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Abstract: This work’s objective is to investigate the laminar steady flow characteristics of non-
Newtonian nano-fluids in a developed chaotic microdevice known as a two-layer crossing channels
micromixer (TLCCM). The continuity equation, the 3D momentum equations, and the species
transport equations have been solved numerically at low Reynolds numbers with the commercial
CFD software Fluent. A procedure has been verified for non-Newtonian flow in studied geometry that
is continuously heated. Secondary flows and thermal mixing performance with two distinct intake
temperatures of nano-shear thinning fluids is involved. For an extensive range of Reynolds numbers
(0.1 to 25), the impact of fluid characteristics and various concentrations of Al2O3 nanoparticles on
thermal mixing capabilities and pressure drop were investigated. The simulation for performance
enhancement was run using a power-law index (n) at intervals of different nanoparticle concentrations
(0.5 to 5%). At high nano-fluid concentrations, our research findings indicate that hydrodynamic
and thermal performances are considerably improved for all Reynolds numbers because of the
strong chaotic flow. The mass fraction visualization shows that the suggested design has a fast
thermal mixing rate that approaches 0.99%. As a consequence of the thermal and hydrodynamic
processes, under the effect of chaotic advection, the creation of entropy governs the second law of
thermodynamics. Thus, with the least amount of friction and thermal irreversibilities compared
to other studied geometries, the TLCCM arrangement confirmed a significant enhancement in the
mixing performance.

Keywords: TLCC micromixer; chaotic advection; mixing energy cost; entropy generation and
irreversibilities

1. Introduction

Among the best working passive mixing strategies for enhancing flow mixing is the
chaotic advection strategy. The two-layer micromixer is a potentially chaotic geometry
that could provide a viable approach to enhance fluid kinematics and hydrodynamic
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performance in a 3D laminar steady flow. Many designs for applying chaotic advection to
passively increase fluid mixing have been provided empirically and numerically by some
researchers who have employed such geometry in their experiments [1–5]. Their results
show that when the Reynolds number rises, the micromixer’s mixing rate increases.

Various micromixers characteristics find extensive use in various industrial con-
texts [6–8]. In certain processes, mixing is crucial in the laminar regime at a low Reynolds
number. As a well-proven technique of enhancing mixing efficiency involves the utilization
of chaotic advection [9], the secondary flows that arise from it are quite strong and influence
homogenization at the microscopic level [10–12].

Growing interest in the topic of micromixing has been observed in recent years, which
involves the efficient blending of fluids on a small scale. This emerging field is driven
by the need for the accurate control and optimization of chemical reactions, as well as
the desire to reduce resource consumption and waste production [13]. This has led to the
improvement of innovative micromixers that aim to overcome the challenges posed by
laminar flow in microchannels [14,15].

Limited progress has been made in improving hydrodynamic and heat flux despite
insufficient flow mixing. Several research teams have used various advanced geometries to
increase the mixing hydrodynamic and heat transfer rate [16–22].

Furthermore, the use of nano-fluids has been explored as a means to improve the ther-
mal mixing efficiency of micromixers studied by Huminicet al. [23]. The implementation
of nano-fluids in micromixers offers an alternative to conventional thermal systems and
has the potential to significantly enhance their mixing efficiency. The literature review
suggested that the use of nano-fluids in micromixers could be a great substitution for
traditional thermal systems and an interesting topic for further research.

The incorporation of non-Newtonian nano-fluids, such as single-walled carbon
nanotubes–engine oil (SWCNT-EO) or molybdenum disulfide–polyethylene glycol Casson
nano-fluid, in micromixers represents a cutting-edge development in enhancing thermal
efficiency and minimizing pressure drops [23]. Understanding the behavior and characteris-
tics of non-Newtonian nano-fluids in micromixers is crucial for the engineering design and
optimization of different processes [24,25]. Hossainet al. [26,27] numerically illustrated the
mixing of two different fluids, water and dyewater, within an OH-shaped microstructure
using CDF software of version 2016y. Then, utilizing CFD code, they proposed a novel
complicated shape known as the SAR micromixer. Therefore, non-Newtonian nano-fluids
exhibit unique rheological properties due to the presence of nanoparticles, which can
significantly affect their flow pattern efficiency and mixing performance.

Researchers have experimentally improved different applied thermal engineering
systems [28,29] and numerically [30–37] to increase heat transfer efficiency. They have
employed efficient nanoparticles such CuO [35–37], H2O/SWCNT [35], and Al2O3 [30,31].
In comparison to an identical flow with 0% nano-concentration, the authors’ experimental
results demonstrate that the thermal conductivities of the nano-fluids are much stronger.
Xuan and Li [38] conducted an experimental investigation on the thermal performance of
nano-fluid whirling under wall heat transfer inside tubes. At a Cu nanoparticle concentra-
tion of 2.0%, the heat transfer coefficient to pure water increased by over 39%. Esmaeilnejad
et al. [39] studied the laminar convection flow system due to nano-shear within rectangular
microchannels. According to their obtained results, the pressure drop increases by about
50.7% and the thermal coefficient decreases by approximately 27.2% at a particle concentra-
tion of 4% and a Peclet number of 700. Karvelas et al. [40] conducted research on the ability
of heated water to mix when subjected to an electromagnetic field. Pouya [41] looked at
the mixing quality and heat transfer enhancement of a hybrid nano-fluid numerically for
various mixers. They discovered that the mixing rate grew with time for high Reynolds
numbers and constant frequencies. Increasing the heat transfer and lowering the pres-
sure drop, regarding entropy formation, numerous research teams employed numerically
complex geometries [42–46]. The entropy generation rate calculates the amount of energy
lost in a system as a result of irreversibility. The amount of entropy generated can be
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significantly influenced by a channel’s geometry. Moreover, the study of entropy genera-
tion in micromixers is crucial for understanding the efficiency of mixing processes at the
microscale. Entropy generation is a significant factor in assessing the overall performance
of micromixers, as it reflects the irreversibility of mixing processes and the associated
energy losses [47], especially when dealing with non-Newtonian fluids. By investigating
the entropy generation in micromixers for non-Newtonian fluids, researchers can develop
strategies to enhance mixing efficiency and reduce energy consumption, contributing to
the advancement of micro-fluidic technology [48].

Furthermore, various studies [49–51] have highlighted the significant impact of
nanoparticle concentration on entropy production in non-Newtonian fluid flows, indi-
cating an optimal volume fraction for minimizing irreversibility. By integrating these
findings into the evaluation of non-Newtonian nano-fluids in micromixers, a comprehen-
sive understanding of the interplay between fluid properties, heat transfer efficiency, and
entropy generation can be achieved.

A review provides insights into the fundamental mixing mechanisms of non-Newtonian
fluids in microscale channels, focusing on nano-enhanced fluids [52].

Various studies explain how different passive micromixer designs influence mixing
efficiency when using non-Newtonian nano-fluids, providing comparative data on mixing
performance across designs [53–56]. Researchers have explored mixing characteristics
in biomedical applications, focusing on non-Newtonian nano-fluids and addressing the
interaction between fluid properties and micromixer design.

In this research, we aim to examine the formation of entropy and the efficiency of
thermal mixing for a non-Newtonian nano-fluid within a novel micromixer referenced
in [25]. In recent years, micromixing has attracted considerable interest due to the need for
the accurate control and optimization of chemical reactions, along with efforts to decrease
resource usage and waste generation. Furthermore, the incorporation of nano-fluids is
viewed as a promising strategy to improve thermal mixing efficiency and reduce entropy
production in micromixers, providing a viable alternative to conventional thermal systems.
Through this research, we aim to contribute to the understanding of nano-fluid-based
micromixers and assess their potential as an alternative to traditional thermal systems,
thus paving the way for further exploration in this domain. The suggested micromixer’s
chaotic flow generation and thermal mixing performances were examined using a range
of nanoparticle concentrations and fluid behavior index values. The evaluation of the
mixing energy cost and fluid index homogenization will be conducted to obtain significant
energy efficiency and minimize the entropy generation. This research aims to enhance
the understanding of micromixers that utilize nano-fluids and evaluate their viability as
alternatives to conventional thermal systems, thereby encouraging further investigation
in this area. We analyzed the chaotic flow generation and thermal mixing performance of
the proposed micromixer by varying nanoparticle concentrations and fluid behavior index
values. Additionally, we will assess the mixing energy costs and the homogenization of the
fluid index to achieve improved energy efficiency and reduced entropy generation.

2. Materials and Methods
2.1. Problem Synopsis and Micromixer Design

In this study, a novel micromixer, a modified two-layer crossing geometry (TLCM),
was proposed. It was initially applied by Naas et al. [16] to accomplish higher mixing
performance for power-law non-Newtonian fluids under the influence of nano-fluid con-
centrations [57]. Figure 1 illustrates the TLCM geometry.

Two twisted channels make up the micromixer; a periodic chamber is made in the
arrangement of the lower and upper channels. The following mixing units are found
in multiple grooves that have been recreated. Table 1 displays the specific dimensions;
d represents the groove diameter, I is the distance among the inlets, D is the chamber
diameter, dhyd is the hydraulic diameter, and L* the geometry’s length. Tables 1 and 2 show
the non-Newtonian nano-fluid that was suggested.
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Table 1. Geometric parameters and their values.

Geometric Parameters Values

W = h 0.2 mm

D′ 0.8 mm

D* 0.2 mm

c* 0.1 mm

dhy 0.22 mm

C 0.6 mm

D 0.45 mm

H 0.4 mm

Table 2. Non-Newtonian Al2O3 nano-fluid rheological parameters [30,31].

Φ% m (Nsnm−2) n

1.0 0.00230 0.83

2.0 0.00347 0.730

3.0 0.00535 0.625

4.0 0.00750 0.540

5.0 0.01020 0.460

Different flow temperatures were proposed in the inlet sections with a constant velocity.
In addition to the no-slip borders, the outsides are considered adiabatic. The outflow
segment is where the pressure outlet condition is awarded. The formulae that follow
represent the governing equations [25,26] and were numerically solved by a CFD program:

div
→
V = 0 (1)

where
→
V represents the velocity vector.

⇀
V.

=
∇

⇀
V = − 1

ρn f

→
∇P + divτ (2)

where τ (Pa) and P represent the shear stress and pressure, correspondingly.

ρn f cn f
→
V.

→
∇T = λn f ∆T (3)

where λn f , T and ρn f are the conductivity, temperature, and density of the working nano-
fluid studied in this literature, respectively. A basic power-law equation can be used to
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describe the constitutive relationship between the shear rate γ (s−1) and shear stress τ (Pa),
as follows:

τ = m
.
γ

n (4)

where n and m represent the fluid behavior index and fluid consistency index.
The viscosity equation can be mathematically articulated by the following:

µn f = k
.
γ

n−1 (5)

The following boundary conditions are suggested:

1. A consistent velocity profile applied to the inlets’ flow.
2. At the inlets, the maximum and minimum temperatures are set at 300 and 330,

respectively.
3. The solid walls have non-slip properties.
4. The output section flow takes the pressure outlet condition into account.

2.2. Properties of Mass Transfer in Chaotic Flows

For power-law nano-fluids, the Reynolds number (Re) was defined as follows by
Metzner and Delplace [58,59] and used by Tayeb et al. [25]:

Re =
ρn f u2−ndn

hyd[
8n−1

(
b∗ + a∗

n
)nm

] (6)

The constant geometric parameters, a* and b*, have values of 0.6771 and 0.2121,
respectively. The mixing index is developed as follows in order to compare the micromix-
ers’performances [25,59]:

MI = 1 − σ

σ0
(7)

The standard deviation of the mass fraction is denoted as follows:

σ2 =
1
N

N

∑
i=1

(
Ci − C

)2 (8)

where N is the total number of sampling points in the transversal segment, the mass fraction
at the inspection point i is denoted by Ci, the ideal mixing mass fraction is denoted by C,
and the inlet section σ0 represents the standard deviation (SD). The maximum SD for the
data range is found using the formula below:

σ2
0 = C

(
1 − C

)
(9)

The evolutions of the mean vorticity rate ( Ωmean) in the micromixer as function of
the Reynolds number ranging from 0.5 to 25. This parameter is defined by the following
equations [18]:

Ω =
1
2

[(
∂w
∂y

− ∂v
∂z

)2
+

(
∂u
∂z

− ∂w
∂x

)2
+

(
∂v
∂x

− ∂u
∂y

)2
] 1

2

(10)

Ωmean =
1
0

∫
Ωd0 (11)

where 0 represents the total volume of the fluid in the channel.
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Better flow rates and energy consumption are correlated with a greater mass mixing
index. The estimation process needs to strike a compromise between the cost of mixing and
its input power efficiency (the energy required to move the fluid down the channel) [59]:

MMEC =
∆P × Q

MI
(12)

2.3. Properties of Heat Transfer in Chaotic Flows

With varying inlet temperatures, the coefficient of heat transfer, h, is expected to be
as follows:

h =
q′′

(Tb − TW)
(13)

where the heat flux of the wall is expressed as q′′ (w/m2), the average wall temperature
is defined as Tw (k), and the mean bulk temperature is called Tb(k). Thermal mixing is
measured by the thermal mixing index (TMI), which is calculated as follows for hot and
cold fluids.

TMI = 1 −

√
1
n ∑n

i=1
(
Ti − T

)2

σ0
(14)

where (T) is the average temperature at the chosen plane and on node I, and the average
temperature is denoted by Ti. Increasing flow rates and energy consumption are correlated
with best mixing indices. They are defined as follows [25] and must be evaluated to strike a
balance between the cost of thermal mixing and its value efficiency regarding input power
(the inertia required to push the fluid):

TMEC =
∆P × Q

TMI
(15)

Using the flow field’s temperatures and velocity distribution, one may ascertain the
irreversibility of the local entropy generation due to heat transfer (s′′′T ) and the irreversibility
of fluid friction (s′′′P ) in three dimensions of flow [48,60,61]:

s′′′T =
λ

T2

[(
∂T
∂x

)2
+

(
∂T
∂y

)2
+

(
∂T
∂z

)2
]

(16)

s′′′P =
µ

T

[
2

((
∂u
∂x

)2
+

(
∂v
∂y

)2
+

(
∂w
∂z

)2
)
+

(
∂u
∂y

+
∂v
∂x

)2
+

(
∂u
∂z

+
∂w
∂x

)2
+

(
∂v
∂z

+
∂w
∂y

)2
]

(17)

It is possible to calculate the total generation of the entropy within the fluid flow,
which aims to provide a brief explanation of fluid homogenization, in the following way:

s′′′gen = s′′′T + s′′′P (18)

The ratio of thermal to total losses is computed using the Bejan number [48,62]:

Be =
S′′′

T
S′′′

gen
(19)

2.4. Numerical Approach, Testing of Mesh Sensitivity, and Validations

With (FVM) finite volumes method-based ANSYS Fluent 16© CFD software [63], all
of the governing equations in this work were resolved in a laminar flow regime. For the
coupling of pressure and velocity, the SIMPLEC scheme was chosen. The mass and momen-
tum equations were found using a second-order upwind technique. It was confirmed and
simulated that the calculations would converge at 10−7 root mean square (RMS) residual
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values. As working fluids, non-Newtonian power-law fluids have been used for a range of
Al2O3 nanoparticle concentrations.

By altering the total number of cells, a quantitative grid test was conducted to assess
the sensitivity of the numerical outcomes. Four mesh grids, ranging from 100,000 to
800,000 nodes, were examined using unstructured mesh with homogeneous tetrahedral
cells of the mesh sizes 0.001 to 0.00011 mm; see Figures 2 and 3.
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The mixing index, which measures the efficiency of the mixing, was evaluated with
mass transfer distribution at the different outlet sections with an increasing number of mesh
cells, as shown in Figure 4. Also, Table 3 presents the pressure drop and standard deviation
of fluids to understand the mesh independent test. According to the mesh sensitivity
results, a grid of 600,000 cells corresponding to a mesh size of 11 µm was chosen.
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Table 3. Mesh sensitivity for the pressure drop and standard deviation of fluids.

Mesh Nodes Pressure Drop (Pa) Standard Deviation of Fluid

≈200.000 204.5 0.063

≈300.000 206 0.068

≈400.000 206 0.072

≈500.000 209.5 0.076

≈600.000 211.3 0.078

≈700.000 211.4 0.078

Error % 0.004 0.001

To confirm the accuracy of the numerical code, numerical simulations were confirmed
using a chaotic micromixer with obstacles [5] at a fixed Reynolds number, as shown in
Table 4. The difference in inaccuracy between Chia et al.’s results and our simulations was
found to be significantly less than 1%.

Table 4. Comparison of mixing efficiency with Lee et al. [5].

Re = 8 Mixing Efficiency %

Quantity of Obstacles 5 8

Experimental of Lee et al. [5] 60.80 82.07

Present simulation. 60.72 81.38

Error 0.13% 0.84%

Additionally, a quantitative numerical validation was conducted using the data from
Li et al. [64], and the findings show the heat transfer rate for non-Newtonian instances as
a function of different Reynolds numbers. Table 5 displays the results of an acceptable
comparison that showed good agreements among the outcomes.

Table 5. Reynolds number vs. heat transfer coefficient for a non-Newtonian scenario (n = 2).

Re Present Work
[w/m2.k]

Li et al. [64]
[w/m2.k] Error

15 19,958 16,643 0.199

20 24,092 21,284 0.131

90 48,311 49,130 0.016

110 55,761 56,600 0.014

220 82,456 82,963 0.006

3. Results and Discussion

This study delves deeply into the kinematic and thermal characteristics of the mixing
of non-Newtonian nano-fluids in a novel micromixer. Fluid mixing processes, mass transfer,
and the second law of thermodynamics are examined for a wide variety of low Reynolds
numbers, from 0.1 to 40.

3.1. Mass Transfer and Fluid Mixing Processing

Figure 5 displays the flow characteristics of the mass fraction among nano-fluids. The
fluid pattern is treated to various scenarios of fluid concentrations in order to comprehend
the evolution of visual blending in the new setup. We observe that, for all nano-fluid cases,
the fluid mixing increases with the Re. The new micromixers perform quickly in terms of
mass transfer as a result.
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For nano-fluids, kinematic behavior plays a significant role in improving homogeneity.
The micromixer has a low-pressure drop close to the outlet portion, as shown in Figure 6, but
it also features a single powerful vortex zone within each corner that increases the mixing
rate. Furthermore, the configuration’s structure and curvature allow us to observe that the
flow is more chaotic and dynamic, allowing for transfer effectiveness and guaranteeing a
superior homogenization quality.
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In addition, it is noteworthy that the path-line within the chosen new micromixer
generates a strong secondary flow and a reversed flow pattern, improving not only the
mass transfer efficiency but also assuring high-quality homogenization.

The fluids’ mass fraction distributions at different concentrations of nano-fluid (ϕ = 0.5
to 5%) are shown in Figure 7. Re = 0.5 to 25 represents these distributions at the micromixer’s
exit. It is observed that the micromixer’s crossing nodes encourage the growth in stretching
and compression within the cross sectional area, which, starting in the fourth phase of the
micromixer, leads to more uniform mixing.
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The mixing index generally rises for all Reynolds numbers in Figure 8, suggesting that
the two fluids become more homogenized and perform significantly better at mixing than
the shear thinning fluid with φ = 1%. The diffusion regime at very low Reynolds number
leads to much higher mixing index values for the micromixer.
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Figure 8. Improvement in mass mixing efficiency for varying Reynolds numbers and concentrations
of nano-fluids (ϕ = 0.5 to 5%).

Because of the extremely chaotic advection impact, the mixing of micromixers with a
high fluid concentration climbs to 93% for Re between 25. Since the nanoparticles alone
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are able to homogenize the flow, the Reynolds number is very low (Re < 5), and the flow
behaviors are ineffective in enhancing mixing (molecular diffusion predominates).

As the Reynolds number increases, the homogenization is more effective and the
mixing intensity rapidly develops. It should be noted that at high Reynolds numbers,
the nanoparticles work better and the mixing intensity builds up faster, allowing the
concentration to rise to the most selective mixing state. Furthermore, compared to the
situation of n = 0.88, it is seen that the suggested micromixer exhibits a 2.22% boost in
mixing intensity when the fluid behavior index drops to 0.46.

Table 6 illustrates the impact of Reynolds numbers on the vortex intensity of fluid
in five different nano-fluid cases. As the Reynolds number increases, for all micromixers,
it becomes clear that the flow strength also increases, resulting in higher kinetic energy
and strong chaotic advection. Consequently, both vorticity and secondary flow develop
rapidly with rising Reynolds numbers. For a specific Reynolds number, the dynamic
flow is similarly vigorous as φ decreases, contributing to the chaotic agitation within the
present micromixer.

Table 6. Assessment of vortex strength for different Reynolds numbers using various nano-fluid cases.

Re φ = 1% φ = 2% φ = 3% φ = 4% φ = 5%

5 12.457 0.0607 3.614 2.143 1.270

10 98.058 53.361 28.261 16.633 9.985

15 184.272 99.613 52.511 30.862 18.525

20 268.217 143.478 98.120 44.378 26.622

25 352.203 187.359 120.490 57.549 34.494

An analysis of the cost of combining energy MEC with several nanoparticle concentra-
tion scenarios for varying Reynolds numbers is presented in Figure 9. The projected cost of
mixing energy is expressed regarding input power (mW). Because the flow velocity directly
affects the rise in the flow rate, it is seen that the mixing energy cost increases for all scenar-
ios as the Reynolds number increases. This is because the flow velocity affects the thermal
and hydrodynamic conditions. This is a result of the pressure drop changing at a higher
order of magnitude than the mixing index changing as the Reynolds number increases. At
low Reynolds numbers, such as Re ≤ 10, the mixing energy cost is typically smaller.
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However, the mixing energy cost is highly dependent on the power-law index, and
its values decrease as the index or fluid concentration increases. This is related to the
rheological fluid behaviors, as an increase in the power-law index causes the apparent
viscosity to decrease, which in turn allows for easier fluid agitation. As a result, the mixing
energy cost drops, and the mixing index rises significantly.

Table 7 provides a comparison of the mass mixing energy cost (MMEC) for the proposed
micromixer alongside several recent micromixers across a range of Reynolds numbers.

Table 7. Comparison of mixing energy cost of micromixers.

Re MMEC [65] MMEC [66] Present MMEC

1 0.03 0.0013 0.0013

5 0.834 0.336 0.194

15 10.26 2.456 1.548

25 51.46 11.529 7.25

3.2. Heat Transfer and Thermal Mixing Mechanism

For a range of nano-fluid concentrations (ϕ = 0.5 to 5%), thermal mixing fluids within
cold and hot non-Newtonian nano-fluids are calculated. Referring to Figure 10, this is
accomplished by injecting the heated fluid at 330 K into one inlet and the cold fluid at 300 K
into the other.
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This section looks into the current micromixer’s mining energy cost and thermal
mixing capabilities. Its results are contrasted with those of more powerful micromixers. A
top view of the temperature contours for three different nano-fluid concentration scenarios
(ϕ = 0, 2.5, and 5%) for a Reg ranging from 0.1 to 25 is presented in Figure 10. When the
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Reg is more significant, the homogenization quality of the thermal mixing is stronger for a
specific value of the fluid behavior index or nano-fluid concentration.

As the number increases, the movement’s dynamic is greatly enhanced, the fluid
nanoparticles’ kinematics vary significantly, and the mixing intensity is raised.

The contours of heat mixing for varying fluid concentrations and Re are displayed in
Figure 11 to explain how heat transport is affected by secondary flux produced by eddies.
The figures show that homogeneity plays a significant role in the flow’s eddy zones. We
discovered from the results that the mixer is used to assess the thermal performance in every
situation. The fluids are thoroughly mixed and tend to homogenize as they move through
the geometry in the diffusion regime with Re = 0.5 because of the chaotic mechanism of the
fluid flow. It is evident that when φ = 5% there is a greater impact on the mixing process
and a higher level of homogeneity.
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Figure 11. Temperature distributions at the middle cross section using various Reynolds numbers at
fixed fluid concentrations and power-law indexes.

As shown in Figure 12, the thermal mixing index (TMI) is a measurement made in
the output fluid flow for different Re with the influence of nanoparticle concentrations. It
can be defined as the temperature variance divided by the mean temperature. The thermal
mixing capacities are enhanced in all Re situations; the maximum TMI is achieved at high
nano-fluid concentrations, the and TMI approaches 100% (complete mixing).
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Figure 12. Improvement in thermal mixing performance for several Reynolds numbers with variant
cases of nano-fluid concentrations (ϕ = 0.5 to 5%).

The ratio of the pressure drop to the mixing efficiency can be used to compute the
mixing cost. Not only higher flow rates but also higher energy consumption are generally
correlated with higher mixing indices, which increases the mixing cost needed to describe
the mixing performance. The energy cost of mixing generally rises with the Reynolds
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number. In addition, the size and form of the mixing vessel can have an impact on the
energy cost of mixing (see Figure 13).
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Figure 13. Growth in thermal mixing energy cost for numerous Reynolds numbers with different
nano-fluid concentrations (φ = 0.5 to 5%).

3.3. Thermodynamics and Entropy Generation Processing

In this section, we describe the creation of entropy resulting from heat transfer
and fluid friction, considering the influence of Reynolds numbers and varying nano-
fluid concentrations.

In chemical reactions, minimizing entropy can help in achieving more ordered states,
which often corresponds to higher yields of desired products. By optimizing conditions
(such as temperature and pressure) to favor lower entropy states, processes can become
more efficient. In addition, entropy minimization can be applied in the design of drug
delivery systems where the goal is to achieve targeted and controlled release. By creating
more ordered structures (like nanoparticles in this work), the stability and efficacy of drug
delivery can be enhanced, reducing wastage and improving therapeutic outcomes.

Because laminar flow has a relatively low micromixer geometry, the formation of local
frictional entropy is dependent upon it. More entropy is generated as a result of the inertial
force becoming more pronounced as the Reynolds values rise. Moreover, as demonstrated
in Figure 14, the entropy produced by fluid friction is marginally less in φ = 5% than in
other scenarios because of a greater associated pressure decrease. The effects of different
amounts of nano-fluid are negligible, though.
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A comparison of the entropy generation resulting from heat transfer with varying
values of φ and Re is shown in Figure 15. Regarding the micromixer, it is evident that in
all non-Newtonian fluid instances, the irreversibility of the thermal entropy generation is
smaller and its size diminishes with an increase in flow behavior (φ). Heat transfer entropy
formation rises with an increasing Re. These findings verify that by lowering Re and raising
n, the chaotic flow can successfully improve thermal performance. Low concentrations of
nano-fluid lead to the greatest development of entropy. These findings reaffirm that the
suggested chaotic micromixer can significantly improve heat mixing efficiency in terms of
irreversible heat flow.
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Figure 15. Effect of nano-fluid concentration on thermal entropy generation with various Reynolds
numbers.

Figure 16 displays the changes in the global entropy generation with φ for various
values of Re. As previously stated, in every scenario, the formation of total entropy increases
when Re rises with an increase in φ. The reason for this evolution is that the temperature
gradients in the flow increase.
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Figure 16. Effect of nano-fluid concentration on global entropy generation with various Reynolds
numbers.

The impact of Re on the mean Bejan number for each suggested nano-fluid concen-
tration is shown in Figure 17. It is proven that the mean Bejan number values are greater
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than 0.8. Therefore, in all non-Newtonian cases, heat transfer irreversibility dominates the
generation of entropy. The reason for this is that the gradients of temperature are greater
than those of velocity. In general, the fluid friction entropy generation is less significant,
which causes the suggested micromixer to have a larger mean Bejan number. Therefore,
increased process efficiency would come from the flow with high φ and Re.
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4. Conclusions

In conclusion, the use of non-Newtonian nano-fluids in a novel micromixer has
shown promising results in enhancing entropy generation and improving thermal mixing
efficiency. By harnessing the unique properties of these fluids at the nanoscale, such as their
tunable viscosity and improved heat transfer capabilities, our research has demonstrated
the potential for significant advancements in microscale mixing technology.

From this study, the following findings can be made:

1. Within the suggested micromixer, Reynolds numbers have a greater impact on the
hydrodynamic behavior of non-Newtonian nano-fluid.

2. For any situation where there is a concentration of nano-fluid, the micromixer gen-
erates strong secondary flows to improve the mixing quality. When compared to
the ideal scenario of a 5% nano-fluid concentration, the non-Newtonian fluid with a
concentration of =0.5% shows a reduced mass transfer.

3. The fluid flow mechanism of heat and mass transfer shows that the generation of
the vortex generated within the micromixer has a powerful impact as the Reynolds
number increases.

4. Increased secondary flow rates in the micromixer have a greater effect on decreasing
global entropy formation and increasing the thermal mixing degree.

5. The concentration of the nano-fluid affects the generation of heat transfer entropy for
all Re. As both Re and the flow behavior index (n) rise, so does the development of
frictional entropy.

6. In some applications where mixing efficiency is critical, the increased entropy genera-
tion seen in our studies suggests a higher level of disorder in the system, which can
be advantageous.

7. For the most ideal nano-fluid scenario in comparison to the other situations, the mean
Bejan number decreases with increasing values of Re.
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