Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.L.; Gao, C.Y.; Si, T.Y.; Li, Z.S.; Guo, B.; He, Q. Near-infrared light propelled motion of needlelike liquid metal nanoswimmers. Colloids Surf. A 2021, 661, 125865. [Google Scholar] [CrossRef]
- Walter, F.P.; Ayusman, S.; Thomas, E.M. Motility of Catalytic Nanoparticles through Self-Generated Forces. Chem. Eur. J. 2005, 11, 6462–6470. [Google Scholar]
- Zhang, J.H.; Laskar, A.; Song, J.Q.; Shklyaev, O.E.; Mou, F.Z.; Guan, J.G.; Balazs, A.C.; Sen, A. Light-Powered, Fuel-Free Oscillation, Migration, and Reversible Manipulation of Multiple Cargo Types by Micromotor Swarms. ACS Nano 2023, 17, 251–262. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, D.C.; Huang, X.F.; Yi, L.Z.; Liu, M.; Pan, L.Q. Ultrafast Bubble-Propelled and Magnetic-Field-Navigated Porous Catalytic Janus Micromotor. J. Nanosci. Nanotechnol. 2019, 19, 4154–4159. [Google Scholar] [CrossRef]
- Li, J.J.; Tan, W.H. A Single DNA Molecule Nanomotor. Nano Lett. 2002, 2, 315–318. [Google Scholar] [CrossRef]
- Orozco, J.; Allan, C.; Cheng, G.Z.; Sattayasamitsathit, S.; Gao, W.; Feng, X.M.; Shen, T.F.; Wang, J. Molecularly Imprinted Polymer-Based Catalytic Micromotors for Selective Protein Transport. J. Am. Chem. Soc. 2013, 135, 5336–5339. [Google Scholar] [CrossRef]
- Feng, Y.B.; Zhao, J.N.; Zhao, Z.H.; Chen, K.X.; Li, P.S.; Cong, J.W.; Pan, L.Q.; Liu, M.; Liu, Y.M. Cooperative behavior of miniature magnetic swimmers in uniform magnetic fields. Appl. Phys. Express 2023, 16, 067001. [Google Scholar] [CrossRef]
- Wang, D.L.; Gao, C.Y.; Wang, W.; Sun, M.M.; Guo, B.; Xie, H.; He, Q. Shape-Transformable, Fusible Rodlike Swimming Liquid Metal Nanomachine. ACS Nano 2018, 12, 10212–10220. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Li, T.L.; Xu, L.T.; Kiristi, M.; Liu, W.J.; Wu, Z.G.; Wang, J. Magneto−Acoustic Hybrid Nanomotor. Nano Lett. 2015, 15, 4814–4821. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Ge, D.Q.; Cong, J.W.; Piao, H.G.; Huang, X.F.; Xu, Y.L.; Lu, G.D.; Pan, L.Q.; Liu, M. Magnetically Powered Annelid-Worm-Like Microswimmers. Small 2018, 14, 1704546. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Xie, L.; Zeng, J.; Yan, M.; Qiu, B.L.; Wang, X.Y.; Zhou, S.; Zhang, X.; Zeng, H.; Liang, Q.R.; et al. Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Appl. Mater. Interfaces 2022, 14, 15517–15528. [Google Scholar] [CrossRef]
- Giardina, I. Collective Animal Behavior. Anim. Behav. 2011, 82, 608. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, G.Q.; Feng, Y.B.; Kuai, Y.B.; Chen, K.X.; Cong, J.W.; Piao, H.G.; Liu, Y.M.; Pan, L.Q. Highly Efficient Magnetic Propulsion of NiFe Nanorod-Based Miniature Swimmers in Three Dimensions. ACS Appl. Mater. Interfaces 2021, 13, 58898–58907. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.X.; Kuai, Y.B.; Cong, J.W.; Xu, Y.L.; Piao, H.G.; Pan, L.Q.; Liu, Y.M. Magnetically Powered Shape-Transformable Liquid Metal Micromotors. Small 2019, 15, 1905446. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; He, X.L.; Jiang, H.D.; Xing, Y.; Fu, B.; Hu, C.Z. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS Appl. Mater. Interfaces 2022, 14, 36027–36037. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Liu, D.; Hu, Y.P.; Su, Z.J.; Zhang, X.N.; Guo, R.R.; Li, D.; Lu, Y. Soft Magnetic Microrobot Doped with Porous Silica for StabilityEnhanced Multimodal Locomotion in a Nonideal Environment. ACS Appl. Mater. Interfaces 2022, 14, 10856–10874. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-J.; Mayorga-Martinez, C.C.; Vyskočil, J.; Častorálová, M.; Ruml, T.; Pumera, M. Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination. ACS Appl. Mater. Interfaces 2023, 15, 7023–7029. [Google Scholar] [CrossRef]
- Kichatov, B.; Korshunov, A.; Sudakov, V.; Petrov, O.; Gubernov, V.; Korshunova, E.; Kolobov, A.; Kiverin, A. Magnetic Nanomotors in Emulsions for Locomotion of Microdroplets. ACS Appl. Mater. Interfaces 2022, 14, 10976–10986. [Google Scholar] [CrossRef]
- Li, N.; Huang, G.W.; Liu, Y.; Qu, C.B.; Li, M.; Xiao, H.M. Performance Deficiency Improvement of CNT-Based Strain Sensors by Magnetic-Induced Patterning. ACS Appl. Mater. Interfaces 2023, 15, 5774–5786. [Google Scholar] [CrossRef]
- Huang, T.; Li, B.; Wang, H.; Granick, S. Molecules, the Ultimate Nanomotor: Linking Chemical Reaction Intermediates to their Molecular Diffusivity. ACS Nano 2021, 15, 14947–14953. [Google Scholar] [CrossRef]
- Liu, R.; Sen, A. Autonomous Nanomotor Based on Copper–Platinum Segmented Nanobattery. J. Am. Chem. Soc. 2011, 133, 20064–20067. [Google Scholar] [CrossRef] [PubMed]
- Mou, F.Z.; Li, X.F.; Xie, Q.; Zhang, J.H.; Xiong, K.; Xu, L.L.; Guan, J.G. Active Micromotor Systems Built from Passive Particles with Biomimetic Predator−Prey Interactions. ACS Nano 2020, 14, 406–414. [Google Scholar] [CrossRef]
- Karshalev, E.; Berta, E.D.; Wang, J. Micromotors for “Chemistry-on-the-Fly”. J. Am. Chem. Soc. 2018, 140, 3810–3820. [Google Scholar] [CrossRef]
- Wang, J.H.; Xiong, Z.; Liu, M.; Li, X.M.; Zheng, J.; Zhan, X.J.; Ding, W.T.; Chen, J.N.; Li, X.C.; Li, X.D.; et al. Rational Design of Reversible Redox Shuttle for Highly Efficient Light-Driven Microswimmer. ACS Nano 2020, 14, 3272–3280. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Castro, L.A.; Hoyos, M.; Mallouk, T.E. Autonomous Motion of Metallic Microrods Propelled by Ultrasound. ACS Nano 2012, 6, 6122–6132. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gradilla, V.; Orozco, J.; Sattayasamitsathit, S.; Soto, F.; Kuralay, F.; Pourazary, A.; Katzenberg, A.; Gao, W.; Shen, Y.F.; Wang, J. Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano 2021, 7, 9232–9240. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Wang, W.; Bai, L.J.; Gentekos, D.T.; Hoyos, M.; Mallouk, T.E. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors. ACS Nano 2016, 10, 4763–4769. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.L.; Soto, F.; Gao, W.; Dong, R.F.; Garcia-Gradilla, V.; Magaña, E.; Zhang, X.J.; Wang, J. Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. J. Am. Chem. Soc. 2015, 137, 2163–2166. [Google Scholar] [CrossRef]
- Lu, X.L.; Wei, Y.; Ou, H.; Zhao, C.; Shi, L.K.; Liu, W.J. Universal Control for Micromotor Swarms with a Hybrid Sonoelectrode. Small 2021, 17, 2104516. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Wang, D.; Gao, C.; Sun, M.; Wu, Z.; He, Q. Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angew. Chem. 2020, 59, 19884–19888. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, Z.; Zhu, R.T.; Wang, J.P.; Xu, P.Z.; Liu, J.Y.; Chen, X.W.; Yan, Z.Y.; Peng, Y.X.; Wang, Y.P.; et al. Ultrasonic Steering Wheels: Turning Micromotors by Localized Acoustic Microstreaming. ACS Nano 2023, 17, 4729–4739. [Google Scholar] [CrossRef] [PubMed]
- Athanassiadis, A.G.; Ma, Z.C.; Moreno-Gomez, N.; Melde, K.; Choi, E.; Goyal, R.; Fischer, P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem. Rev. 2022, 122, 5165–5208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhao, L.L.; Wei, M.S.; Wang, W. Twists and Turns of Orbiting and Spinning Metallic Microparticles Powered by Megahertz Ultrasound. ACS Nano 2017, 11, 12668–12676. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, J.; Liang, J.; Liu, Y.; Liu, C.; Liu, Y.; Xu, T.; Zhang, X. Ultrasound-enhanced catalytic hairpin assembly capable of ultrasensitive microRNA biosensing for the early screening of Alzheimer’s disease. Biosens. Bioelectron. 2023, 242, 115746. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Fan, C.; Song, Y.C.; Xu, T.L.; Zhang, X.J. Ultra-trace enriching biosensing in nanoliter sample. Biosens. Bioelectron. 2022, 210, 114297. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, M.Y.; Fan, C.; Song, Y.C.; Wang, L.R.; Xu, T.L.; Zhang, X.J. Active Enrichment of Nanoparticles for Ultra-Trace Point-of-Care COVID-19 Detection. Anal. Chem. 2023, 95, 5316–5322. [Google Scholar] [CrossRef]
- Louisnard, O. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation. Ultrason. Sonochem. 2012, 19, 56–65. [Google Scholar] [CrossRef]
Motion Behaviors | Morphology | Reference |
---|---|---|
Chain assembly and axial rotation, directional motion, and in-plane rotation | Microrods | [25] |
Directional motion | Microrods | [27] |
Gathering and transfer | Nanorods | [28] |
Disperse and aggregate | Microrods | [29] |
Self-organize | Microrods | [30] |
Self-rotation around a fixed axis | Spheric Janus | [31] |
In-plane rotation and spinning | Microrods | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Chen, J.; Zhan, G.; Gu, S.; Cong, J.; Liu, M.; Liu, Y. Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation. Micromachines 2024, 15, 262. https://doi.org/10.3390/mi15020262
Zhao Z, Chen J, Zhan G, Gu S, Cong J, Liu M, Liu Y. Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation. Micromachines. 2024; 15(2):262. https://doi.org/10.3390/mi15020262
Chicago/Turabian StyleZhao, Zhihong, Jie Chen, Gaocheng Zhan, Shuhao Gu, Jiawei Cong, Min Liu, and Yiman Liu. 2024. "Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation" Micromachines 15, no. 2: 262. https://doi.org/10.3390/mi15020262
APA StyleZhao, Z., Chen, J., Zhan, G., Gu, S., Cong, J., Liu, M., & Liu, Y. (2024). Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation. Micromachines, 15(2), 262. https://doi.org/10.3390/mi15020262