Responsiveness
As shown in Figure 7, when there were no external disturbances, all three controllers
exhibited good dynamic response performance, with each achieving the desired
minimal overshoot. The tracking performance of the three controllers was similar. As
shown in Table 2, compared to the ZN-PID and PSO-PID controllers, the setting time
of the APSO-PID controller was reduced by 67.6% and 25.3%, respectively, indicating
that the APSO-PID controller significantly outperformed the other two in terms
of speed.

(2) Analysis of Anti-disturbance Performance
Figures 8 and 9 show that the APSO-PID controller exhibited greater robustness
under different disturbance inputs compared to the other two controllers. As shown



Micromachines 2024, 15, 1373 14 of 23

in Table 2, under the influence of the composite disturbance signal, the APSO-PID
controller reduced the setting time by 63.5% and 71.8% relative to the ZN-PID and
PSO-PID controllers, respectively. Similarly, under the influence of the random
disturbance signal, the setting time was reduced by 59.9% and 61.6% compared to
the ZN-PID and PSO-PID controllers, respectively. This indicates that the APSO-PID
controller has the best anti-disturbance performance, followed by the PSO-PID and
ZN-PID controllers.

(3) Analysis of Steady-State Performance
As shown in Table 2, all three controllers demonstrated strong steady-state perfor-
mance, with steady-state error approaching 0. Considering both convergence speed
and overshoot into account, the APSO-PID controller performed the best overall. As
shown in Figure 8, the APSO-PID and PSO-PID controllers maintained solid steady-
state performance after the disturbance signal was introduced, quickly returning
to a steady state with minimal steady-state error. The APSO-PID controller yielded
the smallest error. In contrast, the ZN-PID controller showed weaker steady-state
performance, with significant oscillations and longer recovery times due to its higher
sensitivity to disturbances. Figure 9 shows that under random disturbance signals,
the APSO-PID and PSO-PID controllers continued to perform well, with almost
negligible steady-state errors. However, the ZN-PID controller fell short, displaying
slight deviations compared to the other two controllers.

Overall, the APSO-PID controller outperformed the other two controllers. Although
the ZN-PID controller did not exhibit any overshoot after tuning, its rise time was slower,
and its dynamic response and setting time were suboptimal when disturbances were
present, resulting in poor disturbance rejection performance. The PSO-PID controller
demonstrated good dynamic performance but had a larger overshoot. The APSO-PID
controller achieved the fastest rise and set times and exhibited the best disturbance rejection
performance among the three controllers.

Given the complex environment of the human GI tract, additional testing of controller
performance is essential to optimize the control of WCE during inspections and targeted
drug delivery. Following the unit step tests, simulations were carried out using square
trajectory, infinity trajectory, and circular trajectory to further evaluate their dynamic
performance, steady-state accuracy, and anti-disturbance capabilities.

Figure 10 shows the response of the three controllers to two segments of random
disturbance signals applied during the square trajectory, infinity trajectory, and circular
trajectory. The disturbance signals applied during each trajectory were introduced as
controlled external perturbations to the input signals of the X and Y motors. These pertur-
bations simulated external environmental factors, enabling a realistic assessment of how
well each controller can maintain stability and accurate tracking under variable conditions.
The disturbance periods for the square trajectory were 14–18 s and 26–31 s; for the infinity
trajectory, they were 27–31 s and 56–59 s; and for the circular trajectory, they were 21–25 s
and 42–45 s. It can be seen from the figures that there is some initial jitter, which is due
to the rigid mechanical structure of the magnetic actuation system overcoming friction at
startup. The left side of the zoomed figures presents the disturbance rejection performance
of the three controllers during the initial phase of disturbance introduction, while the right
side displays their tracking performance after the disturbance stabilized. Among the three
trajectories, the APSO-PID controller, despite exhibiting slightly larger overshoot at certain
moments, generally demonstrated excellent dynamic performance, with shorter regulation
times, faster recovery after disturbances, and superior robustness compared to the other
two controllers. It also achieved the smallest tracking error.

After evaluating the performance of the three controllers in tracking the trajectories
shown in Figure 10, the overall conformity between the desired and actual trajectories was
assessed using RMSE and MAE. RMSE is defined as the square root of the average of the
squared differences between the actual and desired values across the sample size N. MAE
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is defined as the average of the absolute differences between the actual and desired values.
The calculation formulas for RMSE and MAE are given in Equations (18) and (19).

RMSE =

√√√√ 1
N

N

∑
i=1

[(xi − xdi)2 + (yi − ydi)2] (18)

MAE =

N
∑

i=1
[|xi − xdi|+ |yi − ydi|]

N
(19)

where N is the sample size, xi and yi are the coordinates of the i th actual trajectory point,
and xdi and ydi are the coordinates of the i th desired trajectory point.

Initial position

Initial position

Initial position

Figure 10. Simulation results of the composite disturbance.
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Table 3 summarizes the RMSE and MAE for the three controllers when tracking the
three trajectories. The data show that, for the square trajectory, the APSO-PID controller
improved control accuracy by 0.23 mm compared to the ZN-PID controller and 0.09 mm
compared to the PSO-PID controller. For the infinity trajectory, the APSO-PID controller
achieved a precision increase of 0.19 mm over the ZN-PID controller and 0.09 mm over the
PSO-PID controller. In the circular trajectory, the APSO-PID controller similarly enhanced
accuracy by 0.19 mm compared to the ZN-PID controller and 0.06 mm compared to the PSO-
PID controller. These results clearly demonstrate that the APSO-PID controller delivers the
best performance, with the PSO-PID controller ranking second, and the ZN-PID controller
performing the least effectively.

Table 3. RMSE and MAE under random disturbance.

Trajectory Controllers RMSE (mm) MAE (mm)

Square trajectory
ZN-PID 0.63 0.69
PSO-PID 0.49 0.51

APSO-PID 0.40 0.42

Infinity trajectory
ZN-PID 0.51 0.58
PSO-PID 0.41 0.45

APSO-PID 0.32 0.36

Circular trajectory
ZN-PID 0.53 0.66
PSO-PID 0.40 0.49

APSO-PID 0.34 0.40

To further evaluate the tracking performance of the three controllers, an upward step
signal was introduced as a disturbance at the input. This step signal had a magnitude
of +0.5 units and was applied in the upward direction along both the X and Y axes. This
approach allowed us to evaluate the robustness of the system in maintaining stability and
tracking accuracy under abrupt disturbances. For the square trajectory, the disturbance
began at 18 s and continued until the end; for the infinity trajectory, it started at 20 s
and persisted until the end; and for the circular trajectory, the disturbance started at 23 s
and lasted until the end. The tracking performance of the controllers across these three
trajectories was observed. As shown in Figure 11, prior to the disturbance, the APSO-
PID controller exhibited a slightly larger overshoot during the initial phase of the square
trajectory and circular trajectory compared to the other two controllers. However, the
duration of this overshoot was brief, and the controller quickly adjusted to accurately track
the desired trajectory.

Among the three trajectories, the APSO-PID controller yielded the smallest tracking
error and demonstrated superior trajectory-following capability. During the disturbance,
for the square and infinity trajectories, the subgraphs indicate that the APSO-PID controller
experienced slightly more overshoot compared to the other two controllers. However, it
quickly regained the desired trajectory immediately after the disturbance. The ZN-PID
controller showed the fastest setting time and the least overshoot in the subgraphs, which
can be attributed to its poor pre-disturbance tracking performance, resulting in a response
that closely mirrored the disturbance signal. While this gave the appearance of better per-
formance during the disturbance, the comparison in Table 4 reveals that the overall tracking
performance of the ZN-PID controller was inferior to that of the PSO-PID and APSO-PID
controllers. The APSO-PID controller demonstrated the best dynamic performance and
robustness. For the circular trajectory, the APSO-PID controller stood out with its shorter
setting time, minimal overshoot, and greater robustness. As shown in Table 4, after the
disturbance, the APSO-PID controller improved control accuracy by 0.13 mm and 0.07 mm
on the square trajectory compared to the ZN-PID and PSO-PID controllers, respectively;
by 0.10 mm and 0.04 mm on the infinity trajectory; and by 0.03 mm and 0.02 mm on the
circular trajectory.
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Initial position

Initial position

Initial position

Figure 11. Simulation results for upward step disturbance.

Table 4. RMSE and MAE under upward step disturbance.

Trajectory Controllers RMSE (mm) MAE (mm)

Square trajectory
ZN-PID 1.40 1.64
PSO-PID 1.34 1.58

APSO-PID 1.27 1.40

Infinity trajectory
ZN-PID 1.39 1.71
PSO-PID 1.33 1.65

APSO-PID 1.29 1.61

Circular trajectory
ZN-PID 2.30 2.77
PSO-PID 2.29 2.73

APSO-PID 2.27 2.72
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Following the assessment of dynamic performance, the steady-state performance of
the controllers was further inspected. A 5% error band was set to assess whether the
three controllers could maintain the trajectory within this range during the final 10 s of
tracking. Figure 12a–c illustrate the error bands and the tracking curves for the square
trajectory, infinity trajectory, and circular trajectory along the X and Y axes. As shown in
the figures, all three controllers successfully remained within the 5% error band across
the three trajectories, demonstrating solid steady-state performance. The APSO-PID con-
troller consistently tracked closer to the desired trajectory in all cases, showing superior
steady-state performance compared to the other two controllers. Overall, the APSO-PID
controller excelled in both dynamic and steady-state performance, outperforming the other
two controllers.

(a)

(b)

(c)

Figure 12. Steady-state performance of the three trajectories. (a) Error bands and tracking curves
for the square trajectory along the X and Y axes; (b) Error bands and tracking curves for the infinity
trajectory along the X and Y axes; (c) Error bands and tracking curves for the circular trajectory along
the X and Y axes.

4.2. Actual Experimental Analysis

Figure 13a shows the experimental setup of the magnetic actuation system proposed
in this paper for use in the human GI tract. The system features a three-axis gantry robot
arm that controls the movement of an electromagnetic coil mounted on it. The robot was
actuated by two motors (86BYGH80, Leadshine, Guangzhou, China) that coordinated
movement along the X and Y axes. The electromagnetic coil was constructed with approxi-
mately 300 ± 10 turns of 1mm diameter copper wire, wound around a silicon steel core to
enhance the magnetic field. The WCE (12.7 mm in diameter and 25.3 mm in length) was
composed of a shell (polyethylene terephthalate (PET)) and a permanent magnet (NdFeB42,
WANGCl CIYE, Shanghai, China, 10 mm in diameter and 5 mm in length). A large external
sensor array, comprising 25 triaxial sensors (LSM303D, ElecFans, Shenzhen, China),was
arranged in a 5 × 5 grid with 60 mm spacing to cover the entire GI tract area. The control
algorithm was implemented in Python 3.6, running on a PC (Intel i7-10700F, 32 GB RAM,
Win11) and providing real-time visualization of the WCE movement.

To further evaluate the motion characteristics of the WCE, a simulated GI tract envi-
ronment was created using a custom-designed acrylic plate (made of PMMA). The surface
of the acrylic plate included randomly distributed concave and convex features, with each
feature spanning approximately 1 to 6 mm in the X-Y plane and heights or depths ranging
from 1 to 2 mm. These features were designed to simulate small obstacles or irregularities
that the WCE might encounter in real-world environments, providing a test for the system
in terms of disturbance resistance and trajectory tracking capabilities. This uneven resis-
tance served as a disturbance, simulating the complex, folded environment of the human
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GI tract more effectively. A camera was installed at the front of the experimental setup,
allowing operators to remotely monitor the WCE movement within the GI tract, facilitating
real-time decision-making.

磁传感器阵列

四线圈

机械臂

上位机

(a) (b)

4-Electromagnetic coils 

module

WCE

Sensors arrayCamera

Host 

computer

Robotic arm

Workspace

Figure 13. (a) Experimental setup of the magnetic actuation system; (b) inspection routes followed by
the WCE during different trajectory inspections, with the WCE position highlighted in red circles.

Figure 13b shows the WCE procedure following three different paths through the
simulated GI tract environment. WCE was performed using the square trajectory, covering
a total path length of 480 mm at a set speed of 10 mm/s, taking 48 s to complete the entire
trajectory. WCE was performed using the infinity trajectory, covering a total path length of
580 mm at a set speed of 6.98 mm/s, taking 83 s to complete, which was 30.2% longer than
square trajectory, due to the increased complexity of diagonal segments in the inspection
path. WCE was performed using the circular trajectory, with a circumference of 377 mm
and a set speed of 4.09 mm/s, taking 92 s to complete. This represents a 59.1% increase
compared to square trajectory, due to the significantly increased complexity caused by the
curved angles in the circular trajectory.

The results of tracking the three trajectories with different controllers are shown in
Figure 14. The red curve represents the actual path of the WCE procedure, while the blue
curve shows the simulated path under disturbance. For the square trajectory, the ZN-PID
controller exhibited significant jitter at the start and notable deviation and oscillation at the
second corner, failing to accurately follow the trajectory, with a noticeable speed change
after overcoming resistance. Both the PSO-PID and APSO-PID controllers tracked the
trajectory more effectively, though the PSO-PID controller showed a significant speed
change after overcoming resistance on the third segment, while the APSO-PID controller
maintained a consistent speed throughout and quickly adjusted after passing through the
irregular regions.

In the infinity trajectory, all three controllers initially tracked the desired path well.
However, as the movement area expanded and disturbances increased, the ZN-PID con-
troller tended to deviate significantly from the desired trajectory and struggled to adjust
quickly at corners, resulting in larger deviations and the slowest recovery after overcoming
resistance. By contrast, the PSO-PID controller exhibited less deviation than the ZN-PID
controller, and its recovery time after disturbances was slower compared to the APSO-PID
controller. In the circular trajectory, the ZN-PID controller experienced considerable jitter
at the start and generally performed poorly in tracking the trajectory. Tracking with the
PSO-PID controller was less smooth compared to the APSO-PID controller, indicating
that the APSO-PID controller offers superior stability. Table 5 provides the RMSE and
MAE metrics for the three controllers across multiple repeat experiments in tracking the
three trajectories.

Table 5 shows that, for the square trajectory, the APSO-PID controller improved
accuracy by 0.3 mm and 0.17 mm compared to the ZN-PID and PSO-PID controllers,
respectively; for the infinity trajectory, it achieved accuracy improvements of 0.15 mm and
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0.07 mm; and for the circular trajectory, it enhanced accuracy by 0.28 mm and 0.13 mm.
The tracking error for all three trajectories remained below 4.17 mm, satisfying the basic
motion control requirement of less than 5.88 mm, which ensures effective motion control
performance [36]. Overall, the APSO-PID controller outperforms the other two controllers,
offering shorter adjustment times after disturbances, stronger disturbance rejection, and
greater robustness.

Initial position Initial position Initial position

Initial position Initial position Initial position

Initial positionInitial positionInitial position

ZN-PID PSO-PID APSO-PID

Figure 14. Actual experimental results for the three trajectories.

Table 5. RMSE and MAE in actual experimental results.

Trajectory Controllers RMSE (mm) MAE (mm)

Square trajectory
ZN-PID 2.85 3.10
PSO-PID 2.68 3.03

APSO-PID 2.55 2.92

Infinity trajectory
ZN-PID 4.17 4.46
PSO-PID 4.10 4.39

APSO-PID 4.02 4.23

Circular trajectory
ZN-PID 3.92 4.08
PSO-PID 3.79 3.95

APSO-PID 3.64 3.82
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5. Conclusions

In this work, an actuation device based on external mobile electromagnetic coils was de-
signed and implemented, utilizing a three-axis gantry robot arm and a four-electromagnetic
coil module to achieve three degrees of freedom for the WCE within a 250 mm × 250 mm
space. The APSO algorithm was used to dynamically optimize the currents in the four coils,
ensuring precise turning control during WCE movement. Additionally, each trajectory
experiment utilized ZN, PSO, and APSO algorithms to optimize PID parameters, allowing
for a comparative evaluation of motion control performance across different optimization
methods. In the APSO-PID controller, the APSO algorithm was employed to dynamically
optimize the PID parameters, enabling the WCE to precisely track the desired trajectory
signals and quickly adjust when subjected to disturbances. Through simulations of the
complex GI tract environment and validation in physical experiments, the APSO-PID
controller exhibited outstanding dynamic and steady-state performance under both non-
disturbance conditions and various external disturbances. Real-world experiments show
that, compared to the ZN-PID controller, the APSO-PID controller improved tracking accu-
racy by 0.3 mm, 0.15 mm, and 0.28 mm on square trajectory, infinity trajectory, and circular
trajectory, respectively. Compared to the PSO-PID controller, it improved tracking accuracy
by 0.17 mm, 0.07 mm, and 0.13 mm on the same trajectories, confirming its superior control
performance in complex tasks.

However, challenges remain in precisely controlling magnetic flux density and multi-
degree-of-freedom motion in the current design. Future work will focus on conducting
preclinical animal trials to further validate the control performance of this magnetic actua-
tion system and extend this approach to other medical magnetic robots, such as magnetic
catheters and magnetic helical robots, enhancing their effectiveness in intelligent inspection,
drug delivery, and tissue sampling. Furthermore, we plan to combine sensor data from
various medical imaging systems, such as ultrasound imaging and stereoscopic endoscopy,
to further enhance the accuracy and robustness of the system.
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