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Abstract: Quantum dots (QDs) have captured the attention of the scientific community due to their
unique optical and electronic properties, leading to extensive research for different applications. They
have also been employed as sensors for ionic species owing to their sensing properties. Detecting
anionic species in an aqueous medium is a challenge because the polar nature of water weakens the
interactions between sensors and ions. The anions bicarbonate (HCO3

−), carbonate (CO3
2−), sulfate

(SO4
2−), and bisulfate (HSO4

−) play a crucial role in various physiological, environmental, and
industrial processes, influencing the regulation of biological fluids, ocean acidification, and corrosion
processes. Therefore, it is necessary to develop approaches capable of detecting these anions with
high sensitivity. This study utilized CdTe QDs stabilized with cysteamine (CdTe-CYA) as a fluorescent
sensor for these anions. The QDs exhibited favorable optical properties and high photostability. The
results revealed a gradual increase in the QDs’ emission intensity with successive anion additions,
indicating the sensitivity of CdTe-CYA to the anions. The sensor also exhibited selectivity toward the
target ions, with good limits of detection (LODs) and quantification (LOQs). Thus, CdTe-CYA QDs
show potential as fluorescent sensors for monitoring the target anions in water sources.

Keywords: semiconductor nanocrystals; detection; bicarbonate; carbonate; sulfate; bisulfate;
water monitoring

1. Introduction

Sensing methodologies have been advancing with the evolution of scientific knowl-
edge. Nevertheless, there is still a substantial interest in analytical detection systems with
rapid responses, high precision, excellent sensitivity, and economical manufacturing. In
this context, optical fluorescent sensors have emerged as promising sensing platforms,
mainly the ones based on nanomaterials [1,2]. In general, nanoparticles enhance the sen-
sor’s surface area, facilitating more effective interaction with the analyte and improving
detection sensitivity [3–5].

Among the fluorescent nanomaterials, quantum dots (QDs) have gained prominence
in sensor development. These fluorescent semiconductor nanocrystals, ranging from 1
to 10 nm, exhibit a broad absorption spectrum, a narrow emission band, and exceptional
photostability. Notably, QDs possess a chemically active surface, facilitating their func-
tionalization and enhancing their affinity with the analyte [6]. QDs have emerged as
luminescent probes in analytical chemistry to develop various sensor types, including
optical, electrochemical, and colorimetric [2,7,8].

The presence of ligands on the surface plays a critical role in conferring selectivity to
nanosensors. These ligands are essential for stabilizing quantum dots (QDs) and signifi-
cantly impacting their optical properties [9,10]. Additionally, the surface functionalization
of QDs with specific ligands is crucial for imparting selectivity to the nanosensor, increas-
ing the affinity between the probe and the analyte, and further enhancing the sensitivity
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and selectivity of the sensor [11]. Typically, ligands feature a thiol group attached to the
nanoparticle surface and a terminal group such as carboxylic acid (-COOH) or amine
(-NH2). The charge carried by these groups depends on the surrounding pH with electro-
static phenomena regulating interactions between QD surface ligands and ions, as well as
hydrogen bonds or van der Waals forces [12,13].

For this reason, regarding studies in aqueous media, controlling the pH of the reaction
medium is crucial as it directly influences the ionization of the stabilizer functional groups.
pH values higher or lower than the acid dissociation constants (pKa) of these groups dictate
their protonation state, affecting electrostatic interactions with species in the medium. Con-
sequently, the acid–base equilibrium is dynamic and reliant on the chemical environment
and pH conditions of the reaction medium [14].

On the other hand, the phenomenon of fluorescence has been widely employed as
the main detection mechanism in optical sensors. In the presence of the analyte, the
emission intensity of quantum dots (QDs) may undergo either an increase or suppression,
depending on the specific interaction between the nanosensor and the analyte [15]. Notably,
studies exhibiting emission intensity suppression have been more prevalent in the literature,
mainly due to the fluorescence resonance energy transfer (FRET) phenomenon. However,
approaches showing an enhancement in the fluorescence can also occur and usually offer
more challenges to comprehend and explain [15,16].

The current literature on ion detection in aqueous media predominantly focuses on
metallic cations, taking advantage of the coordination bonding between some organic
molecules and metals [17,18]. Although the detection of anionic species in organic media
has been explored, investigations in aqueous environments remain limited. Challenges
persist in aqueous detection due to water’s polar nature, which weakens interactions
between recognition substances and anions. Recent sensor developments for anionic
species in aqueous media are based on macrocycles, such as calix[n]arenes, polyamides,
cyclodextrins, and urea derivatives [19–21].

The chalcogenide QDs developed to detect anions in an aqueous medium required
the surface modification of the nanocrystals with polymers, metal complexes, or other
nanoparticles, introducing additional complexity to the sensor preparation and the sensing
mechanism. For example, Pengpumkiat et al. [22] developed a fluorescent sensor for CN−

using CdTe QDs coated with chitosan and Cu2+ ions. In the presence of the copper ions,
the QDs’ emission was quenched, and it was restored upon the addition of CN−. To detect
fluoride, Zhang et al. [23] prepared silica nanospheres containing two QDs (a green- and a
red-emitting QD) and mixed them with 2-(tert-butyldiphenylsilyloxy)phenol (2-TBDPSP).
According to these authors, the addition of F− promoted the Si–O bond cleavage, releasing
a quinone derivative that was then linked to the QD-silica nanospheres, provoking a
decrease in the fluorescence signal. In another example, Jindal and Kaur [24] coated ZnO
QDs with a benzimidazole derivative, synthesized by them in an organic medium, to detect
bisulfide anions.

Monitoring some anions is crucial due to their abundance and significant roles in
aquatic environments. Imbalances in ionic composition present severe consequences for
the environment and ecosystems [19–21]. However, highly sensitive and selective fluores-
cent sensors designed specifically for the recognition of bicarbonate (HCO3

−), carbonate
(CO3

2−), sulfate (SO4
2−), and bisulfate (HSO4

−) ions remain scarce. In freshwater, CO3
2−

and HCO3
− ions, along with CO2, are the predominant carbonate compounds arising from

various sources. In oceans, these anions play a vital role in regulating CO2 balance and
preventing marine acidification, mitigating adverse effects from CO2 absorption [25–27].

Similarly, detecting anions such as HSO4
− and SO4

2− is essential, given their broad
implications in both industrial and environmental contexts. HSO4

− is present in nuclear
fuel, industrial waste, and agricultural fertilizers, with severe environmental impacts.
Sulfate ions result from SO2 emissions into the atmosphere due to the combustion of fossil
fuels, leading to concrete corrosion and water contamination. Thus, a fast and sensitive
detection of sulfate ions is crucial for environmental monitoring, particularly in saline
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waste with high sulfate content, where excessive sulfate can promote the growth of sulfate-
reducing bacteria, producing toxic sulfite [28–30].

In this work, we evaluated the application of positively charged QDs as sensors for
anions in aqueous media. Specifically, QDs functionalized with cysteamine were prepared
and utilized to develop analytical nanoplatforms for anion detection.

2. Materials and Methods
2.1. Materials

All analytical-grade materials were used as received without any further purification,
and all solutions were prepared with ultrapure water (resistivity of 18.2 MΩcm at room tem-
perature): cadmium chloride (CdCl2, 99.99%, Sigma-Aldrich, St. Louis, MO, USA), sodium
tellurite (Na2TeO3, 99%, Sigma-Aldrich), sodium borohydride (NaBH4, 99.99%, Sigma-
Aldrich), sodium hydroxide (NaOH, 98%, Sigma-Aldrich), cysteamine hydrochloride (CYA,
98.0%, Sigma-Aldrich), 3-mercaptosuccinic acid (MSA, 97%, Sigma-Aldrich), L-glutathione
reduced (GSH, 98.0%, Sigma-Aldrich), anhydrous sodium carbonate (Na2CO3, 99.7%,
NEON, Suzano, SP, Brazil), sodium bicarbonate (NaHCO3, 100.0%, NEON), potassium
sulfate (K2SO4, 99.0%, Química Moderna, Barueri, SP, Brazil), potassium bisulfate (KHSO4,
P.A., Vetec, Duque de Caxias, RJ, Brazil), Sodium chloride (NaCl, 99.0%, Química Moderna),
sodium nitrate (NaNO3, 99.0%, Vetec), potassium chloride (KCl, 99.0%, Vetec), potassium
bromide (KBr, 99.0%, Dinâmica, Indaiatuba, SP, Brazil), potassium iodide (KI, 99.0%, Vetec),
sodium acetate (CH3COONa, 99.0%, Vetec), disodium hydrogen phosphate dihydrate
(Na2HPO4·2H2O, 99.0%, NEON, Suzano, SP, Brazil), monopotassium phosphate (KH2PO4,
99.0%, NEON, Suzano, SP, Brazil).

2.2. Preparation of CdTe Quantum Dots

The synthesis protocol employed in this study was based on the one-pot preparation
method described by Viegas et al. (2019) [31], with modifications. To prepare CdTe quantum
dots stabilized with cysteamine (CdTe-CYA), the synthesis was carried out with a fixed
Cd:Te:CYA molar ratio of 10:1:12 [32]. Initially, 0.862 g (4.7 mmol) of CdCl2 was weighed
and dissolved in 125 mL of ultrapure water in a two-neck round-bottom flask. Subsequently,
0.648 g (5.7 mmol) of cysteamine hydrochloride was added under magnetic stirring, and
the pH of the solution was adjusted to 5.8 using a 2 M NaOH solution. The mixture was
heated at 90 ◦C under a nitrogen atmosphere with constant magnetic stirring for 30 min.
Then, a solution containing 0.0946 g (2.5 mmol) of NaBH4 in 1 mL of ultrapure water was
prepared and injected into the reaction flask using a syringe, followed by the addition
of 25 mL of a Na2TeO3 solution (0.02 M). The closed system was then heated at 90 ◦C
and stirred continuously for 5 h, under an inert atmosphere. To prevent QD precipitation,
the system pH was readjusted to 5.8 by adding additional cysteamine. After cooling, the
quantum dots were stored under refrigeration.

CdTe QDs stabilized with MSA and GSH were prepared using a similar procedure,
and using the Cd/Te/stabilizer molar ratio of 2:1:2.4.

2.3. Optical Characterization

The QD optical features were evaluated by UV–Vis absorption spectroscopy (Evalua-
tion 600 Spectrophotometer, Thermo Scientific, Waltham, MA, USA) and emission spec-
troscopy (FluoroMax Plus, Horiba Scientific, Piscataway, NJ, USA). The sample was diluted
in a QD/water ratio of 3:100 (v/v), and absorption and emission measurements were
acquired with excitation at 405 nm. Consequently, parameters such as average particle size
(nm), concentration (µmol·L−1) estimated, and full width at half maximum (FWHM) were
determined. The average size or diameter of the nanoparticles, correlated with the first
absorption peak, was calculated using the equation proposed by Dagtepe et al. (2007) [33]
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(Equation (1)). This methodological approach provides a systematic means of quantifying
nanoparticle dimensions based on a spectral analysis.

r =
1.38435 − 0.00066λ

1 − 0.00121λ
(1)

where r is the average diameter of the nanoparticles and λ corresponds to the wavelength
of the first maximum of the absorption spectrum.

The estimation of the extinction coefficient (ε) was calculated using the approxima-
tions proposed by Yu et al. (2003) [34] (Equation (2)), and the molar concentration of
CdTe quantum dots (QDs) in suspension was estimated through Lambert–Beer’s law
(Equation (3)).

ε = 10, 043(r)2.12 (2)

A = εCl (3)

where A is the absorbance corresponding to the absorption maximum, ε is the molar
extinction coefficient, C is the molar concentration of the sample (mol·L−1), and l is the
optical path length (cm) through which the radiation beam will pass for recording the
absorption spectrum.

2.4. Evaluation of the Optical Response of CdTe-CYA QDs in the Presence of Different Anions

The optical properties (absorption and emission) of CdTe-CYA QDs were evaluated
in the presence of specific anions (CO3

2−, HCO3
−, SO4

2−, and HSO4
−). Briefly, stock

solutions of Na2CO3, NaHCO3, K2SO4, and KHSO4 salts were prepared at a concentration
of 10 mmol·L−1. Subsequently, 60 µL of quantum dots was added to a quartz cuvette of a
10 mm path length, and the volume was adjusted to 2 mL with ultrapure water. Finally,
the anionic analyte was gradually introduced into the suspension, ensuring a controlled
addition process to observe the sensor’s response accurately. After each addition, the
system underwent manual homogenization for a few seconds, guaranteeing thorough
mixing and a consistent distribution of the analyte within the suspension. Following
this step, absorption and emission spectra were acquired at room temperature, providing
detailed insights into the interaction between the analyte and the CdTe-CYA QDs. To
account for any effects of dilution, corrections were applied to the acquired spectra. This
meticulous procedure was repeated three times to ensure the reliability and reproducibility
of the obtained results.

2.5. Determination of Detection Parameters

From the titration-acquired data, calibration curves were generated for each anion.
These curves were established by systematically analyzing the spectral profiles of the
developed optical nanoprobes, using different known concentrations of anions to construct
the response curves. Considering a univariate model, analytical curves were plotted to
evaluate the linear range of the (F − F0)/F0 as a function of the analyte concentration
(µM), where F0 and F are the fluorescence intensities in the absence and presence of the
analyte, respectively. These studies were performed in triplicate. Calibration curves were
statistically validated through an analysis of variance (ANOVA) at a 95% confidence level.
This statistical analysis examined the data points for consistency and accuracy across
the entire calibration range, aiming to provide reliability in measurements and ensure
confidence in the sensor’s performance.

For analytical method validation, the limits of detection (LODs) and quantification
(LOQs) were estimated based on the criteria established by the International Union of Pure
and Applied Chemistry (IUPAC) [24]. This involved a systematic approach to assess the sen-
sitivity and reliability of the method by establishing thresholds for the minimum detectable
and quantifiable levels of analytes. By adhering to internationally recognized standards set
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by IUPAC, the validation process aimed to ensure robustness and accuracy in analytical
measurements. Thus, LODs and LOQs were calculated using Equations (4) and (5):

LOD =
3σ

k
.

(4)

LOQ =
10σ

k
.

(5)

where σ corresponds to the standard deviation of the intercept, and k is the slope of the
fitted curve. The linearity of the calibration curves was assessed using their respective
determination coefficients (R2).

2.6. Selectivity

The sensor’s selectivity for target anions was assessed by testing solutions of vari-
ous anions (10 mmol·L−1, including HPO4

2−, H2PO4
−, Cl−, I−, Br−, NO3

−, SO3
−, and

CH3COO−) under identical controlled conditions. The anion solutions (243.9 µmol·L−1)
were added to the diluted suspension of CdTe-CYA QDs, and after brief mixing, emission
spectra were recorded at room temperature to analyze the response of the sensor to each
specific anion. This systematic approach allowed for a comprehensive evaluation of the
sensor’s selectivity and its capability to distinguish between different anions in a solution.

3. Results and Discussion
3.1. Characterization of CdTe-CYA QDs

According to the optical parameters of the CdTe-CYA QDs (Figure 1), we can observe
that the nanomaterial exhibits a small Stokes shift, as well as an intense emission band,
presenting an average diameter of 3.0 nm and a concentration of 28.9 mmol·L−1. In addition,
other studies have reported the preparation of CdTe-CYA QDs with FWHM values ranging
from 30 to 85 nm and sizes around 3.0 nm, consistent with the results obtained in the
current study [32,35].
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3.2. Fluorescent Detection of Anions Using CdTe-CYA QDs

To evaluate the sensing ability of CdTe-CYA QDs toward the target anions (CO3
2−,

HCO3
−, SO4

2−, and HSO4
−), increasing concentrations of the analyte were added to

the QDs, and absorbance and emission spectra were acquired. Firstly, this study was
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conducted by absorption spectroscopy to assess whether the core of the QDs would be
affected by the presence of the target anions. It was observed that the position or width of
the absorption spectra showed little or no variation, and there was no significant change in
intensity, suggesting that the addition of anions did not cause changes in the core of the
QDs, maintaining their composition and mean size (Figure S1).

On the other hand, the addition of these anions to CdTe-CYA caused significant
changes in the fluorescence profile (Figure 2). From the emission spectra of all systems, a
consistent signal enhancement could be observed with increasing analyte concentrations.
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2− (a), HCO3
− (c), SO4

2− (e), and HSO4
− (g), and calibration curves of (F − F0)/F0 versus

analyte concentration: CO3
2− (b), HCO3

− (d), SO4
2− (f), and HSO4

− (h) concentration.

The analysis performed allowed the estimation of the analytical parameters for the
four sensor/analyte systems: CdTe-CYA/CO3

2−, CdTe-CYA/HCO3
−, CdTe-CYA/SO4

2−,
and CdTe-CYA/HSO4

−.
As observed in Figure 2, the optical sensor exhibited a good correlation between

the added CO3
2− concentration and the corresponding emission intensity, with a linear

range between 43.1 and 123.5 µM (Figure 2b), a LOD and LOQ of 12.9 and 43.1 µM,
respectively. For this anion, with a further addition of CO3

2−, the emission intensity
reached a plateau of around 291 µM, remaining relatively constant after that concentration.
For the HCO3

− anion, the fluorescent sensor presented a linear range around higher values,
between 107.33 and 430.62 µM (Figure 2d), without reaching a fluorescence plateau in
this concentration range. Nevertheless, the LOD and the LOQ found were 32.20 µM and
107.33 µM, respectively. Regarding the SO3

2− anion, it was observed that the analytical
parameters also showed good linearity between 35.04 and 147.78 µM (Figure 2f), with a
LOD and LOQ of 10.51 and 35.04 µM, respectively. Finally, analytical parameters were
also evaluated for the determination of the HSO4

− anion from CdTe-CYA QDs, obtaining
a linear range between 6.51 and 123.46 µM (Figure 2h), with LOD and LOQ equal to 1.95
and 6.51 µM, respectively. Increasing further the anion concentrations, a plateau in the
emission intensity was observed at 196 and 172 µM for SO4

2− and HSO4
−, respectively.

Furthermore, the statistical analysis indicated that the respective regression models are
statistically significant, providing statistical evidence to confirm the relationship between
the variables of analyte concentration and emission intensity at a 95% confidence level
(Table S1).
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ANOVA and the F-test for the statistical significance of the regression (F value) were
the criteria used to assess the analytical performance of the proposed models (Table S1).
The F value was obtained by dividing the regression mean squares (MSs) by the residual
mean squares for each target anion. Thus, the calculated F values were approximately 357.2
(CO3

2−), 1031.3 (HCO3
−), 747.3 (SO4

2−), and 979.1 (HSO4
−), which were much higher than

the F-critical values at a significance level of 5%, namely, 10.13 (CO3
2−), 5.59 (HCO3

−), 7.71
(SO4

2−), and 10.13 (HSO4
−).

The performance detection parameter values for CdTe-CYA QDs concerning the target
anions are summarized in Table 1, along with examples from the literature.

Table 1. Comparison of various fluorescent probes for the determination of target anions.

Anion Sensor Linear Range (µM) LOD (µM) LOQ (µM) Reference

CO3
2−

Eu/CDs@UiO-66-(COOH)2 0–350 1.08 - [36]
CaF-Tb3+ 20–100 0.99 - [37]

Ureia derivative-CdSe 0.1–100 0.023 - [38]
CdTe-CYA QDs 43.0–123.5 12.9 43.0 This work

HCO3−
CaF-Tb3+ 20–100 2.15 - [37]

Triazole-naphthalene 2.5–32.5 1.8 - [39]
CdTe-CYA QDs 107.3–430.6 32.2 107.3 This work

SO4
2−

Guanidine dyes 2.5–10 0.10 - [40]
Bis(diamidocarbazole) - 1.0 - [41]

CdTe-CYA QDs 35.0–147.8 10.5 35.0 This work

HSO4
−

ZnO QDs-benzimidazole - 0.0032 - [24]
Quinazoline-based Co3+ complex 0.32–12.5 0.32 - [42]

CdTe-CYA QDs 6.5–123.5 2.0 6.5 This work

The few examples found in the literature, for fluorometric sensors for the target anions,
present lower LOD values compared to those determined in this study. However, in the
literature, the detection studies of these anions do not typically provide a specific value
for the LOQ. Regarding the estimated LOD value, it is worth noting that the LOQ values
for SO4

2− and HSO4
− anions showed values below the maximum levels allowed by the

United States Environmental Protection Agency [43] and the World Health Organization
(WHO) [44], which are 500 mg·L−1 and 250 mg·L−1, respectively, whereas there is no
established standard for CO3

2− and HCO3
− set by regulatory agencies. Thus, the values

determined in this study for the quantification of the target anions are well below the estab-
lished maximum concentrations allowed. Furthermore, some of these reported fluorescent
probes are based on organic molecules that require a laborious synthetic procedure. This
underscores the intricacies involved in their preparation and the importance of considering
practicality alongside analytical sensitivity when selecting suitable detection methods for
real-world applications.

3.3. Analysis of the QDs’ Emission Profile after the Addition of the Anions

As observed, the fluorescence intensity of CdTe-CYA QDs increased considerably
with increasing anion concentration. Simultaneously, with each addition, a slight redshift
(<7 nm) and broadening of the emission band (<8 nm) were observed (Figure 3, Table S2).
This behavior was more expressive for CO3

2−, followed by HCO3
−, and for SO4

2− and
HSO4

−, there were no significant changes in both the spectral position and the FWHM of
the emission band.
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Furthermore, it was observed that the variation in FWHM values occurred between
0.1 and 7.3 nm, considering the four studied anions, with CO3

2− and HCO3
− being the

most expressive. However, it is emphasized that a slight redshift (<7 nm) along with a
slight broadening of the emission band (<8 nm) only indicates that changes are occurring
on the surface of the QD due to interactions with the anions, while the QD core remains
unchanged [45].

3.4. Selectivity of the Nanoprobe for Target Anions

The sensor’s selectivity toward the anions CO3
2−, HCO3

−, SO4
2−, and HSO4

− was
evaluated by adding other anions at the same concentration. Figure 4 illustrates the change
in the fluorescence (F − F0)/F0 ratio of the nanosensor in response to different tested anions.
It is evident that the sensor’s fluorescence exhibited a much more pronounced increase for
CO3

2−, followed in this order by HCO3
−, SO4

2−, and HSO4
−. On the other hand, HPO4

2−

and Cl− also showed a more discreet increase in the fluorescence intensity. Additionally,
I− and Br−, in contrast, led to a decrease in fluorescence intensity, with I− causing a more
significant reduction, indicating that this QD could also be a sensor for these halide ions.
The remaining tested anions did not induce significant changes in the fluorescence intensity
of the nanosensor.
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3.5. Detection Mechanism of CdTe-CYA QDs

Surface ligands play a crucial role in the interaction between QDs and analytes,
strongly affecting the detection mechanisms [46,47]. The stabilizing ligands typically
used in aqueous synthesis have a thiol group at one end, which remains attached to the
nanoparticle’s surface, and another terminal group such as carboxylic (-COOH) or amino
(-NH2) ones, which can impart different electrical charges to the QDs depending on the
pH. Amino and carboxylic groups can have positive and negative charges, respectively,
allowing for electrostatic phenomena to regulate the interaction between the QD surface
ligand and anions, in addition to interactions due to hydrogen bonding or van der Waals
forces [19,47].

Quantum dots stabilized with CYA may present a strong positive surface charge due
to the presence of amino groups that are protonated at pH values around 6 [32]. Thus, it
is expected that the CdTe-CYA QDs show electrostatic attraction to anions based on their
surface charge, resulting in a change in the spectral profile of the nanoprobes.

There are few cases described in the literature regarding the mechanisms of photolu-
minescence enhancement in sensors based on QDs [48–50], with the quenching mechanism
being much more widely observed. Nevertheless, it is known that these interaction mech-
anisms depend on a series of factors, such as the reactive species involved, electrostatic
interaction between the analyte and surface ligands, electron transfer from the QDs’ con-
duction band to the molecular orbitals of the analyte, and adsorption of the analyte on the
nanoparticle surface, among others [51]. In some cases, these interactions can enable an
efficient excitonic electron–hole recombination by reducing potential trap density, which are
intermediate energy levels between the energy bands of the QD, which are a consequence of
both intrinsic and surface defects, thereby increasing radiative recombination and leading
to enhanced photoluminescence [52].

Therefore, the detection mechanism between CdTe-CYA QDs and the target anions
should be mainly regulated by electrostatic interactions, between the positively charged
amino groups anchored on the QDs’ surface and the respective anion. The -NH3

+ group can
act as an electron-withdrawing group through an inductive effect, potentially weakening
the thiol–QD bond and altering the charge density of the nanoparticle, consequently
affecting the emission of the QDs. With the interaction with the anions, the positive charge
of the stabilizer is compensated by the negative charge of the analyte, reducing its electron-
withdrawing character, favoring more efficient radiative decay processes, and consequently
enhancing the emission intensity. Alternatively, as a consequence of this withdrawing
character, there may be a change in the flow of charges in the nanoparticle, which, in turn,
reduces the charge density in the conduction band, affecting the emission intensity by
decreasing the number of possible radiative decays.

4. Conclusions

In summary, we prepared and employed CdTe-CYA QDs as analytical nanoplatforms
for anion detection (CO3

2−, HCO3
−, SO4

2−, and HSO4
− ions). The QDs exhibited good

linearity, likely due to interactions between the positively charged amino groups of the
CdTe-CYA and the respective anion, indicating that the probable detection mechanism is
by electrostatic attraction. Analytical parameters, including linear range, LOD, and LOQ,
were determined for each CdTe-CYA/anion system, and the obtained values are within
acceptable limits. Notably, for SO4

2− and HSO4
−, the values are below the levels permitted

by environmental guidelines. The assessment of analytical performance through an analysis
of variance (ANOVA) confirmed the statistical significance (95% confidence level) of the
proposed models for detecting CO3

2−, HCO3
−, SO4

2−, and HSO4
− ions using CdTe-CYA

QDs. The selectivity study indicated that the proposed sensor, despite its nonspecific
nature, exhibits selectivity to some extent toward the target ions, notably for CO3

2−, for
which it showed the best analytical response. Therefore, based on the obtained results,
CdTe-CYA QDs can be considered promising nanosensors for the detection of target anions
in aqueous media.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi15030373/s1, Figure S1: Absorption spectra of CdTe-CYA QDs
in the presence of different anion concentrations: (a) CO3

2−, (b) HCO3
−, (c) SO4

2−, and (d) HSO4
−.

Table S1: ANOVA and validation of the analytical curve models. Table S2: Results obtained for the
interaction of CdTe-CYA and the target anions.
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