Polarization-Dependent Anisotropy of LIPSSs’ Morphology Evolution on a Single-Crystal Silicon Surface
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology Evolution with Energy Density under Laser Irradiation at Different Polarization Angles
3.2. Polarization-Dependent Morphology Anisotropy of LIPSSs
3.3. Polarization-Dependent Period and Modified Width Anisotropy of LSFL⊥
3.4. Large-Area LIPSSs Arrays with Angled Stitching Based on Polarization Control
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonse, J.; Hohm, S.; Kirner, S.V.; Rosenfeld, A.; Kruger, J. Laser-Induced Periodic Surface Structures—A Scientific Evergreen. IEEE J. Select. Topics Quantum Electron. 2017, 23, 7581030. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; van Driel, H.M. Laser-Induced Periodic Surface Structure. I. Theory. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Bonse, J.; Rosenfeld, A.; Krüger, J. On the Role of Surface Plasmon Polaritons in the Formation of Laser-Induced Periodic Surface Structures upon Irradiation of Silicon by Femtosecond-Laser Pulses. J. Appl. Phys. 2009, 106, 104910. [Google Scholar] [CrossRef]
- Geng, J.; Yan, W.; Shi, L.; Qiu, M. Quasicylindrical Waves for Ordered Nanostructuring. Nano Lett. 2022, 22, 9658–9663. [Google Scholar] [CrossRef]
- Rudenko, A.; Mauclair, C.; Garrelie, F.; Stoian, R.; Colombier, J.-P. Self-Organization of Surfaces on the Nanoscale by Topography-Mediated Selection of Quasi-Cylindrical and Plasmonic Waves. Nanophotonics 2019, 8, 459–465. [Google Scholar] [CrossRef]
- Rudenko, A.; Abou-Saleh, A.; Pigeon, F.; Mauclair, C.; Garrelie, F.; Stoian, R.; Colombier, J.P. High-Frequency Periodic Patterns Driven by Non-Radiative Fields Coupled with Marangoni Convection Instabilities on Laser-Excited Metal Surfaces. Acta Mater. 2020, 194, 93–105. [Google Scholar] [CrossRef]
- Bonse, J.; Gräf, S. Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photonics Rev. 2020, 14, 2000215. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Liu, M.; Yang, D.; Li, F. A Review of Effects of Femtosecond Laser Parameters on Metal Surface Properties. Coatings 2022, 12, 1596. [Google Scholar] [CrossRef]
- Reif, J.; Costache, F.; Henyk, M.; Pandelov, S.V. Ripples Revisited: Non-Classical Morphology at the Bottom of Femtosecond Laser Ablation Craters in Transparent Dielectrics. Appl. Surf. Sci. 2002, 197–198, 891–895. [Google Scholar] [CrossRef]
- Borowiec, A.; Haugen, H.K. Subwavelength Ripple Formation on the Surfaces of Compound Semiconductors Irradiated with Femtosecond Laser Pulses. Appl. Phys. Lett. 2003, 82, 4462–4464. [Google Scholar] [CrossRef]
- Chen, L.; Cao, K.; Liu, J.; Jia, T.; Li, Y.; Zhang, S.; Feng, D.; Sun, Z.; Qiu, J. Surface Birefringence of Regular Periodic Surface Structures Produced on Glass Coated with an Indium Tin Oxide Film Using a Low-Fluence Femtosecond Laser through a Cylindrical Lens. Opt. Express 2020, 28, 30094. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, Y.; Xu, Y.; Zhang, S.; Feng, D.; Jia, T.; Sun, Z.; Qiu, J. Extremely High-Quality Periodic Structures on ITO Film Efficiently Fabricated by Femtosecond Pulse Train Output from a Frequency-Doubled Fabry–Perot Cavity. Nanomaterials 2023, 13, 1510. [Google Scholar] [CrossRef]
- Geng, J.; Shi, L.; Liu, J.; Xu, L.; Yan, W.; Qiu, M. Laser-Induced Deep-Subwavelength Periodic Nanostructures with Large-Scale Uniformity. Appl. Phys. Lett. 2023, 122, 021104. [Google Scholar] [CrossRef]
- Wagner, C.; Harned, N. Lithography Gets Extreme. Nat. Photon 2010, 4, 24–26. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.; Dai, H.; Yang, Z.; Chen, Z.; Wang, Y.; Chen, Y.; Peng, W.; Shan, W.; Duan, H. Recent Advances in Focused Ion Beam Nanofabrication for Nanostructures and Devices: Fundamentals and Applications. Nanoscale 2021, 13, 1529–1565. [Google Scholar] [CrossRef]
- Hong, Y.; Zhao, D.; Wang, J.; Lu, J.; Yao, G.; Liu, D.; Luo, H.; Li, Q.; Qiu, M. Solvent-Free Nanofabrication Based on Ice-Assisted Electron-Beam Lithography. Nano Lett. 2020, 20, 8841–8846. [Google Scholar] [CrossRef]
- Geng, J.; Xu, L.; Yan, W.; Shi, L.; Qiu, M. High-Speed Laser Writing of Structural Colors for Full-Color Inkless Printing. Nat. Commun. 2023, 14, 565. [Google Scholar] [CrossRef]
- Georgakopoulos-Soares, I.; Papazoglou, E.L.; Karmiris-Obratański, P.; Karkalos, N.E.; Markopoulos, A.P. Surface Antibacterial Properties Enhanced through Engineered Textures and Surface Roughness: A Review. Colloids Surf. B Biointerfaces 2023, 231, 113584. [Google Scholar] [CrossRef]
- Shen, Y.; Liang, L.; Zhang, S.; Huang, D.; Zhang, J.; Xu, S.; Liang, C.; Xu, W. Organelle-Targeting Surface-Enhanced Raman Scattering (SERS) Nanosensors for Subcellular pH Sensing. Nanoscale 2018, 10, 1622–1630. [Google Scholar] [CrossRef]
- Elshorbagy, M.H.; Sánchez-Brea, L.M.; Buencuerpo, J.; Del Hoyo, J.; Soria-García, Á.; Pastor-Villarrubia, V.; San-Blas, A.; Rodríguez, A.; Olaizola, S.M.; Alda, J. Polarization Conversion Using Customized Subwavelength Laser-Induced Periodic Surface Structures on Stainless Steel. Photon. Res. 2022, 10, 2024. [Google Scholar] [CrossRef]
- Bonse, J.; Kirner, S.; Griepentrog, M.; Spaltmann, D.; Krüger, J. Femtosecond Laser Texturing of Surfaces for Tribological Applications. Materials 2018, 11, 801. [Google Scholar] [CrossRef]
- Ferry, V.E.; Verschuuren, M.A.; Lare, M.C.V.; Schropp, R.E.I.; Atwater, H.A.; Polman, A. Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-Si:H Solar Cells. Nano Lett. 2011, 11, 4239–4245. [Google Scholar] [CrossRef]
- Bonse, J.; Kirner, S.V.; Krüger, J. Laser-Induced Periodic Surface Structures (LIPSS). In Handbook of Laser Micro- and Nano-Engineering; Sugioka, K., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–59. ISBN 978-3-319-69537-2. [Google Scholar]
- Le Harzic, R.; Dörr, D.; Sauer, D.; Neumeier, M.; Epple, M.; Zimmermann, H.; Stracke, F. Large-Area, Uniform, High-Spatial-Frequency Ripples Generated on Silicon Using a Nanojoule-Femtosecond Laser at High Repetition Rate. Opt. Lett. 2011, 36, 229. [Google Scholar] [CrossRef]
- Mezera, M.; Römer, G.R.B.E. Model Based Optimization of Process Parameters to Produce Large Homogeneous Areas of Laser-Induced Periodic Surface Structures. Opt. Express 2019, 27, 6012. [Google Scholar] [CrossRef]
- Bánhegyi, B.; Péter, L.; Dombi, P.; Pápa, Z. Femtosecond LIPSS on Indium-Tin-Oxide Thin Films at IR Wavelengths. Appl. Opt. 2022, 61, 386. [Google Scholar] [CrossRef]
- Fuentes-Edfuf, Y.; Sánchez-Gil, J.A.; Florian, C.; Giannini, V.; Solis, J.; Siegel, J. Surface Plasmon Polaritons on Rough Metal Surfaces: Role in the Formation of Laser-Induced Periodic Surface Structures. ACS Omega 2019, 4, 6939–6946. [Google Scholar] [CrossRef]
- Sedao, X.; Maurice, C.; Garrelie, F.; Colombier, J.-P.; Reynaud, S.; Quey, R.; Pigeon, F. Influence of Crystal Orientation on the Formation of Femtosecond Laser-Induced Periodic Surface Structures and Lattice Defects Accumulation. Appl. Phys. Lett. 2014, 104, 171605. [Google Scholar] [CrossRef]
- Crawford, T.H.R.; Botton, G.A.; Haugen, H.K. Crystalline Orientation Effects on Conical Structure Formation in Femtosecond Laser Irradiation of Silicon and Germanium. Appl. Surf. Sci. 2010, 256, 1749–1755. [Google Scholar] [CrossRef]
- Han, W.; Jiang, L.; Li, X.; Liu, Y.; Lu, Y. Femtosecond Laser Induced Tunable Surface Transformations on (111) Si Aided by Square Grids Diffraction. Appl. Phys. Lett. 2015, 107, 251601. [Google Scholar] [CrossRef]
- Jiang, L.; Han, W.; Li, X.; Wang, Q.; Meng, F.; Lu, Y. Crystal Orientation Dependence of Femtosecond Laser-Induced Periodic Surface Structure on (100) Silicon. Opt. Lett. 2014, 39, 3114. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser. ACS Nano 2009, 3, 4062–4070. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Lu, B.; Lv, J.; Wang, J.; Li, C.; Zhang, G.; Bai, J.; Stoian, R.; Cheng, G. Polarization-Dependent Anisotropy of LIPSSs’ Morphology Evolution on a Single-Crystal Silicon Surface. Micromachines 2024, 15, 200. https://doi.org/10.3390/mi15020200
Liu M, Lu B, Lv J, Wang J, Li C, Zhang G, Bai J, Stoian R, Cheng G. Polarization-Dependent Anisotropy of LIPSSs’ Morphology Evolution on a Single-Crystal Silicon Surface. Micromachines. 2024; 15(2):200. https://doi.org/10.3390/mi15020200
Chicago/Turabian StyleLiu, Mengting, Baole Lu, Jing Lv, Jiang Wang, Chen Li, Guodong Zhang, Jintao Bai, Razvan Stoian, and Guanghua Cheng. 2024. "Polarization-Dependent Anisotropy of LIPSSs’ Morphology Evolution on a Single-Crystal Silicon Surface" Micromachines 15, no. 2: 200. https://doi.org/10.3390/mi15020200
APA StyleLiu, M., Lu, B., Lv, J., Wang, J., Li, C., Zhang, G., Bai, J., Stoian, R., & Cheng, G. (2024). Polarization-Dependent Anisotropy of LIPSSs’ Morphology Evolution on a Single-Crystal Silicon Surface. Micromachines, 15(2), 200. https://doi.org/10.3390/mi15020200