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Abstract: Droplet quality in drop-on-demand (DoD) Electrohydrodynamic (EHD) inkjet printing
plays a crucial role in influencing the overall performance and manufacturing quality of the operation.
The current approach to droplet printing analysis involves manually outlining/labeling the printed
dots on the substrate under a microscope and then using microscope software to estimate the dot
sizes by assuming the dots have a standard circular shape. Therefore, it is prone to errors. Moreover,
the dot spacing information is missing, which is also important for EHD DoD printing processes, such
as manufacturing micro-arrays. In order to address these issues, the paper explores the application of
feature extraction methods aimed at identifying characteristics of the printed droplets to enhance
the detection, evaluation, and delineation of significant structures and edges in printed images.
The proposed method involves three main stages: (1) image pre-processing, where edge detection
techniques such as Canny filtering are applied for printed dot boundary detection; (2) contour
detection, which is used to accurately quantify the dot sizes (such as dot perimeter and area); and
(3) centroid detection and distance calculation, where the spacing between neighboring dots is
quantified as the Euclidean distance of the dot geometric centers. These stages collectively improve
the precision and efficiency of EHD DoD printing analysis in terms of dot size and spacing. Edge and
contour detection strategies are implemented to minimize edge discrepancies and accurately delineate
droplet perimeters for quality analysis, enhancing measurement precision. The proposed image
processing approach was first tested using simulated EHD printed droplet arrays with specified
dot sizes and spacing, and the achieved quantification accuracy was over 98% in analyzing dot size
and spacing, highlighting the high precision of the proposed approach. This approach was further
demonstrated through dot analysis of experimentally EHD-printed droplets, showing its superiority
over conventional microscope-based measurements.

Keywords: EHD drop-on-demand; feature extraction; edge detection; contour detection; dot size
quantification; dot distance quantification.

1. Introduction

Electrohydrodynamic (EHD)-inkjet printing is a non-contact, additive printing tech-
nique that uses electrical force to drive the printing liquid [1,2]. The ink is expanded and
injected as tiny drops onto the printing substrate for the drop-on-demand (DoD) printing
process [3–5]. The benefits of this process range from flexibility and functionality to lower
downtimes and mass personalization. EHD DoD is one of the promising AM techniques
with excellent resolution [4,6,7] since the produced ink droplets are smaller, making it
appropriate to fabricate micro/nanoscale designs such as solar cells, micro-array sensors,
and micro-LED displays [8–10].

The precision of dot profiles in EHD printing is substantial, significantly impacting the
quality and functionality of manufactured products [11]. In EHD printing, a high voltage
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is used to create a jet of liquid that can deposit high-resolution materials [5]. The size of
the dot, which is the basic unit of material deposited onto the substrate, is crucial because
it directly affects the final product’s resolution and smoothness. Smaller droplets enable
higher resolution, producing micro- and nanoscale structures with finer details, such as
microarray sensors [12]. Moreover, the consistency in droplet size across the printing
process ensures uniformity, which is crucial for applications like micro-LED displays where
any variation can affect the overall efficiency and performance [13]. However, the spacing
between the dots in DoD EHD printing must be carefully managed to optimize the quality
of the final product. Insufficient spacing may lead to overlapping or gaps, compromising
the overall structural integrity and disrupting the mechanical and/or electrical connectivity
when used in circuitry applications [10,14].

Current approaches to dot analysis in DoD EHD printing mostly depend on manual
inspection and estimation utilizing microscope software, a procedure fraught with limi-
tations and difficulties [15]. These methods involve manually identifying and tracing the
boundaries of the printed dots on the substrate using a microscope. The analysis assumes
that these dots are completely round in order to estimate their sizes, such as diameter and
area. These assumptions provide a large potential for inaccuracy because actual droplets in
printing can differ from perfect circular forms due to many factors, such as the qualities of
the surface they land on, the way the fluid moves, or the environmental temperature. In
addition, these approaches frequently exclude essential information regarding the spacing
between dots, which is necessary to guarantee precise DoD printing functionality. The lack
of accurate and automated measurement tools in these conventional processes obstructs
the capability to replicate prints of superior quality consistently and restricts the thorough
examination needed to advance printing techniques, especially in applications that demand
precise and uniform results, such as the production in micro/nanoscale. For example,
quantifying the size of micro-LED dots for DoD EHD printing faces significant limitations
using these techniques, which include low resolution, which restricts the ability to detect
minute size variations, poor dot shape, and uniformity assessment, which are critical
for achieving consistent brightness and color across the display, as well as challenges in
accurately quantifying overlay registration [16–18]. These quantification challenges can
compromise the final product’s overall performance and aesthetic quality.

Furthermore, the manual process of current dot analysis approaches leads to extra
errors due to human error and subjective interpretations regarding the estimation of a
dot’s boundary. The manual approach is also time-consuming, restricting the production
throughput in DoD EHD manufacturing. Therefore, there is a vital requirement for ad-
vanced and automated image processing methods that can precisely detect and analyze the
printed droplets without human operators’ subjective biases and limits. This demand is vi-
tal for applications that require high-resolution and flawless printing, hence expanding the
capability of EHD inkjet technology. In recent years, recognition applications in the image
processing domain have become essential in multiple fields, performing as practical tools
for automated monitoring, automated methods for monitoring and quality control, and
real-time decision-making. In civil engineering applications, Structural Health Monitoring
(SHM) systems, with the help of vision computation, can detect various structural events
or phenomena, such as cracks or deformations, on bridges and other vital structures to
enhance safety and maintenance efficiency [19]. Similarly, in agriculture fields, lightweight
object detection models with restricted modifications in YOLO (You Only Look Once) are
implemented to detect and classify crops like pitaya under different lighting conditions
to optimize and enhance yield estimation and harvesting processes [20]. In the medical
field, recognition techniques help detect tumors, abnormal tissue, and other health signs to
improve the diagnosis period and the treatment strategies [21]. Robotics also incorporates
object recognition algorithms used to navigate or manage robotic tasks in different complex
environments, such as warehouses or disaster response situations, which enhance opera-
tions and safety [22]. These recognition advancements support industries that emphasize



Micromachines 2024, 15, 1376 3 of 16

the need for development in automated image analysis in high-precision applications
concerning the quality needed in DoD EHD manufacturing and other specialized domains.

Advances in computer vision techniques, such as edge detection, pattern recognition
object detection, and image segmentation, have been broadly used in image processing
applications and can potentially address the issues mentioned above [23–26]. Therefore,
this work aims to develop an automatic quality analysis approach for DoD EHD printing.
Considering the fact that the EHD DoD printed dots do not have fixed shapes (e.g., circles
or ellipses), dot recognition in the proposed method does not rely on techniques that are
designed for fixed shape recognition, such as Fast Radial Symmetry Transform [27,28] and
Hough transform [29]. Specifically, we propose a feature-extraction technique that combines
edge and contour detection in image processing to address the challenges associated with
dot measurement in DoD EHD printing. Edge detection serves to identify intensity and
texture discontinuities that distinguish droplet boundaries from the background [30,31]. At
the same time, contour detection traces the entire closed shape of droplet outer boundaries.
By employing these techniques, it is possible to enhance the analysis and detection of
significant structural boundaries of individual EHD droplets and visualize them within
printed patterns. Using edge and contour representations enables accurate measurement of
essential features such as droplet sizes, morphology, spacing, and overall pattern configu-
ration. Developing integrated methods for detecting edges and contours helps overcome
resolution and precision limitations. Therefore, this work focuses on developing methods
to improve the sensing accuracy. The accuracy of the EHD printing droplet is enabled by
using the edge detection algorithm to enhance edges and the contour algorithm to detect
outlines to determine the shape and position of the droplets in the image and to analyze
the printed droplet during operations.

The proposed image processing method consists of three key steps: image pre-
processing with Canny edge detection, boundary detection and localization, and dot
distance calculation and categorization. In the pre-processing stage, images of DoD EHD
printing are first filtered for noise reduction and then processed with a Canny edge detector
to find the edges of the printed dots. Then, the detected edges are used as the input for
boundary detection to identify the centroid of each dot for dot size calculation. Finally, dot
spacings are calculated based on the distance of the identified centroids and categorized
using pre-chosen distance thresholds. This approach is entirely software-based and thus
does not involve manual handling. The proposed method was first tested using simu-
lated EHD printed droplet arrays with specified dot sizes and spacing, and the achieved
quantification accuracy was over 98% in analyzing dot size and spacing, highlighting
the high precision of the proposed approach. This approach was further demonstrated
through dot analysis of experimentally EHD-printed droplets, showing its superiority over
conventional microscope-based measurements.

The paper is structured as follows: The methodology is explained in Section 2.
Section 3 applies to the results of experimentation and discussion. The validation is pre-
sented in Section 5, while the conclusion is provided in Section 6.

2. Methodology

This study utilized feature extraction to identify and analyze microscale shapes of
DoD EHD printing, as well as to compute distance by integrating OpenCV packages with
Python 3.10 and executing the code with the PyCharm command prompt. The framework
is illustrated in Figure 1.
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Figure 1. Overview of the proposed framework for DoD EHD printing analysis. (a) The proposed
method takes a microscope image of printed droplets as the input, outputs the detection results, and
calculates the spacing of the dot size (area). (b) Visual analysis of the printing quality provides size
distribution of the printed dots. The x-axis represents the three categories of dot size range, and the
y-axis indicates the percentage within each size category.

2.1. Pre-Processing with Canny Edge Detection

The initial phase is to enhance the image’s features and reduce noise in order to facili-
tate the detection and analysis of the printed dots within the image, as illustrated in Figure 2.
First, the image contrast and brightness were adjusted through GUI trackbars [32–34] based
on user requirements, followed by the pre-processing procedures below.

Figure 2. An image (a) is used as input for the pre-proposed method; (b) is the image after applying
a Gaussian filter; (c) is the image after applying Canny edge detection; (d) is the image after applying
dilation and morphological closing.

Assumptions of Proposed Detection Techniques: The proposed detection techniques
assume that the printing environment is controlled and that image quality is sufficient for
accurate edge and contour detection. In particular, it is assumed that the images used in
the analysis have low noise levels and good lighting conditions to get better canny edge
detection and contour tracing results. Furthermore, the technique assumes that the printed
droplets exhibit consistent contrast against the substrate, which edge detection algorithm
can accurately differentiate between the edges of the dots and the background.

Noise Reduction via Image Filtering: This step implements an image filter, such as
a Gaussian filter, in order to achieve image smoothing, which is essential for minimizing
noise and eliminating irrelevant details from the input. A Gaussian filter is chosen as the
Gaussian noise, which is uniformly spread across the image and better reflects the actual
noise usually encountered in EHD printing images. Gaussian filtering provides effective
noise suppression while maintaining the integrity of the dot edges. The following Gaussian
filter formula is used to produce an output image with less noise [35].

G(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
, (1)

where x and y represent the distances from the origin along the horizontal and vertical
axes, respectively, and σ represents the standard deviation of the Gaussian distribution.

Edge Detection for Identifying Object Edges: Following image smoothing, the edge
detection approach is applied to identify the edges of the printed dots precisely. This
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step is crucial in the overall edge detection process and is achieved using the Canny Edge
Detection method [36–38], which consists of multiple steps, including the following:

• Apply the Sobel operator [39] to calculate the gradient’s magnitude (G) and direction
(θ) at every pixel.

G =
√

G2
x + G2

y , (2)

θ = tan−1
(

Gy

Gx

)
, (3)

where the gradients in the horizontal and vertical directions, denoted as Gx and Gy,
respectively, are calculated by the Sobel operator.

• Use Non-maximum Suppression [40] to narrow edge widths to a single pixel, retaining
only those pixels at the peak of the gradient magnitude.

• Apply Hysteresis thresholding to distinguish strong, weak, and non-edge pixels. This
step ensures that only strong and weak pixels connected to well-defined edges are
identified, i.e., true edges.

The threshold settings directly determine the edge detection sensitivity, influencing
the algorithm’s ability to distinguish true and false edges. They can be determined using a
trial-and-error method or histogram analysis. For this step, the input is the blurred image.
After processing, the output will have sharper and more connected edges. This is achieved
by applying non-maximum suppression and hysteresis thresholding techniques, as shown
in Figure 2c.

Enhancement of Detected Features Through Morphological Dilation and Clos-
ing: Dilation and closure are two morphological processes employed for image enhance-
ment [41], as depicted in Figure 2d. Dilation is used to increase the size of the edges by
adding pixels, which enhances the visibility of the image’s features. Subsequently, the
closing method applies morphological closure to connect small gaps and fill in holes in the
detected edges, leading to a more cohesive representation of the image’s features.

Algorithm 1 provides a clear plan for executing pre-processing procedures iteratively.
image by image. The final output of the pre-processing is an image with patterns with
well-defined edges and reduced noise, setting the foundation for detailed analysis next.

Algorithm 1 : Pre-possessing

procedure ANALYSIS(image, feature extraction)
import OpenCv Libraries
GUI trackars for Canny thresholds
Create placeholder windows for image
Create a trackbar to tune image edges

Create Pre-Processing Function
Define Pre-Processing function

Noise reduction
Edge detection
Dilation
Morphological closing

return closed
while True do

if webcam is capturing video from cameras then
load video

else if webcam is not capturing video then
load image from file
Pre-Processing (image)
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2.2. Boundaries Extraction and Localization

This phase executes dot analysis and localization by utilizing contour detection and
moment calculation. The principal aim of this enhanced methodology is to identify, analyze,
and approximate the centroid of dot shapes by employing their boundaries with significant
measure features. To achieve accurate identification and analysis of dot features, the
contour detection procedures (as shown in Algorithm 2) contain a combination of the
following steps.

Algorithm 2 : Boundaries and Localization

Apply Contours in the Image Preprocessed
Find Contours
Loop Over to Analyze Each Contour
for each detected contour do do

Contour area
Draw contour
Contour perimeter
Contour approximation
Calculate Centroid
Apply moments function to find shapes center
append shapes center coordinates

Dot identification through finding contour points: This step is to identify regions of
shapes or boundaries in the image improved from pre-processing. The “Find Contours”
function is used to extract the edges of dots within an image [42]. It involves extracting
the boundaries of the dot and saving them as an array that contains the coordinates of the
vertices. This enables the rendering of contours and the quantification of the dimensions
of each individual dot. By selecting the retrieval mode, the algorithm emphasizes the
detection of the most obvious external outlines. This is crucial for distinguishing individual
dots without considering their internal features.

Additionally, a contour approximation method is used to accurately capture every
point that lies on the boundary of the contour. This is essential for identifying all boundaries
in order to subsequently calculate the area of each dot. The contours are stored as a Python
list of NumPy arrays containing (x, y) coordinates that collectively define the entire contour.
This setup facilitates the process of identifying and preparing dots within the image for
further actions.

Dot area analysis through stored contour points: Analysis is then performed for
each detected contour. Specifically, a contour area function is used to calculate the area
of each dot, as indicated by its vertex coordinates, which are commonly located along the
boundaries of the dots. The dot area is calculated using the following Shoelace formula,
which entails summing the cross-products of consecutive vertex coordinates and dividing
the result by half [43].

A =
1
2

∣∣∣∣∣ n

∑
i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣, (4)

where A represents the area of the contour. The points (xi yi) and (xi+1 yi+1) are consec-
utive vertices of the polygon, and the summation is performed over all vertices of the
polygon. The absolute value is taken to ensure the calculated area is positive. This method
is particularly advantageous when it comes to precisely quantifying the areas of dots that
possess asymmetrical shapes.

Moreover, the “Draw Contour” function is applied to trace and outline the dots
(by connecting the counter vertices using eye-catching colors, as shown in Image Out-
put in Figure 1). This add-on feature is to enhance the demonstration of the proposed
method visually.
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Dot centroid through estimation of its center: Once the dot area is determined, the
next is to estimate the shape of the dot identified in an image and calculate the centroid.
This stage first uses the contour perimeter function to determine the perimeter of a con-
tour identified. Contour approximation is then applied for shape approximation of the
contour, resulting in a simpler dot shape with fewer vertices. An approximation parameter,
essentially a fraction of the contour’s perimeter, is used to determine how closely the
approximated shape should adhere to the contour [44].

Next, the centroids of the validated shapes are computed using the moments function.
The moment’s function is a statistical measurement that outputs the center, e.g., the geo-
metric center, of any validated shapes by calculating the coordinates of the center (cx, cy),
as follows:

cx =
M10

M00
, (5)

cy =
M01

M00
, (6)

where M10, M01, and M00 are the spatial moments of the shape.

2.3. Distance Estimation and Categorization

The quality of DoD EHD printing is closely related to the spacing of the printed
dot. The calculated centroids of the validated dots can be used for quantifying the dot
spacing and quality classification. Before proceeding with the printing quality analysis, the
centroids are sorted based on their coordinates and then stored in a list. The sorting process
makes sure the distances calculated are those of neighboring dots. The algorithm (see
Algorithm 3) then iterates through the sorted centroids, computes distances between them,
and outputs a table containing the distances between each pair of calculated distances.

Algorithm 3 : Distance and Categorization

The order of the shapes center on the list
Sort shapes center to list
for (i, center) in sorted centers do

Print(i + 1, center)
Calculate Distance Between Centroids
for i in range(length of sorted centers − 1) do

C1 = (sorted centers[i + 1][0] − sorted centers[i][0])
C2 = (sorted centers[i + 1][1] − sorted centers[i][1])
distance =

√
(C2

1 − C2
2)

Distance Categorization
if distance < 100 µm then

Classify as close distance
else if distance > 200 µm then

Classify as far distance
else

Classify as satisfied distance
Stack and display processed images in each stage
Apply image stacked function
Used image display function

Dot distance calculation: The primary analytical part of this step computes the
Euclidean distance between consecutive centroids from the sorted list. The calculation is
executed within a loop that iterates through the sorted centroids, utilizing the mathematical
formula for Euclidean distance, i.e.,

dij =
√
(cxi − cxj)2 + (cyi − cyj)2. (7)
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Dot Distance categorization: The calculated distances are categorized into three
distinct groups: close, far, and satisfactory. These categories are determined by user-selected
thresholds. If the distance is less than the chosen threshold’s lower bound, it is considered
to be close. If the distance remains within the threshold range, it is considered satisfactory.
If the distance exceeds the upper bound of the threshold, it is considered far. These
categories provide a simple yet effective way to present the printing quality and can help
in the printing parameter optimization. For example, too many “Close”/“Far” distances
indicate slow/fast lateral stage movements or high/low jetting frequencies during the
printing, respectively.

Displaying the quantification results: Besides the aforementioned dot analysis, the
proposed algorithm also displays the results for visual inspection and interpretation, which
include both the identified shape contour and centroid for each dot on the same image.

3. Experiments

The proposed algorithm was initially validated using artificially generated test images,
which contained dots with known sizes (areas) and spacing information. SolidWorks was
used to create these images (for two different printing patterns) of varied dot sizes and
spacings. The first test image (as shown in Figure 3), mimicking a line-by-line printing
pattern, contained 100 dots with different sizes and distances. Another test image used
a circular printing pattern, which had 12 dots, all with different sizes. The centroids of
neighboring dots along the printing direction were selected to determine the dot distances.
Moreover, for demonstration, the proposed approach was compared with the broadly used
microscope-based manual quantification method for analyzing experimental EHD DoD
printing results in terms of speed and accuracy.

Figure 3. Line dot printing pattern. (a) original pattern. (b) processed pattern.

In the experiment, a GaussianBlur filter with a kernel size of 7 × 7 was applied to the
images for optimal performance. We also used GUI trackers with pixel gradients ranging
from 220 to 255 for upper and lower thresholds. Note that the Canny threshold settings
can be determined using a trial-and-error method or histogram analysis. For dot distance
analysis, the distance threshold values were chosen as if the distance is less than 100 µm, it
is classified as “close”; if the distance is greater than 200 µm, it is classified as “far”; and for
distances between 100 µm and 200 µm, the classification is “satisfactory”. These distance
values were determined based on the desired printing requirement.

4. Results
Image Analysis Algorithm Validation

Validation for line pattern test image: Figure 3 shows the first test image, which
contains 100 circular dots with different sizes (radii ranging from 15 to 60 µm) and distances,
which mimics the lines printed by EHD DoD printing. Each column represents a printed
line, with sequential numbering from top to bottom. Figure 3a presents the original image
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pattern, while Figure 3b displays the image processed by the proposed analysis algorithm.
Once feature extraction was applied, the dots were identified and annotated, along with
their boundaries. This annotation helps in visualizing and verifying the accuracy of the
proposed approach and provides clear comparison information between the true and
estimated dot areas. Sizes of the dots were quantified as the dot areas, and the dot distances
were estimated as that of the centroids of neighboring dots along the printing direction
(top–down direction).

The proposed approach was able to quantify the dot sizes accurately. The overall
quantification accuracy for all 100 dots was 92.5 ± 3.9%. For example, Table 1 presents
data on generated dots with various radii ranging from 15 to 60 µm. It lists the true area
(i.e., π × radius2) and the calculated values using the proposed approach, along with the
calculation accuracy with respect to the true values. For instance, a circle with a radius
of 35 µm has a true area of 3848.45 µm2, and the estimated area of 3846.09 µm2 yields an
accuracy rate of 99.94%. For most of the dot sizes, the image processing algorithm yielded
similar area estimation accuracy. However, the area quantification error became notably
larger for smaller dots, such as the one with a radius of 20 µm. This discrepancy is primarily
due to the pixel-based detection mechanism of the algorithm, where the pixel-to-feature
size ratio significantly impacts the accuracy of smaller features. In such cases, even a single
miscounted pixel can lead to a notable percentage estimation error. This can be easily
avoided by capturing images with high-resolution cameras.

Table 1. Dot area calculation accuracy for simulated EHD DoD line pattern printing.

Dot Radius (µm) True Area (µm2) Estimated Dot Area (µm2) Accuracy %

1 30 2827.4 2880.1 98.1

2 35 3848.4 3846.1 99.9

3 40 5026.5 4952.7 98.5

4 45 6361.7 6159.2 96.7

5 50 7853.9 7491.6 95.1

6 25 1963.5 2081.1 94.3

7 20 1256.6 1396.4 89.9

8 15 706.8 837.8 94.3

9 55 9503.3 8959.5 93.9

10 60 11,309.7 10,581.7 93.2

The distance of the neighboring dots in each line (i.e., column) was quantified for
analyzing dot space as the assumed printing direction was vertical. The overall distance
quantification accuracy was high, 98 ± 1.6%. For example, Table 2 shows the distance
information of the dots labeled in Figure 3. The algorithm also classified the distance
based on pre-chosen criteria: dot spacing in the range of 100 to 200 µm was considered
satisfactory, for example. Furthermore, Figure 4 illustrates the dot distance analysis results,
which reflect the overall printing quality. Of the ninety distances quantified (ten lines and
ten dots in each line), sixty-eight of them satisfied the chosen criteria, four of them were too
close, and eighteen of them were too far. This information is important in optimizing the
EHD printing parameters, such as jetting frequency and stage moving speed.

Validation for circular pattern test image: Figure 5 shows the second test image,
with 12 dots, which mimics the circular pattern of EHD DoD printing (counterclockwise
direction). Figure 5a presents the original image pattern, while Figure 5b displays the
image processed by the proposed analysis algorithm. Sizes of the dots were quantified as
the dot areas, and the dot distances were estimated as that of the centroids of neighboring
dots along the printing direction (counterclockwise direction).
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Table 2. Dot distance calculation accuracy and categorization for simulated EHD DoD line
pattern printing.

Distance from Center to Center True Distance (µm) Estimated Distance (µm) Distance Profile Overall Accuracy %

1–2 83.9 82.1 Close 97.8

2–3 97.0 96.1 Close 98.9

3–4 100.3 99.2 Close 98.8

4–5 120.1 117.8 Satisfactory 98.0

5–6 123.3 120.9 Satisfactory 97.9

6–7 90.4 89.9 Close 99.3

7–8 80.6 79.0 Close 98.0

8–9 118.4 116.2 Satisfactory 98.1

9–10 156.2 153.4 Satisfactory 98.1

11–12 136.7 134.8 Satisfactory 98.5

Average 98.3 ± 0.4

Figure 4. Distance Quantification Analysis.

Figure 5. Circular dot printing pattern. (a) original pattern. (b) processed pattern.

The proposed approach was able to quantify the dot sizes accurately. The overall
quantification accuracy for all 12 dots was 98.8 ± 0.7%. For example, Table 3 presents
data on generated dots with various radii ranging from 6 to 12 µm. It lists the true area
(i.e., π × radius2) and the calculated values using the proposed approach, along with the
calculation accuracy with respect to the true values. For instance, a dot with a radius of
10 µm has a true area of 314.159 µm2, and the estimated area of 313.2576 µm2 yields an
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accuracy rate of 99.7%. The proposed algorithm yielded similar area estimation accuracy
for all dot sizes.

Table 3. Dot size calculation accuracy for simulated EHD DoD circular pattern printing.

Dot Radius (µm) True Area (µm2) Estimated Dot Area (µm2) Accuracy %

1 12 452.389 446.114 98.6

2 11 380.1 375.9 98.9

3 10.5 346.3 342.7 98.9

4 10 314.1 313.2 99.7

5 9.5 283.5 282.7 99.7

6 9 254.4 255.9 99.4

7 8.5 226.9 227.7 99.6

8 8 201.0 202.1 99.4

9 7.5 176.7 178.4 99.0

10 7 153.9 155.9 98.6

11 6.5 132.7 136.2 97.3

12 6 113.1 115.8 97.5

The distance of the neighboring dots along the counterclockwise printing direction
was quantified for analyzing dot spacing. The overall distance quantification accuracy was
94.7 ± 1.2%. For example, Table 4 shows the distance information of the dots labeled in
Figure 5. As can be seen in Table 4, the distance quantification also achieved high accuracy.

Table 4. Dot distance calculation accuracy for simulated EHD DoD circular pattern printing.

Distance from Center to Center Location (µm) True Distance (µm) Estimated Distance (µm) Overall Accuracy %

1–2 (364, 438) 37.06 39.02 94.7

2–3 (436, 671) 30.53 32.03 95.0

3–4 (625, 737) 28.10 29.53 94.9

4–5 (807, 768) 28.39 29.66 95.5

5–6 (992, 756) 34.31 36.09 94.8

6–7 (1201, 671) 39.05 40.86 95.3

7–8 (1291, 432) 38.87 40.73 95.2

8–9 (1184, 201) 25.90 27.19 95.0

9–10 (1033, 123) 29.00 30.29 95.5

10–11 (844, 112) 34.05 35.74 95.0

11–12 (621, 125) 30.15 31.63 95.0

12–1 (446, 217) 41.64 37.71 90.5

Average 94.7 ± 1.2

5. Discussion

After the accuracy of the proposed algorithm was validated, we demonstrated the
efficacy of this approach in analyzing experimental EHD DoD printed results and compared
it with the conventional manual microscope analysis method. The EHD DoD printed dots
are shown in Figure 6.

Traditionally, microscope analysis of EHD DoD printing is accomplished by manually
outlining the dot contours using default circular shapes, allowing the radius and area
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calculations as shown in Figure 6b. For the same image of printed dots, the proposed
analysis approach found the exact shape of the dots automatically using feature extraction
and edge detection methods to extract and trace boundaries, as shown in Figure 6c. During
the edge detection step, the image was processed to highlight the edges between the dots
and the background. Following edge detection, the borders of the dots were detected and
tracked. The contour points of the edges were then sorted into a vertex list containing the
boundary coordinates. The dot areas were then calculated. Meanwhile, a contour shape
was drawn to visualize the detected boundaries surrounding all connecting curves. It is
clear that the proposed approach is based on the true shape of the printed dots rather than
assuming circular shapes as in the conventional manual microscope method.

Figure 6. Experimental EHD DoD print result analysis. (a) The origin image of the printed droplet.
(b) The printed droplet was analyzed offline using a manual microscope approach. (c) The analyzed
image using the the proposed approach. (d) Detailed comparison of the two analysis methods.

A detailed comparison of the two methods is shown in Figure 6 and Table 5. For
example, ten dots were selected from the EHD DoD printing results image. The size
calculation comparison of these two methods is shown in Table 5. The manual microscope
results were generated by carefully outlining each dot from the experimental list and then
computing the area of the outline circles. Using the manual microscope result as a reference,
the dot areas quantified by the proposed approach are very close (see the last column of
Table 5). The manual approach could achieve accuracy because the experimental list drew
the circular outline to match the dot edge as closely as possible. However, there are cases
where the precision cannot be guaranteed.

As highlighted in Figure 6d, the yellow contour shows the undetected portion of the
dot on which the red circle was the manual detection result. This is because the accuracy of
this approach entirely relies on human eye inspection, and the detection is only restricted
to round circles. Therefore, the manual process may lead to an inaccurate estimation of
the dot shape and size. Moreover, such a detection usually takes at least several seconds
for each dot, thereby at least several minutes for the entire image. On the other hand, the
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proposed approach detected the dot based on its actual shape with no pre-defined profile,
and the detected contour precisely matched the edge of the dot. The close match of the
outline with the printed dot edge across all samples indicates high precision and reliability.
Analyzing the entire image only took a few milliseconds.

Table 5. Size Detection of EHD Printed dots.

Dot Microscope Radius (µm) Microscope Area (µm2)
Area from Proposed

Algorithm (µm2) Difference in Percentage %

1 47.90 7208.75 6885.90 95.3

2 56.80 10,135.65 10,422.83 97.1

3 59.86 11,255.59 11,800.95 95.1

4 63.54 12,682.60 12,537.01 98.8

5 63.59 12,704.69 12,875.63 98.6

6 54.96 9490.40 10,051.13 94.4

7 57.61 10,428.20 10,419.68 99.9

8 58.97 10,856.40 10,790.33 99.3

9 72.94 16,715.53 17,123.40 97.5

10 78.14 19,182.89 18,756.68 97.7

Therefore, the proposed approach outperforms the conventional manual microscope
analysis approach in terms of both accuracy and efficiency. To further improve the capability
of the proposed method, we will optimize the algorithm by exploring more shape detection
options, such as RANSAN [45], J-Linkage [46], and CNNs [47], to further improve its
quantification efficiency. It is noted that the proposed method is not limited to EHD DoD
printing results analysis. It can be easily adapted for any applications that involve isolated
pattern detection and size quantification.

Although the proposed method is demonstrated to have high accuracy under con-
trolled conditions, several limitations may impact its effectiveness in broader applications.
One major limitation is the dependence on high-quality imaging. Changes in lighting
conditions, focus inconsistencies, or picture resolution limits can affect the edge and con-
tour detection processes, potentially reducing accuracy. External conditions, for example,
temperature or humidity of the environment, could also further influence the formation
of the ink droplets, resulting in the shape of droplets that could make it difficult for an
algorithm to trace boundaries and centroid identification accurately.

6. Conclusions

This paper presented an algorithm that uses feature extraction techniques to ad-
dress the printing result analysis challenges of EHD DoD manufacturing. The proposed
technique, which employs edge and contour detection methods, facilitates significant im-
provements in detecting printed dot boundaries, resulting in high accuracies in dot size
and spacing quantification. The proposed approach was first validated using simulated
EHD DoD dot arrays. The achieved high accuracy in dot area and distance quantification
demonstrated the reliability of our approach. Comparison with the conventional manual
microscope-based method on EHD DoD-printed images further demonstrated the efficacy
of the proposed approach.

For future applications, the proposed method can be integrated into real-time EHD
printing systems to improve printing quality analysis. For example, the dot quantification
results obtained from the proposed algorithm can be used as the feedback data for closed-
loop EHD printing system control. The difference between the desired dot specifications
and the quantified results will be used by the controller to adjust the printing parameters
(such as jetting frequency/voltage, printing nozzle-substrate distance, and printing stage
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moving speed) to optimize the printing performance in real time. Potential challenges
involve computational speed optimization for achieving real-time processing and accurate
modeling of the printing parameters vs. dot specification relation. Future work will focus
on seeking both software and hardware approaches to address these challenges toward
real-time EHD DoD printing optimization.
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