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Abstract: In response to the increasing demand for high-performance capacitors, with a simultaneous
emphasis on minimizing their physical size, a common practice involves etching deep vias and
coating them with functional layers to enhance operational efficiency. However, these deep vias
often cause warpages during the processing stage. This study focuses on the numerical modeling of
wafer warpage that occurs during the deposition of three thin layers onto these vias. A multi-step
mechanical and thermal homogenization approach is proposed to estimate the warpage of the silicon
wafer. The efficiency and accuracy of this numerical homogenization strategy are validated by
comparing detailed and homogenized models. The multi-step homogenization method yields more
accurate results compared to the conventional direct homogenization method. Theoretical analysis is
also conducted to predict the shape of the wafer warpage, and this study further explores the impact
of via depth and substrate thickness.

Keywords: wafer warpage; integrated capacitor; multi-step mechanical homogenization; multi-step
thermal homogenization

1. Introduction

Wafers integrated with capacitors play a crucial role in the manufacturing of Micro
Electro Mechanical Systems (MEMS). Silicon-based discrete capacitors are currently under
investigation as a potential method to improve overall operational efficiency by providing
better equivalent series inductance (ESL) performance compared to conventional ceramic
capacitors [1–3]. The Through Silicon Via (TSV) capacitor, commonly utilized in Si wafers,
is created by etching deep vias into the silicon substrate. This enables the attainment of a
significantly higher capacitance density and the formation of compact structures [4,5].

Nevertheless, the production of high-quality wafers is accompanied by various chal-
lenges [6]. Among these challenges, one significant issue is the mitigation of wafer warpage
to enhance the efficiency of subsequent processes. Wafer warpage is identified as a primary
factor leading to process and device failures, including delamination, cracking, and a
decline in device performance [7,8]. Various factors influence the warpage of wafers, such
as the mismatch in the coefficient of thermal expansion (CTE) among different materials,
fluctuations in film thickness, and variances in pattern density [9,10]. Hence, it is essential
to optimize the process parameters to minimize wafer warpage.

An experiment is the most direct method for determining the warpage value. However,
conducting numerous physical experiments to quantify wafer warpage is a time-consuming
and economically inefficient process. Consequently, there is an urgent and practical need to
employ the finite element analysis (FEA) method for simulating wafer warpage. Simulating
a wafer with millions of vias would overwhelm current computational systems due to the
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substantial computational requirements. On the other hand, modeling only a small portion
of the wafer with a few vias proved inadequate, as it resulted in numerical inaccuracies due
to the limited displacement of each via and difficulties in establishing suitable boundary
conditions for the outer surfaces of the simulated structures. Fortunately, a viable solution
was found by adopting a multi-scale approach. This approach involves dividing the
simulation into two scales. The homogenized mechanical properties of the via layer can
be determined at the meso-scale. Then, at the macro-scale, the overall behavior of the
wafer can be simulated. Through this method, researchers can achieve a balance between
accuracy and computational efficiency, making it feasible to study the behavior of a wafer
with millions of vias without overwhelming the computational resources.

Che et al. [11] developed a wafer-level FEA modeling approach to simulate the
warpage of wafers following annealing. However, the model was limited to only two
materials: silicon and copper. Wright et al. [12] employed a multi-scale method to simulate
the wafer warpage. In their meso-scale simulation, the remote boundary conditions with
“coupled” behavior and sliding-wall boundary conditions were applied to the Representa-
tive Volume Element (RVE). The RVE, serving as the smallest micro-scale structure suitable
for homogenization, enables the examination of large-scale structures while minimizing
computational expenses [13]. This type of boundary condition was unsuitable for repre-
senting orthotropic materials and estimating the shear modulus, as it overly constrained
the RVE, leading to an exaggerated assessment of elastic properties [14]. Consequently,
employing node-to-node periodic conditions becomes essential, allowing distorted de-
formation of boundary surfaces [15]. Feng et al. [16] used the RVE method to create an
equivalent model for the DRAM layer in the simulation. The RVE method allows for the
representation of the complicated DRAM layer with a simplified model, making it easier
to solve. They found that reducing the dicing pitch resulted in a significant reduction in
warpage. The study also analyzed the thermal stress distribution in the bonded wafer
and identified the stress release caused by interrupting the wafer continuity as the main
factor in reducing warpage. Bacciocchi et al. [17] adopted a multi-step homogenization
procedure to predict the mechanical property of the multi-phase porous earth material,
and the accuracy was validated by a comprehensive experimental campaign. However,
applying multi-step homogenization in predicting wafer warpage is rarely seen.

In summary, utilizing a multi-step homogenization procedure in the context of via-
type silicon capacitors is relatively uncommon. We have employed a multi-scale approach,
coupled with a multi-step RVE homogenization strategy, to simulate the warpage of
silicon capacitors and to conduct a theoretical analysis from the perspective of thin film
mechanics. Both numerical and experimental data validate the effectiveness of this novel
homogenization method. Furthermore, it has been observed that increasing the via depth
results in a more significant wafer warpage. Conversely, a thicker substrate can alleviate
wafer warpage, although it leads to a thicker wafer. Moreover, parameter sensitivity
analyses demonstrate that while both factors affect wafer warpage, the depth of the vias
exerts a more substantial influence on wafer warpage. Adopting this approach equips us
with a reliable means to predict wafer warpage, promoting MEMS development.

2. Materials and Methods
2.1. Manufacturing Process and Parametrized Samples

The sample tested was manufactured using silicon (Si) wafers 150 mm in diameter
with a thickness of 725 µm. After an initial cleaning, a hexagonal grid composed of circular
openings with diameters of 6 µm and a distance of 3 µm between the nearest neighbors
was patterned with lithography. The vias were etched to a depth of 30 µm. Then, a silicon
dioxide (SiO2) dielectric layer 0.3 µm in thickness was formed by dry thermal oxidation at
a temperature of 1100 ◦C. Next, a 1.6 µm-thick layer of silicon nitride (Si3N4) was deposited
by LPCVD (low pressure chemical vapor deposition) at a temperature of 830 ◦C. The top
electrode was formed by the deposition of in situ n+-doped polysilicon (poly-Si) using
LPCVD with a 0.5 µm thickness at 600 ◦C. The simplified schematic of the manufacturing
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process is illustrated in Figure 1. It is worth noting that these layers are deposited at varying
temperatures, leading to misfit strain at room temperature due to their different CTE, as
referenced in [18–21].
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Figure 1. Simplified schematic of manufacturing process. Si substrate; SiO2 layer deposition at
1100 ◦C; Si3N4 layer deposition at 830 ◦C; Poly-Si layer deposition at 600 ◦C.

The silicon substrate used in this paper has a diameter of 150 mm and a thickness of
725 µm. As seen in Figure 2c, the vias have a diameter of 6 µm, a depth of 30 µm, and
a distance of 3 µm between them. The layer thicknesses of SiO2, Si3N4, and poly-Si are
0.3 µm, 1.6 µm, and 0.5 µm, respectively.
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Figure 2. The extraction process and the dimensions of the RVE. (a) Side view of the wafer; (b) Side
view of the via layer; (c) Representation of the RVE structure.

In our simulations, we utilized mechanical and thermal properties as listed in Table 1.
These properties have been sourced from existing literature.

Table 1. Materials used in the simulation.

Material Young’s Modulus (GPa) Poisson’s Ratio CTE (ppm/K)

SiO2 69 [22] 0.14 [23] 0.5 [24]
Si3N4 290 [25] 0.27 [26] 3.4 [27]

Polysilicon 169 [28] 0.22 [28] 2.8 [29]
Silicon 161 [30] 0.28 [30] 4.4 [31]

2.2. Multi-Scale Analysis for Thermal and Mechanical Properties

Due to the large number of small vias on the wafer, simulating the full geometry
model directly is computationally costly. Therefore, it is imperative to adopt a multi-scale
method. The initial stage of the multi-scale method involves extracting an RVE from the
via layer. The extraction process and the dimensions of the RVE are illustrated in Figure 2.
Overall, the multi-scale method comprises two scales of simulations. In the meso-scale
simulation, the effective properties of the RVE are determined by using a homogenization
method. In the macro-scale simulation, wafer warpage results are calculated by applying
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the effective properties of the RVE to the via layer. During the deposition process, the
dielectric layers will stack on the back side of the substrate simultaneously. These backside
layers are modeled as surface coatings in the simulation. However, due to their small
thickness (<3 µm) compared to the substrate (725 µm), their impact is minimal.

2.2.1. RVE Homogenization Analysis at the Meso-Scale

The RVE refers to the smallest volume of a material that can be considered represen-
tative of the entire material’s behavior [32]. Since the RVE is a part of a periodic material,
it is essential to implement Periodic Boundary Conditions (PBC) to ensure that the RVE’s
surfaces remain periodic after deformation. Heterogeneity is present at lower length scales
of a material. RVE homogenization aims to homogenize the heterogeneity at a lower length
scale so that the material can be treated as homogeneous for engineering applications
at the upper length scale [15]. This technique is applicable to a wide range of materials,
such as composites, lattice structures, and any other material that exhibits spaced periodic
repetition. The homogenization method enables the derivation of the effective properties
of the complicated via layer from the RVE. Specifically, the objective of homogenization
here is to derive the homogenized stiffness matrix and the CTE of the RVE.

To determine the homogenized stiffness matrix [C] that relates average stress {σ} and
average strain {ε}, six static simulations are performed on the RVE with PBC. Equation (1)
expresses the correlation between the average stress {σ} and average strain {ε} using the
homogenized stiffness matrix [C].

σij = Cijklεij (1)

The hypothesis of constant strain energy is employed on the RVE to establish the
homogenized stiffness matrix. This ensures that the original and homogenized cells possess
equivalent strain energy during deformation. The average strain εij is calculated by taking
the average of the six applied strain components εij over the volume of the RVE, as described
in Equation (2). The homogenized stiffness matrix coefficients can be obtained by solving
the six linear elastic equations in Equation (1), as shown in Equation (3).

εij =
1
V

∫
V εijdV = ε0

ij (2)

Cαβ = σα =
∫

V σα(x1, x2, x3)dV where ε0
ij = 1 (3)

Equation (4) presents the constraints for node pairs on opposite faces, where i denotes
the direction in the Cartesian system and ui(x, y, z) represents the displacement of the point
(x, y, z) in the i direction:

ui(l1, x2, x3)− ui(−l1, x2, x3) = 2l1ε0
i1

ui(x1, l2, x3)− ui(x1,−l2, x3) = 2l2ε0
i2

ui(x1, x2, l3)− ui(x1, x2,−l3) = 2l3ε0
i3

, i = 1, 2, 3 (4)

Each edge, simultaneously shared by two faces, requires distinct conditions. Equa-
tion (5) describes these constraints for edges:
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ui(l1, l2, x3)− ui(−l1,−l2, x3) = 2l1ε0

i1 + 2l2ε0
i2

ui(l1,−l2, x3)− ui(−l1, l2, x3) = 2l1ε0
i1 − 2l2ε0

i2
, i = 1, 2, 3


ui(l1, x2, l3)− ui(−l1, x2,−l3) = 2l1ε0

i1 + 2l3ε0
i3

ui(l1, x2,−l3)− ui(−l1, x2, l3) = 2l1ε0
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i3
, i = 1, 2, 3


ui(x1, l2, l3)− ui(x1,−l2,−l3) = 2l2ε0

i2 + 2l3ε0
i3

ui(x1, l2,−l3)− ui(x1,−l2, l3) = 2l2ε0
i2 − 2l3ε0

i3
, i = 1, 2, 3

(5)

Each corner is shared by three faces, leading to their specific constraints given in
Equation (6):

ui(l1, l2, l3)− ui(−l1,−l2,−l3) = 2l1ε0
i1 + 2l2ε0

i2 + 2l3ε0
i3

ui(l1, l2,−l3)− ui(−l1,−l2, l3) = 2l1ε0
i1 + 2l2ε0

i2 − 2l3ε0
i3

ui(−l1, l2, l3)− ui(l1,−l2,−l3) = −2l1ε0
i1 + 2l2ε0

i2 + 2l3ε0
i3

ui(l1,−l2, l3)− ui(−l1, l2,−l3) = 2l1ε0
i1 − 2l2ε0

i2 + 2l3ε0
i3

, i = 1, 2, 3 (6)

The homogenized stiffness tensor is established based on these equations. From
the simulation results, the components of the average field σα are obtained, and using
Equation (3), the coefficients of the homogenized stiffness matrix are derived. Then, the
compliance matrix can be obtained by the inverse of the homogenized stiffness matrix.

[S] =
[
C]−1 (7)

Owing to the orthotropic property of the RVE, the compliance matrix is in the follow-
ing form:

[S] =



1/E1 −v21/E2 −v31/E3 0 0 0
−v12/E1 1/E2 −v32/E3 0 0 0
−v13/E1 −v23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G23

 (8)

Combing Equations (7) and (8), the equivalent mechanical properties can be acquired
as follows:

E1 = 1
S11

, E2 = 1
S22

, E3 = 1
S33

G23 = 1
S44

, G13 = 1
S55

, G12 = 1
S66

v12 = −S12 · E1, v23 = −S23 · E2, v13 = −S13 · E1

(9)

where E stands for Young’s modulus, v for Poisson’s ratio, G for shear modulus, and S
for the coefficient in the compliance matrix. Similarly, the effective CTE can be calculated.
By applying a temperature load ∆T to the RVE, the displacements of the RVE in three
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directions Ux, Uy, Uz, owing to the thermal expansion, are obtained. Corresponding
thermal strains are calculated by the following equation:

εi = Ui/li, i = x, y, z (10)

Naturally, an effective CTE of the RVE can be acquired as follows:

CTEi = εi/∆T, i = x, y, z (11)

2.2.2. Boundary Conditions for RVE with Void Phase

In order to facilitate the creation of constraints mentioned in Section 2.2.1 in Abaqus,
the RVE is initially divided into four segments. From these segments, a 1/4 RVE model
is then extracted and meshed. The void space within the RVE is filled with elastic air,
which has a zero CTE and an elastic modulus that can be ignored [33]. Subsequently, the
“radial pattern” command is employed to assemble the complete RVE model, and then the
homogenization method can be applied. This process allows for easier identification of
node pairs on opposite sides, making it easier to construct the constraints. A top view of
the process is depicted in Figure 3.

Micromachines 2024, 15, x FOR PEER REVIEW 6 of 13 
 

 

In order to facilitate the creation of constraints mentioned in Section 2.2.1 in Abaqus, 
the RVE is initially divided into four segments. From these segments, a 1/4 RVE model is 
then extracted and meshed. The void space within the RVE is filled with elastic air, which 
has a zero CTE and an elastic modulus that can be ignored [33]. Subsequently, the “radial 
pattern” command is employed to assemble the complete RVE model, and then the 
homogenization method can be applied. This process allows for easier identification of 
node pairs on opposite sides, making it easier to construct the constraints. A top view of 
the process is depicted in Figure 3.  

 
Figure 3. A top view illustration showcasing the RVE model and its homogenization process. 

2.2.3. Multi-Step Homogenization Procedure 
The meso-scale homogenization was preceded by a mesh convergence study, a 

crucial step to ensure the simulation’s accuracy and efficiency. The convergence study was 
conducted on a 1/4 RVE model subjected to one-dimensional tensile stress. The 
displacement result in the z-direction was examined to verify mesh convergence, as 
shown in Figure 4. Subsequently, the homogenized properties were assessed, which 
revealed a relative error of less than 1% when the mesh converged. The mesh size 
determined in this step is employed in subsequent simulations.  

Since the property of the RVE in the y-direction (height) remains the same, it is 
concluded that the height of the RVE has no impact on the homogenized property. As a 
result, a smaller height was chosen for the RVE to minimize computational costs. 

 
Figure 4. Mesh independence test by refining the mesh for the 1/4 RVE model. 

Regarding the detailed homogenization process, since different layers are deposited 
at different temperatures, the numerical homogenization is conducted using two different 
methods: direct homogenization and multi-step homogenization. For ease of comparison, 
in Section 3.2 they are also referred to as homo 1 and homo 2, respectively. This paper 
focuses on investigating the wafer warpage values after the deposition of SiO2 (process 
step 1) and all layers (process step 3). The homogenization methods used to determine the 
homogenized properties after step 1 are identical for both methods. However, the 
difference lies in the assignment of material properties after steps 2 and 3: The 
homogenization process of the two methods is depicted in Figure 5. 

Figure 3. A top view illustration showcasing the RVE model and its homogenization process.

2.2.3. Multi-Step Homogenization Procedure

The meso-scale homogenization was preceded by a mesh convergence study, a crucial
step to ensure the simulation’s accuracy and efficiency. The convergence study was con-
ducted on a 1/4 RVE model subjected to one-dimensional tensile stress. The displacement
result in the z-direction was examined to verify mesh convergence, as shown in Figure 4.
Subsequently, the homogenized properties were assessed, which revealed a relative error of
less than 1% when the mesh converged. The mesh size determined in this step is employed
in subsequent simulations.
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Since the property of the RVE in the y-direction (height) remains the same, it is
concluded that the height of the RVE has no impact on the homogenized property. As a
result, a smaller height was chosen for the RVE to minimize computational costs.

Regarding the detailed homogenization process, since different layers are deposited at
different temperatures, the numerical homogenization is conducted using two different
methods: direct homogenization and multi-step homogenization. For ease of comparison,
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in Section 3.2 they are also referred to as homo 1 and homo 2, respectively. This paper
focuses on investigating the wafer warpage values after the deposition of SiO2 (process
step 1) and all layers (process step 3). The homogenization methods used to determine the
homogenized properties after step 1 are identical for both methods. However, the difference
lies in the assignment of material properties after steps 2 and 3: The homogenization process
of the two methods is depicted in Figure 5.

• In direct homogenization (homo 1), the RVE is homogenized by using the properties
of each material as listed in Table 1;

• In multi-step homogenization (homo 2), after process step 2, the RVE 2 consists of
three materials: Si, SiO2, and Si3N4. At this stage, the properties of SiO2 and Si are
substituted with the homogenized RVE 1 determined in the previous step. Then, after
process step 3, the material properties of Si, SiO2, and Si3N4 are substituted with the
homogenized properties of the RVE 2 as determined in the last step.
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The deposition process has a direct impact on subsequent steps, affecting the warpage
of the wafer. While direct homogenization is commonly used for deriving properties, it
overlooks the influence of previous deposition steps. Multi-step homogenization addresses
this by including the impact of previous steps in subsequent ones, resulting in a more
comprehensive determination of properties.

2.2.4. Numerical Prediction of Wafer Warpage at the Macro-Scale

Based on the homogenized properties obtained at the meso-scale, we performed the
wafer warpage simulation at the macro-scale. In this scale, we distinguished between two
layers. The upper layer is referred to as the via layer. The homogenized properties were
applied to this via layer. The lower layer is designated as the substrate layer, comprising
the silicon substrate.

The wafer exhibited geometric symmetry, enabling us to create a quarter-sized model
and apply symmetry boundary conditions in the x and z directions, which significantly
reduced the computational resources required. Additionally, to avoid rigid body motion,
the central edge of the wafer was fixed.

We examined and compared the wafer warpage results at the first and final steps
with experimental data. The initial wafer warpage was simulated as a temperature drop
from the SiO2 layer’s deposition temperature of 1100 ◦C to room temperature. The final
wafer warpage was simulated from a simplified equivalent stress-free temperature to room
temperature. Using the final step temperature to simulate the cooling process has proven
effective compared to adopting the whole cycle [34,35]. It is important to note that in this
case, the final step temperature was different from the poly-Si deposition temperature.
Given the intricate nature of the physical and chemical processes, determining the stress-free
temperature at the final step necessitated a trial and error approach, as elaborated in [16].
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In this trial and error process, we explored six different stress-free temperatures, ultimately
selecting the temperature that closely matched the experimental results. Consequently, we
selected 800 ◦C as the final step temperature for wafer warpage simulation.

3. Results and Discussions
3.1. Numerical Validation

To validate the accuracy of the proposed approach, we created a numerical validation
structure that had ten vias, as depicted in Figure 6a. The dimensions of the vias matched
the parameters elaborated in Section 2.1, except for a via depth of 5 µm and a substrate
thickness of 50 µm. The detailed model incorporated the materials listed in Table 1, while
the homogenized model simplified the structure to include only Si and one homogenized
material determined by the multi-step homogenization method. Identical meshing and
boundary conditions were applied to the detailed and homogenized models. Both models
were subjected to the same temperature variation of 1 ◦C. The simulation results of the
homogenized model and the detailed model with the actual vias were compared. As illus-
trated in Figure 6b,c, the results showed insignificant differences between the deformation
data of the two models, falling within a range of less than 1%. These minor differences
supported the effectiveness of our method.
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3.2. Experimental Validation

Wafer warpages were measured using the FST 5000 Film Stress Tester (SuPro Instru-
ments, Shenzhen, China). These measurements were taken after the deposition of Si and
poly-Si, respectively. Since the outer 20% of the wafer typically contains noise and is con-
sidered less significant than the inner 80%, the warpage values were tested and evaluated
within the range of 15 mm to 135 mm of the wafer. Specifically, the warpage values at the
15 mm and 135 mm positions were calibrated as 0.

Homogenized properties were obtained by applying the aforementioned homoge-
nization methods and boundary conditions. The homogenized CTEs and simulated wafer
warpages are displayed in Table 2 and Figure 7, respectively. Notably, the homogenized
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CTEs following process step 1 are identical because of the identical RVEs of the two ho-
mogenization methods after step 1.

Table 2. Homogenized CTEs used in the simulation.

Method CTE (ppm/K) after Process Step 1 CTE (ppm/K) after Process Step 3

Direct homogenization αx = 4.21, αy = 4.23, αz = 4.22 αx = 3.86, αy = 3.84, αz = 3.86
Multi-step homogenization αx = 4.21, αy = 4.23, αz = 4.22 αx = 3.88, αy = 3.74, αz = 3.88
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nization results). (a) After process step 1: SiO2 layer deposition; (b) After process step 3: Poly-Si
layer deposition.

Due to the lower homogenized CTE in the upper layer compared to the bottom layer,
the warpage shape is concave, as observed in both experiment and simulation results. The
numerical results are extracted from the central line of the wafer, spanning from 0 mm
to 150 mm. Regarding the peak warpage value after step 1, the difference between the
homogenization and experiment results is within 5%. Similarly, the difference between the
multi-step homogenization and experiment results after step 3 is also within 5%. However,
it should be noted that the error between the direct homogenization and experiment results
after step 3 is relatively larger.

In conclusion, our homogenization method enables the numerical prediction of wafer
warpage values without relying solely on experiments. This approach can help semicon-
ductor companies save on experimental costs and provide valuable design guidance for
wafer design.

3.3. Theoretical Analyses of the CTE Mismatch

In layered systems, a crucial concept to consider is misfit strain, which represents the
disparity in stress-free dimensions between two or more bonded layers. Various factors
contribute to the generation of misfit strain, encompassing phase transformation, plastic
deformation, and creep. In the context of capacitors, differential thermal contraction is one
of the most influential factors. This phenomenon arises due to the difference in the CTE
between the layers. During the cooling process, one layer will contract more than the other,
thus causing internal stresses and strains. Since there is no externally applied force within
the system, the forces acting on the two layers must balance to achieve equilibrium. This
equilibrium entails tensile stress in one layer and compressive stress in another. Moreover,
moment balance must also be maintained simultaneously, as the stresses in the layers
induce a bending moment that tends to create curvature in the plane.

An equal biaxial stress state is generated when the material used in the layered systems
has isotropic properties within the plane and negligible through-thickness stress. This
state can be described by introducing strain in two arbitrary in-plane directions that are
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orthogonal and equivalent. To provide a simplified illustration of the relationship between
the CTE difference and the warpage shape, we will focus on the one-dimensional case,
which could easily be generalized to higher-dimensional cases. The CTE of the deposition
layer is denoted as αd and that of the substrate is αs. When αd < αs, the deposition layer
will contract less during cooling (see Equation (11)), resulting in a concave wafer warpage.
Conversely, when αd > αs, the deposition layer will contract more than the substrate,
leading to the formation of a convex wafer warpage, as depicted in Figure 8.
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3.4. Parameter Sensitivity Analyses and Optimization

With the presented homogenization method successfully validated by numerical and
experimental results, this method was then employed to investigate the impact of substrate
thickness and via depth on wafer warpage while maintaining other fixed parameters. It
was observed that as via depth increased, the wafer warpage also increased (Figure 9a).
Conversely, as substrate thickness increased, the wafer warpage decreased (Figure 9b).
Deeper via resulted in a higher capacitance density, but it also led to an increased warpage
value. Therefore, via depth should strike a balance between warpage and capacitance
density. On the other hand, a thicker substrate can decrease the wafer warpage, but it also
results in a thicker substrate, which is not desirable in the industry application. Therefore,
there are limitations to how much the substrate thickness can be increased.
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It can be observed from Figure 10a that both the via depth and the substrate thickness
have a noticeable impact on the wafer warpage, with the via depth exhibiting a more sig-
nificant effect. When considering second-order effects and interaction terms, as illustrated
in Figure 10b, the influence of the interaction term A–B is more pronounced than that of
the second-order effects. This suggests that when the via depth and substrate thickness
change simultaneously, they collectively impact the wafer warpage substantially.
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4. Conclusions

This study devises and validates a multi-step homogenization method for predicting
wafer warpage in silicon substrates with vias. The numerical process involves substituting
the intricate physical process with a simplified temperature drop from the equivalent
stress-free temperature and utilizing a homogenization method to replace the via layer with
a homogenized material. Notably, the presented multi-step homogenization method differs
from the conventional approach by incorporating prior RVE results into the subsequent
steps. This novel method considers the influence of the previous step, thereby delivering
more reliable results. The validity of both simplifications has been confirmed through
numerical modeling and experimental measurements.

Furthermore, parameter sensitivity analyses were conducted to investigate the influ-
ence of various factors. It has been observed that increasing the via depth can enhance
capacitance density, but it also results in a more considerable wafer warpage. Therefore,
via depth should strike a balance between warpage and capacitance density. Both the via
depth and substrate thickness have an impact on the wafer warpage, with the via depth
being the more influential factor. Overall, applying the presented homogenization method
has enabled us to estimate wafer warpages reliably and efficiently.
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