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Abstract: Capacitive micromachined ultrasonic transducer (CMUT) has been widely studied due
to its excellent resonance characteristics and array integration. This paper presents the first study
of the CMUT electrostatic stiffness resonant accelerometer. To improve the sensitivity of the CMUT
accelerometer, this paper innovatively proposes the CMUT ring-perforation membrane structure,
which effectively improves the acceleration sensitivity by reducing the mechanical stiffness of the
elastic membrane. The acceleration sensitivity is 10.9 (Hz/g) in the acceleration range of 0–20 g, which
is 100% higher than that of the conventional CMUT structure. This research contributes to the acceler-
ation measurement field of CMUT and can effectively contribute to the breakthrough of vibration
acceleration monitoring technology in aerospace, medical equipment, and automotive electronics.

Keywords: CMUT; accelerometer; acceleration sensitivity; ring perforations

1. Introduction

With the increasing demand for miniaturization, low power consumption, and mul-
tifunctional sensors, MEMS sensors have become a popular research direction due to
the advantages of microelectromechanical system devices, such as their miniaturization,
low power consumption, batch fabrication [1], high degree of integration, and ability to
measure multiphysical quantities, which can reduce size and mass without sacrificing func-
tionality [2]. Micro-machined accelerometers include several types, such as piezoresistive,
capacitive, piezoelectric, and resonant accelerometers. Among many MEMS accelerometers,
resonant accelerometers have the advantages of high measurement accuracy, strong anti-
interference ability, and better long-term stability than other types of sensors. They have
been extensively researched in recent decades [3–5], including medical devices, consumer
electronics, aerospace, and automotive electronics [2,4,6].

Due to the proven potential of widely applied resonant accelerometers, the rapidly
advancing CMUT (capacitive micro-machined ultrasound transducer) sensor, as one of the
members of the resonant sensor category, is introduced for the first time in this paper for
application in acceleration measurement. CMUT-based accelerometers, based on capacitive
micro-machined ultrasound transducer technology, are more conducive to achieving large-
scale integration and simultaneous measurement of multiple physical quantities due to their
composition of multiple resonant units. Thanks to their multiple resonators, they exhibit
higher stability during testing [7] and enhanced resistance to interference. Additionally,
CMUT accelerometers, driven by electrostatic forces, offer an output range unrestricted by
the power supply voltage [1]. Therefore, CMUT-based accelerometers can emerge as robust
candidates for MEMS (microelectromechanical systems) resonant accelerometer systems.
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The initial intention of the capacitive microelectromechanical ultrasonic transducer
(CMUT) is to achieve a working frequency range in the MHz range. It is widely used as
a resonant element for biomedical detection, ultrasound imaging, and viscosity measure-
ment. Based on the significant advantages of CMUT, people have gradually considered
expanding its applications to include the detection of pressure, humidity, gas density, etc.
The capacitive micromachined ultrasonic transducer (CMUT) can be equated to a parallel
plate capacitor [4,8–10]. When a DC bias voltage is applied to an elastic plate with fixed
edges, the elastic plate deforms, resulting in a change in resonant frequency.

Numerous studies have been conducted to address this phenomenon, such as the
capacitive micromachined ultrasonic transducer (CMUT)-based resonant chemosensors
proposed in 2011 and 2018 [1,11]; the effect of electrostatic force and uniform hydrostatic
pressure on the resonant frequency of edge-fixed circular microplates was investigated
in 2013 [12]; a dual-frequency capacitive micromachined ultrasonic transducer (CMUT)
pressure transducer capable of detecting two pressure ranges was proposed in 2019 [5];
a biomolecule weight detection sensor based on a capacitive micromachined ultrasonic
transducer (CMUT) was proposed in 2014 [13]; a (CMUT) gas sensor for detecting CO2
concentration was investigated in 2016 [14]; and a humidity sensor based on a capacitive
micromachined ultrasonic transducer (CMUT) was proposed in 2019 [15,16].

With the emergence of more and more capacitive micromachined ultrasonic trans-
ducer (CMUT)-based transducers, more extensive research on CMUT-based transducers
is needed to realize highly integrated and multifunctional CMUT transducers. Due to
the relatively small thickness of the designed membrane structure, the process of etch-
ing to form a ring-perforation structure on the silicon membrane presents significant
challenges. This paper primarily investigates the CMUT (capacitive micro-machined ultra-
sound transducer) accelerometer through finite element simulation, utilizing the COMSOL
Multiphysics simulation software. The study focuses on an array-type sensor capable of
measuring acceleration. Initially, the operational principles of the CMUT accelerometer
are theoretically analyzed. Subsequently, a finite element model is established to analyze
the frequency response of the CMUT unit under applied loads. Structural optimization is
then conducted. To enhance the sensitivity of the CMUT accelerometer, a ring-perforation
structure in the membrane is proposed in this study. By creating finite element models
with varying perforation numbers, radii, and positions, the impact of the ring-perforation
structure on acceleration sensitivity is investigated. Detailed analyses are provided for
the number, radius, and position of the ring perforations. The ring-perforation structure
aims to increase acceleration sensitivity by reducing the effective thickness of the elastic
membrane and consequently lowering its mechanical stiffness. The paper also conducts a
comparative analysis between the traditional structure of the CMUT accelerometer and the
ring-perforation structure.

2. Theoretical Analysis of CMUT Acceleration Sensor

This paper designs a CMUT sensor for detecting acceleration. The CMUT single-cell
structure is shown in Figure 1. The CMUT cell structure is similar to a flat capacitor
structure, consisting of metal electrodes (including top and bottom electrodes), a vibrating
membrane, edge support, a cavity, an insulating layer, a substrate, etc. CMUT sensors are
composed of a parallel connection of different numbers of cell structures. When a DC and
AC voltage is applied to the CMUT device, the elastic membrane of the CMUT vibrates.
When an external load (such as acceleration) is applied to the CMUT device, the resonant
frequency of the CMUT device changes. The vibrating film of a capacitive micromachined
ultrasonic transducer (CMUT) belongs to a circular elastic thin plate [17–19], and the
elastic stresses generated inside the film cause the strain of the vibrating film and cause
it to vibrate after deformation by force. Thin plate vibration is an important problem in
engineering practice. In the analysis of the vibration characteristics of elastomers, CMUT
elastic film vibration displacement, velocity and natural frequency, and other characteristics
can be obtained.
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Figure 1. Schematic diagram of parallel plate capacitor under electrostatic force.

In the free vibration problem of a thin plate, the plate is in equilibrium under a certain
transverse load. The plate deviates from the equilibrium position under external disturbing
forces (acceleration and pressure). When the external disturbing factors are removed, the
plate vibrates with a slight amplitude near the equilibrium position. The fixed electrode and
the microplate in the balanced plate capacitor model are equivalent to a pair of conductive
electrode plates. When a voltage V is applied between the two plates, the two plates are
subjected to a distributed electric field force. The governing equations for the bending of
the thin plate are as follows [5,9,20,21]:

m
..
x + c

.
x + kx = Q(t) (1)

In Equation (1), Q(t) represents the electrostatic force. Q(t) = εAV2(t)
2(g−x)2 . According to

Equation (1), the following is when the acceleration is zero:

1
2

εAV2

(g − x)2 = k · x (2)

The following is when the acceleration is not equal to zero:

1
2

εAV2

(g − x − ∆x)2 = k(x − ∆x)− m · a (3)

In Equation (1), (x − ∆x) represents the displacement of the elastic membrane when
the acceleration is not equal to zero.

In Equation (1), k is the mechanical stiffness of the elastic membrane plate, c is its
equivalent damping coefficient, and m is the mass of the elastic membrane plate. In the
sealed air-cavity CMUT structure, gas introduced between the moving surface and the
fixed surface leads to the introduction of membrane damping [22–24]. The air between the
plates affects the system by increasing its stiffness and damping [25,26]. Therefore, it is
necessary to consider the influence of membrane damping. The structure depicted in this
paper consists of parallel plates with an inflatable cavity, and the governing differential
equations for motion can be expressed as the following [27]:

m
..
x + c

.
x + (k + kS)x = Q(t) (4)

Here, kS represents the air spring constant, and as described by Ayrat Galisultanov
et al.in this paper [27]. The expression for kS is as follows:

Ks =
PaA

g
fd(σ) (5)

In Equation (5), Pa is the ambient pressure, A is the area of a single cell, and g is
the height of the cavity. In this approach, we assume the sealed circular plate has no
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viscous damping [25], meaning fd(σ) = 1. The intrinsic resonance frequency of the elastic
membrane plate when no external load is applied is as follows:

f0 =
1

2π

√
k
m

(6)

The resonant frequency after considering the spring softening due to electrostatic
forces and the damping effect of membrane compression is as follows:

fe =
1

2π

√
k − ke − kS

m
(7)

In Equation (7), Ke =
εAV2(t)

g3 . From Equation (7), it can be seen that after the electro-
static force is applied, due to the electrostatic force, the membrane plate produces the ‘soft
spring effect’ resulting in the resonance frequency shift. When the acceleration is zero (only
the electrostatic load is applied), the resonant frequency of the membrane becomes smaller
due to the ‘soft spring effect’ effect. When the acceleration is not zero, and the amplitude of
the DC bias is much larger than the amplitude of the AC voltage, the frequency fe of the
membrane can be expressed as the following:

fe =
1

2π

√√√√ k − kS − εAV2

(g−(x−∆x))3

m
(8)

Simplified Equation (8) is as follows:

fe =
1

2π

√√√√√ k − kS − εAV2(
g−x)3

(
1−−∆x

g−x

)3

m
= f0

(√
1 − β− γ

(1 − φ)3

)
(9)

In Equation (8), K′
e is the corresponding electrostatic stiffness, and f 0 is the intrinsic

mechanical frequency:

γ =
K’

e
k

, f0 =
1

2π

√
k
m

, x =

εAV2

2g2

k − εAV2

g3

=
keg

2(k − ke)
, −∆x =

m · a
k − ke

(10)

Ke =
εAV2

g3 , Ke
’ =

εAV2

(g − x)3 =
Ke(k − Ke)

k − 1.5Ke
, β =

kS
k

(11)

φ =
−∆x
g − x

=
2mga

2kg2 − 3εAV2

g

=
2ma

g(2k − 3Ke)
(12)

The following is further simplifying Equation (9):

fe = f0

(√
1 − β− γ − 3

2
γ√

1 − β− γ
φ + 0

(
φ2

))
(13)

Acceleration sensitivity S is an important metric for evaluating accelerometer perfor-
mance. The unit is Hz/m/s2. The following is according to its definition:

| S |≈ δ f
δa

= f0

(
−3γ√

1 − β− γ

m
g(2k − 3Ke)

)
(14)

Through finite element simulation, a CMUT array sensor designed for detecting
acceleration is developed, with an acceleration measurement range of 0–20 g. Based on
the CMUT structure, a schematic diagram of the parallel plate capacitor is illustrated in
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Figure 1. From top to bottom, it consists of an Al metal electrode, Si elastic membrane,
cavity, SiO2 insulation layer, and Si substrate. As the structural unit is circular, the Si elastic
membrane has a radius (R), thickness (h), and cavity height (g). The overall structure has a
radius of R. The overall parameters of the CMUT structure are shown in Table 1, primarily
detailing various parameters of the Si membrane material, such as structural dimensions,
Young’s modulus (E), Poisson’s ratio (ν), and material density (ρ).

Table 1. Material properties and structural parameters of Si elastic membrane.

Parameter Value

Radius R 170 µm
Thickness h 1 µm

Poisson’s ratio v 0.29
Separation distance g 0.2 µm
Young’s modulus E 169 GPa

Density ρ 2.332 kg/m3

Acceleration Sensitivity 5.4 (Hz/g)

In this section, an analysis of the acceleration sensitivity of the traditional CMUT
structure is conducted. Traditional CMUT structures typically feature a vacuum cavity.
The CMUT accelerometer structure designed in this paper, however, incorporates an air
cavity. As shown in Table 1, the membrane thickness h in the structure is 1 µm, and the
acceleration sensitivity is 5.4 (Hz/g). To enhance the acceleration sensitivity of this sensor,
the third section of this paper introduces a ring-perforation structure.

3. The CMUT Ring-Perforation Membrane Structure Study

To enhance the acceleration sensitivity of the CMUT accelerometer, this paper proposes
a ring-perforation CMUT structure. The sensitivity of the CMUT sensor is related to the
inherent structural stiffness. By reducing the mechanical stiffness k of the membrane, the
acceleration sensitivity can be improved. The inherent mechanical stiffness of the CMUT
vibrating membrane is given by the following:

k =
192πD

R2

where D = Eh3

12(1−V2)
. By altering the equivalent thickness of the upper flexible electrode,

namely the elastic membrane, the structural stiffness k can be reduced, leading to an
increase in acceleration sensitivity due to the decrease in mechanical stiffness.

Through finite element simulation, the acceleration sensitivity of the structure is
studied by establishing a ring-perforation structure, as shown in Figure 2. As depicted,
initially, a traditional CMUT structure with a radius of 170 µm, membrane thickness h = 1
µm, and cavity height g = 0.2 µm is created. Subsequently, perforations are introduced into
the membrane. In the traditional fabrication process, this step involves patterning through
photolithography and subsequently employing deep silicon etching on the membrane
surface. In the creation of the three-dimensional model presented in this paper, the circular
perforations surround the center of the membrane in a 360◦ fashion and are evenly arranged
in two circles on the membrane. In the finite element simulation, the electromechanical
coupling physical field is applied, along with acceleration trostatic loads. In the solid
mechanics module, the structure needs to be fixed around its perimeter. Finally, simulation
calculations are performed for its characteristic frequencies.
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Figure 2. Three-dimensional structure of the CMUT cell ring-perforation membrane structure.

To study the effect of the ring-perforation membrane structure on acceleration sensi-
tivity, this paper considers the number of perforations, the radius of the perforations, and
the position of the perforations from three aspects. Firstly, to ensure that all the structures
can work properly in the simulation process, it is necessary to ensure that a reasonable
voltage is selected. In the simulation of the ring-perforation membrane structure, 1.6 V is
selected as the applied voltage. Under this, all the structures can work normally, and the
membrane deflection does not exceed the maximum deflection. Considering the stability
of the structure and the possibility of process realization, the thickness of the perforations
is chosen to be 0.5 µm. Next, the number of perforations, the radius of the perforations,
and the position of the perforations from three aspects were studied.

3.1. Analysis of the Effect of the Number of Perforations on Acceleration Sensitivity

In this section, the study investigates the influence of the number of perforations on
the acceleration sensitivity of the structure. The perforations are uniformly distributed in
a circular pattern around the center of the unit. For structures with different numbers of
perforations, the angular spacing between circular perforations varies. In a single struc-
tural model, the angular spacing between circular perforations is kept constant. Figure 3
illustrates schematic diagrams of two-dimensional structures with different numbers of
perforations, specifically 6, 12, and 24.
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In this study, it is necessary to ensure that the working voltage is certain to prevent the
structure from being damaged due to excessive voltage, and 1.6 V is taken as the applied
voltage. In addition to this, the effect of the number of perforations on the acceleration
sensitivity of the structure needs to be ensured that the radius of the perforations, as well
as the position of the perforations, are certain. In this study, the radius of the perforations
is taken as 7 µm, and the position of the C2 perforations is taken as 70 µm for d1 and 30 µm
for d2. After determining the voltage, radius of the perforations, and the position of the
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perforations, the study is carried out for the structures with the number of perforations of
0, 3, 6, 9, 12, 18, 24, and 36. The resonant frequency versus acceleration curves are shown in
Figure 4—a resonant frequency variation curve with acceleration for the structure with 24
perforations. It can be seen from the figure that the resonant frequency of the device still
varies linearly with acceleration at different numbers of perforations, and the linearity is
well maintained.
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As shown in Figure 5, the acceleration sensitivity of the device varies with the number
of perforations, and the resonant frequency varies with the number of perforations when
the acceleration is zero. From Figure 5a and Table 2, it can be seen that the acceleration
sensitivity increases with the increase in the number of perforations. During the increase
in the number of perforations from 0 to 36, the acceleration sensitivity increases from
5.4 (Hz/g) to 16.1 (Hz/g), which is a 200% increase in acceleration sensitivity. As shown
in Figure 5b, as the number of perforations increases, the resonance frequency decreases
when the acceleration is zero. As shown in Table 2, the resonant frequency decreases from
146.6 (kHz) to 111.8 (kHz). It can be concluded that as the number of perforations increases,
the structure acceleration sensitivity also increases. Therefore, when selecting the number
of perforations, we try to select a structure with a larger number of perforations. However,
considering the problems of process realization and structural stability, we need to make a
compromise here. In this paper, we chose a structure with 24 perforations.
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Table 2. Performance parameters of the ring-perforation membrane structure with different numbers
of perforations.

Numbers of Perforations Resonance Frequency at
Acceleration 0 (kHz) Sensitivity (Hz/g)

0 146.6 5.4
3 146.2 5.4
6 142.5 5.9
9 136.3 7.0
12 130.8 8.3
18 127.5 9.3
24 123 10.9
36 111.8 16.1

3.2. Analysis of the Effect of the Perforation Radius on Acceleration Sensitivity

In this subsection, the effect of perforation radius on the acceleration sensitivity of the
device is investigated and analyzed at an applied voltage of 1.6 V, several perforations of
24, and a C2 perforation position of 30 µm. As shown in Figure 6, it is a schematic diagram
of half of the CMUT structure. The study examines partial perforation radii of 5 µm, 7 µm,
and 9 µm. As depicted, when the circular perforations are formed, the position of the
perforations remains constant. During the increase in perforation radius, the equivalent
thickness of the membrane decreases.

Micromachines 2024, 15, x FOR PEER REVIEW 8 of 16 
 

 

Table 2. Performance parameters of the ring-perforation membrane structure with different num-
bers of perforations. 

Numbers of Perforations 
Resonance Frequency at Acceleration 

0 (kHz) Sensitivity (Hz/g) 

0 146.6 5.4 
3 146.2 5.4 
6 142.5 5.9 
9 136.3 7.0 

12 130.8 8.3 
18 127.5 9.3 
24 123 10.9 
36 111.8 16.1 

3.2. Analysis of the Effect of the Perforation Radius on Acceleration Sensitivity 
In this subsection, the effect of perforation radius on the acceleration sensitivity of 

the device is investigated and analyzed at an applied voltage of 1.6 V, several perforations 
of 24, and a C2 perforation position of 30 um. As shown in Figure 6, it is a schematic dia-
gram of half of the CMUT structure. The study examines partial perforation radii of 5 µm, 
7 µm, and 9 µm. As depicted, when the circular perforations are formed, the position of 
the perforations remains constant. During the increase in perforation radius, the equiva-
lent thickness of the membrane decreases. 

 
Figure 6. Two-dimensional diagrams of perforated structures with perforation radii of 5 µm, 7 µm, 
and 9 µm. 

The resonance frequency trend is studied by applying an acceleration load and an 
electrostatic load to the sensor structure with perforation radii of 0 um, 1 um, 3 um, 5 um, 
7 um, 9 um, and 11 um, respectively. Figure 7 shows the resonance frequency variation 
curve with acceleration at different perforation radii, from which it can be seen that the 
resonance frequency decreases with the increase in acceleration. Under different perfora-
tion radii, the linearity of the structural frequency response curve remains good. 
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The resonance frequency trend is studied by applying an acceleration load and an
electrostatic load to the sensor structure with perforation radii of 0 µm, 1 µm, 3 µm, 5 µm,
7 µm, 9 µm, and 11 µm, respectively. Figure 7 shows the resonance frequency variation
curve with acceleration at different perforation radii, from which it can be seen that the
resonance frequency decreases with the increase in acceleration. Under different perforation
radii, the linearity of the structural frequency response curve remains good.

From Figure 8a and Table 3, it can be seen that increasing the perforation radius causes
an increase in the acceleration sensitivity. As the perforation radius increases from 0 µm to
11 µm, the acceleration sensitivity increases from 5.4 (Hz/g) to 13.2 (Hz/g). From Figure 8b
and Table 3, it can be seen that as the perforation radius increases from 0 µm to 9 µm, the
resonance frequency of the device decreases from 146.6 kHz to 117.3 kHz at acceleration
0. It is concluded from the analysis that the increase in the perforation radius is effective
in increasing the acceleration sensitivity of the structure. In order to ensure sensitivity
and structural stability at the same time, the structure with the 7 µm perforation radius is
selected as the size of the acceleration measurement in this paper.
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Table 3. Performance parameters of ring-perforation membrane structure with different perfora-
tion radii.

The Radius of Perforation (µm) Resonance Frequency at
Acceleration 0 (kHz) Sensitivity (Hz/g)

0 146.6 5.4
1 133.4 7.7
3 132.8 7.8
5 127.1 9.5
7 123.0 10.9
9 121.5 11.4
11 117.3 13.2

3.3. Analysis of the Effect of C2 Perforation Position on Acceleration Sensitivity

In this section, the effect of the perforation position on the acceleration sensitivity of
the device is investigated. In the studied ring-perforation structure, perforations need to
be positioned away from the electrode locations.For device performance assurance, an
electrode radius of 80 µm is selected in this paper. Simultaneously, to ensure the stability
of the ring-perforation structure, in the model, the perforation position C1 is kept as far
away from the electrode as possible. Figure 9 illustrates the C2 perforation positions,
denoted as d2, are 20 µm, 30 µm, and 40 µm, respectively, in schematic diagrams of
two-dimensional structures.
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Figure 9. Schematic diagrams of two-dimensional structures with C2 perforation positions (d2) of
20 µm, 30 µm, and 40 µm.

In the actual modeling process, with the opening radius and number determined,
frequency analysis of the device is conducted by varying the position of C2 (denoted as d2)
while keeping the C1 perforation position (d1) fixed at 70 µm. The analysis is carried out at
an applied voltage of 1.6 V, with a number of perforations of 24 and a radius of perforations
of 7 µm. An acceleration load and an electrostatic load are applied to the structure at C2
position d2 taken as 10 µm, 20 µm, 30 µm, 40 µm, 50 µm, and 70 µm to study the trend of
resonance frequency variation. From Figure 10, it is known that the resonant frequency
decreases with the increase in acceleration at different perforation positions. Additionally,
the linearity of the frequency response curve of the structure is well maintained under
different perforation positions.
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From Figure 11a, it can be seen that the acceleration sensitivity decreases from
12.5 (Hz/g) to 7.5 (Hz/g) as the C2 position d2 is increased from 10 µm to 70 µm. The
acceleration sensitivity when d2 is taken as 10 µm is increased by 50% compared to when
d2 is 50 µm. Compared to the acceleration sensitivity at d2 of 70 µm, the acceleration
sensitivity increases by 70% at d2 of 10 µm and 13% at d2 of 50 µm. Meanwhile, from
Figure 8b, it can be seen that as C2 is closer to the edge of the membrane, the resonant
frequency of the device is smaller. As shown in Table 4, in order to ensure the stability of
the structure, this paper selects the C2 position of 30 µm for the study. Meanwhile, from
Figure 11b, it can be seen that C2 is closer to the edge of the membrane. The resonant
frequency of the device is smaller. As shown in Table 4, in order to ensure the stability of
the structure, this paper selects the C2 position of 30 µm for the study.
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Table 4. Performance parameters of the ring-perforation membrane structure with different C2 posi-
tions.

Perforation Position d2 (µm) Resonance Frequency at
Acceleration 0 (kHz) Sensitivity (Hz/g)

70 134.5 7.5
50 130.4 8.5
40 126.4 9.7
30 123.0 10.9
20 122.7 10.9
10 118.5 12.5

3.4. Analysis of the Effect of Voltage on Acceleration Sensitivity

To determine the applied voltage of the CMUT cell, based on the small deflection
assumption as well as the classical Kirchhoff theory, it should be integrated into the design
of the sensor that the maximum displacement of the thin plate should be less than 20%
of its thickness. The expression for the operating voltage of the parallel plate capacitor

is V =

√
8Kg3

27εA where K is the inherent elastic stiffness of the parallel plate capacitor, g
is the gap between the plates, A is the area between the plates, and ε is the dielectric
constant. When the elastic stiffness K decreases, the operating voltage of the parallel
plate capacitor will also decrease. In order to prevent the sheet from collapsing during
operation and causing damage to the device, the flexible sheet displacement should also
be less than 45% of the spacing between the upper and lower pole plates. In this section,
a CMUT cell structure with several perforations of 24, a perforation radius of 7 µm, and
a C2 perforation position d2 of 30 µm are simulated. The longitudinal displacement of
the membrane is calculated for different voltages with only electrostatic force applied. As
shown in Figure 12, the membrane displacement increases as the voltage increases. In this
case, the membrane displacement of the device at a voltage of 1.6 V is 0.065 µm, while
the device perforation height is 0.2 µm, and the device has not reached the maximum
displacement during collapse at this voltage.

In order to select the appropriate applied voltage, the device sensitivity under different
electrostatic loads needs to be investigated. In this regard, the acceleration sensitivity of
the device at 1.2 V, 1.3 V, 1.4 V, 1.5 V, 1.6 V, and 1.7 V is simulated. As shown in Figure 13a,
the resonant frequency varies with voltage for an acceleration of zero. As the voltage
increases, the resonant frequency decreases, and when the voltage increases from 1.2 V to
1.7 V, the resonant frequency also decreases from 146.0 kHz to 107.7 kHz. The acceleration
sensitivity versus operating voltage is shown in Figure 13b for acceleration of 0–20 g. From
Table 5, it can be seen that when the voltage is increased from 1.2 V to 1.7 V, the acceleration
sensitivity is increased from 2.4 (Hz/g) to 23.1 (Hz/g). When we consider the sensitivity,
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device damage, and other factors in the actual design stage, this paper selects 1.6 V as the
device’s applied voltage.
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Table 5. Performance parameters of the ring-perforation membrane structure at different voltages.

Voltage (V) Displacement (µm)
Resonance

Frequency at
Acceleration 0 (kHz)

Sensitivity (Hz/g)

1.2 0.03 146 2.4
1.3 0.036 142.5 3.2
1.4 0.044 137.9 4.5
1.5 0.053 131.8 6.6
1.6 0.065 123.0 10.9
1.7 0.082 107.7 23.1

During the operation of CMUT devices, the elastic membrane undergoes continuous
vibration. The ring-perforation structure designed in this paper may lead to excessive
membrane stress during operation, resulting in structural instability. In order to simulta-
neously ensure the acceleration sensitivity and structural stability of the ring-perforation
membrane structure, the stresses of the CMUT cell when both an electrostatic load and
a 20 g acceleration load are simultaneously applied need to be analyzed. As shown in
Figure 14, the maximum stress is 9.41 × 10−9 MPa, which is much smaller than the yield
strength of silicon, 7000 MPa. Therefore, both the applied voltage and the structural design
are reasonable.
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4. Contrast and Discussion

The conventional CMUT structure has low sensitivity in acceleration measurement,
and the ring-perforation membrane structure designed in this paper can effectively improve
acceleration sensitivity. This paper investigates the effects of the number of perforations,
perforation radius, and perforation position on the acceleration sensitivity of the CMUT
membrane. From Table 6, it can be seen that the acceleration sensitivity is improved by
increasing the number of perforations compared to the number of perforations at zero.
When the number of perforations is six, the acceleration sensitivity increases by 10%. When
the number of perforations is increased to 36, the acceleration sensitivity increases by 200%.
When only the perforation radius was changed, the acceleration sensitivity was 40% at
a perforation radius of 1 µm, and the acceleration sensitivity was improved by 140% at
a perforation radius of 11 µm, compared with that when the number of activities was
zero. When examining the effect of perforation position on acceleration, the acceleration
sensitivity increases as the C2 perforation position moves closer to the membrane edge
when only the C2 perforation position d2 is changed. A 130% increase in acceleration
sensitivity is achieved at 10 µm for the d2 position, and a 40% increase in acceleration
sensitivity is achieved at 70 µm for the d2 position. The CMUT ring-perforation membrane
structure increases the acceleration sensitivity by 100% compared with the traditional
structure of CMUT. In the study of the relationship between voltage and acceleration
sensitivity, as the voltage increases, the acceleration sensitivity will be higher, and the
elastic membrane displacement will be larger.

Table 6. Comparison of acceleration sensitivity of the ring-perforation membrane structure.

Number Radius d2

Resonance
Frequency at
Acceleration

0 (kHz)

Sensitivity
(Hz/g)

Percentage
Upgrade

0 0 0 146.6 5.4
6 7 30 142.5 5.9 9.30%
36 7 30 111.8 16.1 198.10%
24 1 30 133.4 7.7 42.60%
24 11 30 117.3 13.2 144.40%
24 7 10 118.5 12.5 131.50%
24 7 70 134.5 7.5 38.90%
24 7 30 123.0 10.9 101.90%

5. Summary and Prospects

This paper presents a study of CMUT acceleration sensors and designs a CMUT
ring-perforation membrane structure. The relationship between the acceleration and the
resonance frequency of the CMUT cell is established by combining the electromechanical
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coupling model of the CMUT. Through simulation, it is concluded that the acceleration
sensitivity of the traditional CMUT structure is low, and the acceleration sensitivity in the
range of 0–20 g is 5.4 Hz/g. The acceleration sensitivity of the ring-perforation membrane
structure proposed in this paper can reach 10.9 Hz/g, an increase of 100%. In the study of
the ring-perforation membrane structure, the number of perforations was increased from
6 to 36, and the acceleration sensitivity was increased by 170%. The perforation radius
is increased from 1 µm to 11 µm, and the acceleration sensitivity is improved by 70%.
C2 perforation position d2 from 70 µm to 10 µm, and acceleration sensitivity increased
by 70%. An increase in the number of perforations and perforation radius causes an
increase in acceleration sensitivity, and the closer the C2 perforation location is to the edge
of the membrane, the higher the acceleration sensitivity. In this paper, the feasibility of
acceleration measurement based on CMUT arrayed sensors is verified by simulation. Due
to their excellent resonance characteristics, better stability, and array integration, CMUT
sensors have great advantages in future miniaturization and multi-functionalization, with
more and more in-depth research on CMUT sensors.
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