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Abstract: A power amplifier (PA) stands as a central module within the electronic information system
(EIS), and any variation in a PA’s specifications has a direct impact on the EIS’s performance, especially
in the face of temperature fluctuations. In examining the influence of PA specification changes on
the EIS, we employed support vector machine (SVM) to model the behavior of the temperature
characteristics of 0.3–1.1 GHz complementary metal oxide semiconductor (CMOS) class-A broadband
PAs. The results show that the parameters of S11, S12, S21, and S22 can be effectively modeled. SVM
outperforms Elman and GRNN in terms of combined modeling time and modeling accuracy. This
research can be extended to modeling the behavior of other types of power amplifiers or devices
and circuits.

Keywords: PA; temperature; SVM; model; CMOS; class-A

1. Introduction

Modern wireless communications have revolutionized our lives, and they are also
becoming one of the critical supporting technologies in several areas of industry [1]. Power
amplifiers (PAs) are the most critical element of modern wireless communication systems
and significantly impact the performance of wireless communication systems [2]. PAs have
a significant temperature dependence [3,4]. The degradation of the PA specification can
lead to accelerated system failures if care is not taken to understand the effects of temper-
ature changes on the PA [5,6]. Therefore, to avoid the system’s failure, the temperature
characteristics of the PA need to be considered in advance during the optimization of the
system design. To understand the temperature characteristics of a PA, there is a need to
model the relationship between temperature variation and PA specifications.

Support vector machine (SVM) is a machine learning algorithm which was proposed
by V. Vapnik et al. in the 1960s [7,8]. SVM can be used to describe the relationship between
different variables. It is widely used in many fields as it minimizes real risk by seeking
to minimize structural risk and pursues optimal results under limited information con-
ditions [7,9]. For example, Chen et al. proposed a privacy-preserving medical diagnosis
scheme based on a multi-class SVM [10]. The scheme is based on the Distributed Double
Trapdoor Public Key Cryptosystem (DT-PKC) and the Boneh–Goh–Nissim (BGN) cryp-
tosystem. Chen et al.’s scheme can deal with both linearly divisible data and nonlinear
data, while preserving the privacy of the user’s data and support vectors. Chhavi Gupta
et al. used a supervised machine learning (ML) approach to create a predictive model for
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the degree of work–life balance (on a scale of 1–5) of female professionals in information
technology (IT) [11]. The results of the study showed that the optimized SVM model had
the highest accuracy in work–life balance prediction. In addition, Chhavi Gupta et al.
compared the predictive ability of the SVM model with that of the multiple regression
model. A comparison of these two prediction models revealed that SVM was more accurate
than multiple regression. Liu et al. proposed a self-induction method using a hybrid kernel
function fuzzy support vector machine (FSVM) displacement prediction model to solve the
problems of the large size, high cost, and low reliability of the displacement sensor in the
magnetic levitation bearing system [12]. The simulation results show that the performance
of the prediction model using the hybrid kernel function FSVM is significantly better than
that of the prediction model using other kernel functions, and the predicted values in the
x-direction and y-direction are about 93.35% and 95.5% of the actual values, respectively.
Amyloid-based diagnostic biomarkers and assays provide only limited information about
the disease process, and they are unable to identify diseased individuals before amyloid-β
accumulates in the brain in large quantities. Chima et al. developed a method for early AD
detection based on an SVM to identify potential blood-based, non-amyloid biomarkers [13].
Lu et al. has optimized the adhesive stamp mass transfer process for micro light-emitting
diodes (micro-LEDs) using a support vector machine (SVM) model [14]. And from them,
the separation speed and force between the stamp and the donor substrate were extracted
as signal features. Finally, the classification accuracy based on the SVM model reached
85%, which implies that a more complex definition of the signal features is needed in future
work. During the operation of an electric locomotive, a large amount of operational data
will be stored by the analog-to-digital converter (ADC) and recording oscilloscope of the
on-board traction control unit (TCU). It is of great significance to analyze data quality to
detect slippage for energy saving, performance improvement, and safety of the traction
control system of electric locomotives. Huang et al. proposed an SVM slippage detection
method based on the EWT and FE algorithms after analyzing and summarizing the advan-
tages of the Empirical Wavelet Transform (EWT) and the Fuzzy Entropy (FE) algorithms in
data processing, as well as the classification theory of the support vector machines (SVMs)
algorithm for SVM slip detection [15]. Brazil et al. developed an advanced method to
classify load–pull contours for broadband high-efficiency PA designs using the technique
of SVM [16]. This method achieves high efficiency and linearity over the entire operating
bandwidth. Shi et al. proposed a model for PAs by adding a decomposed vector rotation
(DVR) basis term to a support vector regression (SVR) model based on real-valued time
delays [17]. This model achieves more than a 2 dB improvement in normalized mean
square error (NMSE) and has better stability. Geng et al. proposed a PA model based
on amplitude and phase-augmented time-delayed dual SVR [18]. The proposed model
reduces CPU training time and provides efficient linearization performance with improved
generalization capability. In summary, SVM has shown good application prospects and
achieved remarkable results in many fields such as biology, medicine, electrical machinery,
information statistics, device modeling, and optimization. Therefore, the emergence of SVM
provides a new idea and opens up a new way to construct a nonlinear relationship between
the specification of radio frequency (RF) power amplifiers and temperature change.

In this paper, the authors applied SVM for modeling based on the measured data of
0.3–1.1 GHz CMOS PAs at three different ambient temperatures (−40 ◦C, 25 ◦C, 125 ◦C).
The experimental results show that the SVM can better describe the relationship between
the S-parameters of the PA and the temperature variation. Meanwhile, the authors also
compared the modeling results of SVM with those of Elman and Generalized Regression
Neural Network (GRNN). The comparison results show that SVM outperforms Elman and
GRNN under the combined consideration of modeling time and modeling accuracy.

The remainder of this paper is structured as follows: Section 2 introduces the meth-
ods; Section 3 explains the measurement environment and measured data for modeling;
Section 4 shows and discusses the modeling results; and Section 5 summarizes the work
conducted in this paper.
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2. Methodology

The SVM concept was first proposed in 1964 and then gradually theorized with the
progress of pattern recognition and became a part of statistical learning theory [8]. It
developed rapidly and derived a series of improved and extended algorithms in recent
decades. Except for modeling PA behavior, this method is widely used in mortality predic-
tion due to COVID-19 [19], coronary artery disease detection [20], wireless communication
channel scenarios identification [21], image classification [22], power quality disturbance
classification [23], etc. The regression is revealed as a branch of SVM. By creating a “margin”
besides the linear function, the SVM model skips calculating the loss for these samples
falling into it. The filtered support vector will impact its function and obtain the optimized
model by maximizing the margin correlating to the loss function.

The SVM employs the principle of structural risk minimization, enabling the better
avoidance of local optima and exhibiting lower generalization error. By utilizing a kernel
function, SVM maps nonlinear problems from low-dimensional space to high-dimensional
space, facilitating effective linear separation in the higher-dimensional realm and address-
ing complex nonlinear issues. Moreover, SVM demonstrates robustness against noise
and outliers in the training data, efficiently handling noise present in input data. As a
supervised learning algorithm, SVM exhibits excellent generalization performance in the
training and learning of small-scale samples. Considering the scale of the data in this paper,
SVM is chosen as the primary modeling method.

Here, we investigate the effect of SVM models on the behavioral modeling of the
temperature characteristics of CMOS class-A broadband PAs, and the experimental data
of a 0.3–1.1 GHz broadband PA are used as a modeling dataset. For the given training
datasets {(f 1, T1, S111, S121, S211, S221), (f 2, T2, S112, S122, S212, S222), . . ., (f m, Tm, S11m,
S12m, S21m, S22m)}, a regression SVM model f (x) = c·x+d is hoped to get as close to yi as
possible, where xi = (f i, Ti), yi = (S11i, S12i, S21i, S22i), f 1 is the frequency, and T1 is the
temperature. The weight factor c and the threshold value d will be determined during
the process. Considering a deviation of ε between f (x) and yi in our required limit, the
loss is calculated only if the absolute difference is greater than ε. The SVM model can be
formalized as:

min
w,d

1
2
||c||2 + R

m

∑
i=1

lε(G( fi, Ti)), S11i, S12i, S21i, S22i) (1)

where R is the regularization constant, and l is the ε-insensitive loss function shown in
Equation (2):

lε(z) =

{
0, |z| ≤ ε

|z| − ε, otherwise
(2)

Equation (1) can be rewritten by introducing the slack variables ζi and ζ̂i:

min
c,d,ζi ,ζ̂i

1
2 ||c||2 + R

m
∑

i=1
(ζi, ζ̂i)

s.t.
G(xi)− yi ≤ ε + ζi, yi − G(xi) ≤ ε + ζ̂i, ζi ≥ 0, ζ̂i ≥ 0, i = 1, 2, . . . , m.

(3)

The loss function is transformed into a simpler dual calculation by introducing La-
grange multipliers.

L(c, d, β, β̂, ζ, ζ̂, η, η̂)

= 1
2 ||c||2 + R

m
∑

i=1
(ζi + ζ̂i)−

m
∑

i=1
ζiηi−

m
∑

i=1
ζ̂iη̂i

+
m
∑

i=1
βi(G(xi)− yi − ε − ζi) +

m
∑

i=1
β̂i(yi − G(xi)− ε − ζ̂i)

(4)

where L is the Lagrange function, and ηi, η̂i, βi, and β̂i are the Lagrange multipliers.



Micromachines 2024, 15, 246 4 of 11

Assuming that the partial derivative of L(c, d, β, β̂, ζ, ζ̂, η, η̂) with respect to c, d, ζi, and
ζ̂i is set to zero, we can obtain:

c =
m

∑
i=1

(β̂i − βi)xi, (5)

Karush–Kuhn–Tucker (KKT) conditions should be met in the above process, namely

βi(G(xi)− yi − ε − ζi) = 0
β̂i(yi − G(xi)− ε − ζ̂i) = 0

βi β̂i = 0
ζi ζ̂i = 0

(R − βi)ζi = 0
(R − β̂i)ζ̂i = 0

(6)

The solution of the SVM model is shown in Equation (7).

G(x) =
m

∑
i=1

(β̂i − βi)xT
i x + d (7)

A robust approach is often adopted by averaging selected multiple samples that satisfy
the condition 0 < αi < R that can solve d. Considering the feature mapping form, then:

c =
m

∑
i=1

(β̂i − βi)ϕ(x) (8)

where ϕ(xj) is the kernel function.
The SVM model can be expressed as:

G(x) =
m

∑
i=1

(β̂i − βi)κ(xT
i x) + d (9)

where κ(xi
Tx) = ϕ(xi)T.

Compared with the general linear regression model, the SVM model creates a margin
only if the differences between G(f i, Ti) and (S11i, S12i, S21i, S22i) are greater than ε.
General linear regression optimizes the model by averaging after gradient descent, while
SVM optimizes the model by maximizing the width of the margin and minimizing the
total loss. Moreover, this model may be utilized as a powerful tool for modeling the
temperature characteristics of PAs based on the feature of continuously approximating the
nonlinear function.

3. Measurements

To investigate the effect of SVM on modeling for the temperature characteristics of
CMOS class-A broadband PAs, the temperature characteristics of a 0.3–1.1 GHz broadband
PA were measured. To obtain data for SVM modeling, the temperature characteristics of
this PA were measured in an experimental environmental chamber in this paper, and the
measurement environment is shown in Figure 1. A DC power supply from R&S and a
vector network analyzer (VNA) were used during the measurements. The DC power supply
provided the required DC bias for the PA, and the VNA was used for the S-parameter
measurements and data acquisition.
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Figure 1. Measurement environment: (a) PA to be measured; (b) measurement connection diagram.

This paper investigates the effect of SVM models on the behavioral modeling of the
temperature characteristics of CMOS class-A broadband PAs. The experimental data of a
0.3–1.1 GHz broadband PA are used as a modeling dataset. According to the input SVM
network, the input matrix is defined as

X =

 f1 T1
· · · · · ·
fm Tm

 (10)

where f 1 is the frequency and T1 is the temperature.
The output data are the characteristics of S11, S12, S21, and S22, which can be expressed as

T =

 S111 S121 S211 S221
· · ·

S11m S12m S21m S22m

 (11)

It should be noted that only ¾ (75%) of the measurements are used for modeling, and
this 75% is divided into training data (1/4, 25%) and validation data (1/2, 50%).

4. Results
4.1. S11

Figure 2 shows the modeling behavior of S11 at −40 ◦C, 25 ◦C, and 125 ◦C. The training
time of the model is about 13 ms at all three temperatures, and the test errors of the model
are 7.5948 × 10−2, 1.4313 × 10−1, and 2.3117 × 10−2, respectively. This indicates that for
the behavioral modeling of the temperature characteristics of S11, the model’s accuracy can
reach the order of 10−1 for all of them. However, in terms of model accuracy, the model
accuracy of S11 at −40 ◦C and 125 ◦C is an order of magnitude higher than that at 25 ◦C.
One possible reason for this is that the difference between the maximum and minimum
values of S11 at −40 ◦C and 125 ◦C is smaller than that at 25 ◦C.
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Figure 2. The results of modeling S11.

In the 0.3–0.75 GHz range, |S11| does not vary monotonically with temperature. For
example, from −40 ◦C to 25 ◦C, |S11| increases with temperature, while from 25 ◦C to
125 ◦C, |S11| decreases with temperature. In the range of 0.75 to 1.1 GHz, |S11| decreases
with increasing temperature. The main reason for this phenomenon is that during the
design process of the PA, the transistors and matching circuits are designed to consider
impedance matching at 25 ◦C only. When the temperature changes, especially at low
temperatures, the carrier mobility in the transistor increases with decreasing temperature,
making the impedance of the transistor deviate far from the design value at 25 ◦C, which
results in the variation in the characteristics of |S11| at −40 ◦C over the entire operating
frequency range, though this is not quite the same as those at 25 ◦C and 125 ◦C.

4.2. S12

Figure 3 shows the modeling behavior of S12 at −40 ◦C, 25 ◦C, and 125 ◦C. The model
accuracy of S12 at these three temperatures is 4.3359 × 10−1, 4.4285 × 10−1, and 1.6438,
respectively. From this, the model accuracy at the two temperatures of −40 ◦C and 25 ◦C
is one magnitude higher than that at 125 ◦C. One possible reason for this situation is that
the difference between the maximum and minimum values of S12 at 125 ◦C is greater than
the difference between the two temperatures of −40 ◦C and 25 ◦C. According to the model
results of S11 and S12, if the difference between the maximum and minimum values of S11
or S12 is larger, then the corresponding model accuracy error will also be larger.

In addition, it can be seen from Figure 3 that |S12| increases with temperature in
the frequency range of 0.3–1.1 GHz. This is different from the characteristic of |S11|
with temperature. Because |S12| and |S11| are not defined in the same way, when the
temperature changes, it does not necessarily produce the same phenomena as |S11| at −40
◦C. However, the impedance of the transistors and matching circuits are designed for 25 ◦C.
Therefore, when the temperature deviates from 25 ◦C, the value of |S12| will also deviate
from the original design value.
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4.3. S21

Figure 4 shows the modeling behavior of S21 at −40 ◦C, 25 ◦C, and 125 ◦C. The test
errors of the model at these three temperatures are 1.9177 × 10−1, 2.1655 × 10−1, and
4.2388 × 10−1, respectively. From this, the model accuracy of S21 reaches 10−1 at all
three temperatures. The difference between the maximum and minimum values of S21
is relatively small at all three temperatures. Therefore, there is no case of high errors at
individual temperature points as in S11 and S12. In addition, from a time perspective, the
training time of the model is about 13 ms at all three temperatures. This is the same as the
case of S11 and S12.
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As can be seen in Figure 4, |S21| decreases with increasing temperature. The main
reason for this phenomenon is that the carrier mobility in the transistor decreases with
increasing temperature. This is analyzed as follows.
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Transduction in the unsaturated regions [24,25].

gmL =
∂ID

∂VGS
=

WµnCox

L
VDS, (12)

And the carrier mobility versus temperature can be expressed as [26].

µn(T) = µn(T0)(
T
T0

)
−3/2

(13)

where W is the gate width, µn is the carrier mobility, Cox is the gate oxide capacitance per
unit area, L is the gate length, VGS is the gate voltage, VT is the threshold voltage, and VDS
is the drain voltage, T0 = 300 K.

According to Equations (12) and (13), the transconductance of the transistor decreases
with increasing temperature. And the transconductance is usually considered to be the
gain of the transistor [25]. Thus, it can be observed that the S21 of the PA degrades with
increasing temperature.

4.4. S22

Figure 5 shows the modeling behavior of S22 at −40 ◦C, 25 ◦C, and 125 ◦C. The
validation errors of the model at three different ambient temperatures are 1.8112 × 10−1,
1.9015 × 10−1, and 2.2803 × 10−1, respectively. From the time perspective, the time required
for model training at all three temperatures is about 13 ms.
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Figure 5. The results of modeling S22.

In addition, it can be seen that |S22| decreases with increasing temperature. This
is the same as the temperature-dependent characteristic of |S21|, but the exact opposite
of the temperature-dependent characteristic of |S12|. However, the main reason for the
change in |S22| with temperature is also due to the fact that the impedance matching at
25 ◦C was only considered during the design process. When the temperature changes,
the impedance will also change, which is reflected by the fact that each S-parameter will
deviate from the original design reference value. The specific trend of S11, S12, and S22 with
temperature changes needs to be specifically analyzed and discussed in conjunction with
their respective definitions, and it is also more complicated. The topic of this paper is to
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use SVM to model the measured data of RF PAs at different ambient temperatures, so we
will not discuss this again. In the future, the authors will also specifically address this issue
and report on the specific degradation trends and influencing factors.

To better evaluate the performance of the SVM method in modeling, we introduced
Elman [27] and the Generalized Regression Neural Network (GRNN) [28] methods that
are commonly used for PA modeling for comparison. The results are presented in Table 1.
From Table 1, it can be seen that SVM has the shortest modeling time and Elman has the
longest modeling time. The modeling accuracy of SVM is higher than Elman and GRNN.

Table 1. Modeling results of 0.3–1.1 GHz CMOS class-A broadband PAs.

Specification

0.3–1.1 GHz CMOS PA

Temperature
Training Time (ms) Training Error (MSE) Test Error (MSE)

SVM Elman GRNN SVM Elman GRNN SVM Elman GRNN

S11

−40 ◦C 13.1828 22.0649 14.5207 7.6094 ×
10−2

1.3545 ×
10−1

8.7519 ×
10−1

7.5948 ×
10−2

1.3329 ×
10−1

8.1818 ×
10−1

25 ◦C 13.1884 21.7823 14.4215 1.4338 ×
10−1

1.5737 ×
10−1

5.0432 ×
10−1

1.4313 ×
10−1

1.5638 ×
10−1

4.9011 ×
10−1

125 ◦C 13.3785 21.8585 14.4760 2.3635 ×
10−2

2.3901 ×
10−2

1.2462 ×
10−1

2.3117 ×
10−2

2.3299 ×
10−2

1.2311 ×
10−1

S12

−40 ◦C 13.0228 21.9445 14.2185 4.4906 ×
10−1 1.2736 5.8912 ×

10−1
4.3359 ×

10−1 1.2522 5.6253 ×
10−1

25 ◦C 13.1254 24.2897 13.2567 4.4344 ×
10−1

5.3769 ×
10−1

5.9591 ×
10−1

4.4285 ×
10−1

5.3987 ×
10−1

5.7790 ×
10−1

125 ◦C 13.1286 21.9958 13.5437 1.8640 1.9003 2.3674 1.6438 1.8353 2.9581

S21

−40 ◦C 13.2321 21.7983 13.3256 1.9315 ×
10−1

4.7687 ×
10−1

3.8398 ×
10−1

1.9177 ×
10−1

4.5078 ×
10−1

3.5495 ×
10−1

25 ◦C 13.3907 21.9360 13.4565 2.1798 ×
10−1

3.0310 ×
10−1

3.3669 ×
10−1

2.1655 ×
10−1

2.7566 ×
10−1

3.0555 ×
10−1

125 ◦C 13.335 21.8518 13.769 4.2989 ×
10−1

4.5583 ×
10−1

4.7763 ×
10−1

4.2388 ×
10−1

4.6239 ×
10−1

4.4368 ×
10−1

S22

−40 ◦C 13.1499 30.5666 15.0396 1.8651 ×
10−1

4.2107 ×
10−1

3.3053 ×
10−1

1.8112 ×
10−1

4.1284 ×
10−1

3.2324 ×
10−1

25 ◦C 13.3284 25.0988 14.0633 1.9128 ×
10−1

4.9093 ×
10−1

2.4705 ×
10−1

1.9015 ×
10−1

4.8292 ×
10−1

2.4147 ×
10−1

125 ◦C 13.1787 23.5633 13.9547 2.2977 ×
10−1

3.2298 ×
10−1

2.5628 ×
10−1

2.2803 ×
10−1

3.1423 ×
10−1

2.5102 ×
10−1

Table 1 shows that the SVM method performs well in the training and learning of
small-scale samples, showcasing good generalization performance.

5. Conclusions

In this paper, SVM is applied to model the S-parameters of 0.3–1.1 GHz CMOS with
measured data at different ambient temperatures. The modeling results show that SVM has
a high accuracy and fast modeling speed compared with Elman and GRNN. The results
of this paper show that SVM also shows good application prospects and achieves good
modeling results in the field of RF PA modeling.
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