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Abstract: In this study, well-defined tungsten oxide (WO3) nanowall (NW) thin films were syn-
thesized via a controlled hot filament chemical vapor deposition (HFCVD) technique and applied
for electrochemical detection of methylamine toxic substances. Herein, for the thin-film growth by
HFCVD, the temperature of tungsten (W) wire was held constant at ~1450 ◦C and gasification was
performed by heating of W wire using varied substrate temperatures ranging from 350 ◦C to 450 ◦C.
At an optimized growth temperature of 400 ◦C, well-defined and extremely dense WO3 nanowall-like
structures were developed on a Si substrate. Structural, crystallographic, and compositional char-
acterizations confirmed that the deposited WO3 thin films possessed monoclinic crystal structures
of high crystal quality. For electrochemical sensing applications, WO3 NW thin film was used as an
electrode, and cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were measured with a
wide concentration range of 20 µM~1 mM of methylamine. The fabricated electrochemical sensor
achieved a sensitivity of ~183.65 µA mM−1 cm−2, a limit of detection (LOD) of ~20 µM and a quick
response time of 10 s. Thus, the fabricated electrochemical sensor exhibited promising detection of
methylamine with considerable stability and reproducibility.

Keywords: WO3; HFCVD; nanowalls; methylamine; electrochemical sensor; cyclic voltammetry;
linear sweep voltammetry

1. Introduction

In today’s landscape, metal oxides have emerged as valuable assets across various
industries, owing to their unique chemical, physical, and electronic characteristics. Metal
oxides offer versatility and find applications in a wide range of sectors, including environ-
mental remediation [1], medical technology [2], energy solutions [3], water purification [4],
and personal care product development [5]. The use of metal oxide is anticipated to grow
even further, underscoring their pivotal role in advancing innovation and addressing
contemporary challenges [6].

Tungsten oxide (WO3) is a wide-band-gap metal oxide [7] which has good properties
for numerous applications, e.g., information science, electronics (nano and micro), computer
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science, energy (renewable and non-renewable), transportation, safety engineering, military
technologies, optoelectronic [8], electrochromic devices [9] and sensing [10]. WO3 is an n-
type semiconductor which exhibits high stability, small diffusion length (150–500 nm) and
good carrier mobility (~33.9 cm2 V−1 s−1) [11]. Tungsten oxide (WO3) has become increas-
ingly popular due to its superior sensitivity, heightened responsiveness to sensitization,
excellent stability, and suitability for lower-temperature operations [12]. In thin-film config-
uration, WO3 offers optimal electrical resistivity, selectivity, and repeatability, making it a
promising candidate in sensor technology. Furthermore, it exhibits the ability to undergo
changes in characteristics such as stoichiometry, composition, structure, thickness, and
morphology, depending on the synthesis techniques and conditions employed [13]. WO3
predominantly in thin films shows commendable performances due to its cost-effective
properties, simple fabrication, and easy deposition process.

Various deposition techniques (vacuum and non-vacuum techniques) have been used
to deposit nanostructured WO3 thin films on substrate surfaces, including pulsed laser
deposition (PLD) [14]; the electrophoresis deposition process (EDP) [15]; sputtering [16];
chemical spray pyrolysis [17]; solvothermal [18], hydrothermal [19,20], and sol–gel meth-
ods [21]; the chemical vapor deposition method [22]; and the physical vapor deposition
method [23,24]. Hot filament chemical vapor deposition (HFCVD) is a cost-effective process
compared to other deposition techniques. Its economic benefits arise from the use of a
hot filament that decomposes preceding gases, which enables effective film development
at lower temperatures [25]. It significantly minimizes the consumption of energy and
instrument costs. For thin-film deposition, HFCVD is capable of depositing thin films
with a high surface-to-volume ratio and intricate architectures. Accurate control enables
the production of high-resolution patterns for device electrode fabrication [26]. HFCVD
is beneficial for the fabrication of sensor electrodes because it can control the electrical
resistivity, selectivity, and durability of thin films [27,28].

Methylamine is a hazardous organic chemical found in liquid and gas forms [29]. It
is toxic, colorless, and flammable at room temperature with a typical pungent smell [30].
Methylamine is used as industrial raw material for the production of pesticides as an agri-
culture product, making rubbers for transportation industries, dyes for textile industries,
and in pharmaceutical industries [31]. It is a hazardous chemical, and its accidental release
or exposure can pose risks to public health and safety. Thus, it is crucial to monitor the
presence of methylamine to ensure safety and prevent potential accidents or exposures [32].
In this regard, electrochemical detection methods can provide real-time detection and mon-
itoring [33] of methylamine, allowing for prompt action to mitigate any risks. In particular,
the chemical sensing methods enable the detection and quantification of methylamine in
environmental samples [34], helping to identify potential pollution sources and assess the
impact on the environment [35,36].

With these motivations, in this work, we have deposited WO3 nanostructured thin
film through HFCVD, using tungsten (W) filament in a constant O2 pressure. The unique
morphology displays WO3 thin-film nanowalls (WO3 NWs) with a grain size of 20–25 nm.
To the best of our knowledge, this is the first report on single-step HFCVD-deposited WO3
thin film with distinct morphology and has been used as an electrode material for the
detection of hazardous methylamine.

2. Materials and Methods
2.1. Materials

Methylamine (CH3NH2, Sigma Aldrich, ≥99.5%, St. Louis, MO, USA), silicon (Si,
p-type, 10 mm × 10 mm, Siltron Inc., Seoul, Republic of Korea), tungsten (W) wire (thick-
ness ~0.5 mm, The Nilaco Corporation, Tokyo, Japan), sodium dihydrogen phosphate
(NaH2PO4, Sigma Aldrich, ≥99%, St. Louis, MO, USA), and disodium hydrogen phos-
phate (Na2HPO4, Sigma Aldrich, ≥99%, St. Louis, MO, USA) were used.
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2.2. Synthesis of WO3 NW Thin Film

The WO3 NW thin film on the Si substrate was deposited through the HFCVD tech-
nique. As shown in Figure 1, the vacuum chamber is equipped with a thermocouple for
measuring and monitoring the temperature, tungsten (W) wire filament was used, gas inlet
pipes connected to mass flow controllers were used to regulate the flow of the gasses, and a
high-current power supply, a rotary vacuum pump, and a cooling facility were attached to
the vacuum chamber. For thin-film deposition, the silicon wafers (Si-P100) were cleaned
with ultrasonic vibration using deionized (DI) water and acetone. Thereafter, Si substrates
were placed on the substrate tray at the distance of ~10 mm from the W wire filament, and
the chamber pressure was set to a constant 0.2 Torr. Subsequently, the W filament was
heated at 1400 ◦C and the substrate temperature was raised from 300 to 450 ◦C for ~30 min
under the supply of oxygen at a flow rate of 10 sccm. Herein, hydrogen gas was used as a
precursor gas at 5.0 sccm. Finally, the W filament was oxidized at the above temperatures,
resulting in the growth of WO3 nanostructured thin film on the Si substrate.
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Figure 1. A schematic representation of the HFCVD process for the synthesis of WO3 NW thin films.

2.3. Characterization Techniques

Morphological analysis was carried out by a field-emission scanning electron mi-
croscope (FESEM, Hitachi S-4700, Tokyo, Japan). The elemental composition, mapping
and line scan mapping analysis were determined by the SEM-coupled energy-dispersive
X-rays spectroscopy (EDS). The absorption properties were obtained through a UV–visible
spectrophotometer (JASCO, V-670, Tokyo, Japan). The structural investigations of WO3
nanostructured thin film were performed by X-ray diffraction (XRD, Rigaku, Tokyo, Japan)
in the Bragg angle ranging between 20◦ and 60◦ to explain the crystal phases and lattice
properties using CuKα radiation (λ = 1.5406 Å). Fourier-transform infrared (FTIR, Nicolet,
IR300, Wisconsin, USA) was used to study bond vibrations in the range of 400–4000 cm−1.
X-ray photoelectron spectroscopy (XPS, KRATOS AXIS-Nova, Manchester, UK) was con-
ducted to study the surface compositional and element states.

2.4. Sensing Performance

To detect the presence of the hazardous methylamine, a three-electrode system of
10 mL electrochemical cells was employed for the measurement of cyclic voltammetry
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and linear sweep voltammetry using an electrometer (Keithley, 6517A, Aurora Rd, USA),
Herein, HFCVD-grown WO3 NW thin film served as the working electrode, AgCl/Ag was
employed as a reference electrode and gold wire was utilized as the counter electrode. A tar-
geted analyte (methylamine) was prepared at a broad concentration range of 20 µM–1 mM
in a 10 mL solution of 0.1 M phosphate buffer solution (PBS) of pH 7. The use of PBS in
electrochemical sensing offers advantages such as stable pH, biocompatibility, consistent
ionic strength, enhanced solubility, and compatibility. Its buffering capacity and versatility
make PBS a reliable choice for maintaining optimal conditions during electrochemical mea-
surements [37]. Cyclic voltammetry was performed to study the oxidation and reduction
peaks and the linear sweep voltammetry technique was used to study the current and
voltage responses. The active area of the fabricated electrode was 1 cm2 (WO3 NWs) and
the sensitivity was calculated by dividing the slope of the calibrated current–concentration
plot by the active area of the sensor, as expressed in Equation (1):

Sensitivity =
Slope of calibrated curve

Active area
(1)

Herein, CV was performed within the range of−0.8~0.8 V, with a scan rate of 50 mV/s.
The current responses were analyzed within a voltage range from 0 to 2.0 V, and the
response time was determined to be 10 s.

3. Results
3.1. Morphological Properties of WO3 NW Thin Film

The morphology of HFCVD-grown WO3 nanostructured thin films deposited on the
Si substrate was investigated by FESEM and the elemental characterization was performed
by energy-dispersive X-ray (EDAX). The HFCVD-grown WO3 thin film, as shown in
Figure 2a–c, depicts the formation of highly dense and uniformly distributed nanowall
(NW) structures. At an optimized substrate temperature (Ts) of ~400 ◦C, the surface of the
thin film appears notably uniform, with a grain size in the range of 20–25 nm. However,
upon raising the substrate temperature, the grain size increase might be due to the increased
reaction rate at the substrate surface [38]. This improved grain size might boost the overall
surface area of the WO3 thin film, indicating the availability of more active sites for chemical
interactions. In the context of chemical sensing, the large surface area of the thin film brings
about enhanced sensitivity, a faster response time, a low limit of detection and increases
the reproducibility of the targeted electrode [39,40]. Figure 2d shows an elemental analysis
of the HFCVD-grown WO3 NW thin film, exhibiting the presence of two primary elements:
W (tungsten) and O (oxygen). The EDX analysis quantifies the elemental composition, with
tungsten accounting for ~24.51% and oxygen making up the remaining ~75.49%.

3.2. Optical Characterizations of WO3 NW Thin Film

The optical properties of HFCVD-grown WO3 NW thin film are studied by UV–vis
absorption in the range of 200~800 nm. The UV–vis spectrum, as shown in Figure 3a,
exhibits a sharp absorption peak at ~339 nm, which confirms the deposition of the WO3
thin film [41,42]. The band gap value of WO3 NW thin film is calculated by the Tauc relation:

α=
A(hυ− Eg)2

hυ
(2)

where A, hυ and Eg are a constant of proportionality, photon energy and optical bandgap
energy [43], respectively. In our work, the WO3 NW thin film has a band gap of ~3.321 eV,
as shown in Figure 3b. The existence of an optical band gap energy of ~3.321 eV represents
the minimum energy required to move an electron from the valence band (the highest
energy band filled with electrons at absolute zero) to the conduction band (the lowest
energy band with available electron states) within the thin film [44].
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3.3. Crystalline and Structural Studies of WO3 NW Thin Film

XRD is performed to study the crystal structures, phases, crystallite size, and purity of
the synthesized WO3 NW thin film. Figure 4a exhibits the diffraction patterns at 23.40◦,
24.54◦, 26.84◦, 28.91◦, 33.59◦, 33.89◦, 34.46◦, 41.78◦, 45.83◦, 48.61◦, 50.27◦, 53.78◦, 54.45◦,
56.09◦, and 60.53◦ relating to miller planes (020), (200), (120), (112), (022), (202), (122), (222),
(004), (020), (114), (024), (204), (142), and (320), respectively [45,46]. The obtained XRD
diffraction peaks are well matched with JCPDS card no. 83-0950. The crystal size of WO3
NW thin film is calculated as ~83.3472 nm by the Scherrer formula [47], using the most
intense peak at 23.40◦.

D =

(
kλ

βcosθ

)
(3)
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where D is the crystallite size of the particle in nm, θ is the diffraction angle, β is the full
width at half maximum observed in radians (FWHM), k is the Scherrer constant (k = 0.94)
and λ is the X-ray wavelength (λ = 1.54178 Å) [24,25]. Herein, the WO3 NW thin film
prepared at Ts of ~400 ◦C shows phase purity at the strongest diffraction peak of 020 lattice
planes, indicating the preferential growth orientation [48].
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Figure 4b displays the results of Raman spectroscopy, performed in the range of
200–1000 cm−1, to measure the structural and molecular properties of the WO3 NW thin
film. Raman spectra clearly manifest the signature peaks associated with stoichiometric
WO3 with a monoclinic phase [49]. The W-O-W stretching and bending vibrations are
located between 700 and 800 cm−1 [48] and O-W-O stretching and bending vibrations are
noticed between 250 and 400 cm−1 [49]. The intense band at ~278.08 cm−1 and the weak
band at ~330.17 cm−1 are attributed to the bending vibration of δ(O-W-O) [50]. The Raman
peak observed at ~801 cm−1 is the typical polycrystalline WO3 in the monoclinic or triclinic
crystalline phase [48,49].

Chemical configurations of HFCVD-grown WO3 NW thin films at Ts of ~400 ◦C is
shown in Figure 4c. The spectrum exhibits transmittance in the range of 400–4000 cm−1.
The FTIR spectra exhibit a broad peak at ~746 cm−1 and 815 cm−1 [51], which are attributed
to the stretching vibration of υ(O-W-O) [51]. The υ(O-W-O) stretching vibration mode is
the monoclinic crystal phase, confirming that the WO3 NW thin film is grown well on the
Si substrate [52]. The transmittance peaks located at ~746 cm−1 refer to the O-W-O bending
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mode of the vibration and transmittance peak located at ~846 cm−1 is due to the W-O
stretching mode of hexagonal WO, confirming the hexagonal structure [53].

3.4. XPS Studies of WO3 NW Thin Films

The XPS properties provide an in-depth understanding of the oxidation states of W
and O in WO3 thin films using high-resolution spectra of W 4f and O 1s binding energies.
Figure 5a showcases the fitted W4f XPS spectrum, revealing a distinct doublet pattern, with
binding energies of approximately ~35.5 and ~37.7 eV [54]. These values correspond to
the W 4f5/2 and W 4f7/2 electronic states, respectively. Peaks at 4f5/2 correspond to the
binding energy of ~35.58 eV, aligning precisely with the characteristic energy level of the
W6+ oxidation state within WO3 thin films and indicating the predominant oxidation state
of tungsten [55] in the HFCVD-grown WO3 NW thin film. This peak serves as compelling
evidence affirming that the WO3 thin film predominantly comprise hexavalent tungsten [56].
The second distinct XPS peak emerges at approximately ~37.9 eV, corresponding to the
4f7/2 state of tungsten ions in the HFCVD-grown WO3 NW thin film. This peak reaffirms
the dominance of the W6+ oxidation state, which is crucial for understanding the electronic
structure and chemical environment of the material [29,57]. Mostly, WO3 thin films are
characterized by the presence of two distinct binding energies within the range of ~36–38 eV.
These binding energies are indicative of the prevalence of W6+ ions within stoichiometric
WO3 [25]. In our work, we observe a similar doublet pattern within the range of 36–38 eV,
affirming the stoichiometric nature of the thin film [58,59]. The O 1s XPS plot, as depicted in
Figure 5b, reveals two distinct binding energies: one with a higher intensity at ~530.4 eV and
another with a lower intensity at ~531.4 and ~532.3 eV. Herein, the higher-intensity peak
at ~530.2 eV typically arises from the O component of oxide, providing further evidence
for the formation of W-O bonds in HFCVD-grown WO3 NW thin films [60]. Notably, the
lower-energy peaks at ~531.4 and ~532.3 eV are associated with -OH or H2O species on the
thin film’s surface, due to contamination that might occur with atmospheric moisture or
crystal water [61].
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3.5. Sensing Parameters of WO3 NW Thin-Film-Based Electrodes

A HFCVD-grown WO3 NW thin film-modified electrode is employed for the detection
of methylamine. The electrochemical sensing studies were performed in 0.1 M phosphate
buffer solution (PBS, pH = 7). Cyclic voltammetry (CV) measurements were used to analyze
the electrochemical behavior at a scan rate of 50 mVs−1. The CV graphs for the detection of
methylamine are shown in Figure 6a, exhibiting a promising electrochemical reversibility
and efficiency with a redox response (oxidation and reduction) of the WO3 NW thin-film
electrode of 0.2303 V redox potential [62]. These peaks usually occur due to the transfer
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of electrons displaying, the oxidation peak as a result of electron-losing behavior and the
reduction peak occurs due to the electron-gaining behavior. In our work, the detection of
methylamine by the HFCVD-grown WO3 NW thin-film electrode exhibits efficient electro
chemical sensing behavior, which might be due to the high conductivity [33] and large
surface area [63] of WO3 NW thin films. From linear sweep voltammetry, as shown in
Figure 6b, a low current value of ~1.3 µA is observed in pristine PBS. However, it has been
observed that upon the addition of the lowest amount of methylamine (20 µM), there is a
significant change in current due to the high sensing properties of the HFCVD-grown WO3
NW thin film. Electrolytes with different concentrations of methylamine (20 µM–1 mM)
display a lower current response of ~14.15 µA and the highest current value of ~23.23 µA.
This gradual increase in the current indicates the rapid sensing response of HFCVD-grown
WO3 NW thin-film electrodes in the detection of methylamine, which might result from
the better electrocatalytic or electrochemical behavior and the fast electron exchange of
HFCVD-grown WO3 NW thin films [64]. The increase in current upon the further addition
of the targeted chemical in an electrolyte usually results in an increase in the ionic strength
of the electrolyte. Herein, when increasing the methylamine concentration in the 0.1 M PBS,
a large number of ions are generated; due to this response, more electrons are exchanged
and this increases the opportunity for electron transfer at the electrode surface. As such,
there is an increase in the rate of reaction, which enhances the sensitivity of the electrode.
This result suggests that HFCVD-grown WO3 NWs show effective sensing capabilities in
the detection of methylamine [65].
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To examine the sensitivity of HFCVD-grown WO3 NW thin-film-based electrodes,
Figure 7a shows the current vs. concentration calibration curve [33]. Herein, the current
increases linearly with an increase in analyte concentration. The HFCVD-deposited WO3
NW thin-film-based electrode shows a reproducible, reliable and considerable promising
sensitivity of ~183.65 µA mM−1 cm−2 with a linearity of 20 µM−1 mM, a detection limit of
~20 µM and a correlation coefficient (R2) of ~0.97708 in 10 s response time. The existence
of a good current response and reliable sensitivity might suggest high electron mobility
and electrochemical activity [66] over the surface of HFCVD-grown WO3 NW thin-film
electrodes. The stability performance of HFCVD-grown WO3 NW thin-film electrode
materials was performed by a linear sweep voltammetry graph (current vs. voltage graph)
in the presence of 20 µM methylamine. The electrochemical behavior was studied twice a
day for 1 month. As seen in Figure 7b, ~95% of the current response remains the same as
compared to the measurements performed on the first day of the analysis and no significant
change in current is observed, which shows the good stability of HFCVD-grown WO3 NW
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thin-film electrodes. The performance of HFCVD-grown WO3 NW thin-film-based sensor
is compared to other reported sensors [67–71], as shown in Table 1.
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Table 1. Sensing parameters of WO3 NWs electrode-based sensors compared with reported chemi-
cal sensors.

Materials Preparation Method Chemicals Sensitivity LOD R2 Refs.

WO3 HFCVD ethylenediamine 161.33 µA µM−1 cm−2 9.56 µM 0.98 [33]

PANI/Gr Spin coating hydrazine 32.54 × 10−5 µA cm−2 mM−1 15.38 mM 0.78578 [38]

Ag2O Sonochemical method acetone 1.689 µA cm−2 mM−1 0.11 µM 0.946 [67]

Ce2O3 Wet chemical method 2-nitrophenol 1.689 µA mM−1 cm−2 0.9030 [68]

WO3 HFCVD diethylamine 3.5 µA µM−1 cm−2 7 µM [69]

ZnFe2O4 Hydrothermal method formaldehyde 4.10 µA cm−2 mM−1 0.89 µM [70]

MAPbBr3 Electrospun methylamine - 0.8 ppm 0.9904 [71]

WO3 HFCVD methylamine 183.65 µA µM−1 cm−2 20 µM 0.97708 This work

The detection mechanism of methylamine by HFCVD-grown WO3 NW thin-film-
based electrodes is related to the changes in electrode conductance during the interaction
of fabricated electrodes with an analyte. As shown in Figure 8, oxygen species adhere to
the surface of WO3 NW thin films grown through the HFCVD process. The HFCVD-grown
WO3 NW thin film shows n-type semiconducting behavior [33]. Due to the nature of WO3
thin films, electrons in the conduction band tend to bond with the surface area of WO3 thin
films. By capturing electrons within WO3 thin films, these oxygen species (O2 adsorbed)
transform into active sites, converting into anionic species containing oxygen [72]. The
presence of these adsorbed oxygen species on the surface stimulates low-energy electrons
in the valence band, leading to an increase in the number of holes within the HFCVD-
grown WO3 NW thin film. This accumulation of holes eventually results in reduced
resistance in the fabricated sensor. When the target methylamine molecule interacts with
the adsorbed oxygen ions, it triggers the release of trapped electrons, as described by the
following equations:

O2 (gas)←→ O2 (ads)

O2 (ads) + ē (CBofWO3)←→ O−2 (ads) −→ O− (ads)

8O− + C2H4(NH2)2 ←→ 4CO2 + H2O + 2N2 + 4ē
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Figure 8. Possible sensing mechanism for the detection of methylamine over the surface of HFCVD-
grown WO3 NW thin-film-based electrodes.

During the oxidation process, electrons emitted from the conduction band of the
HFCVD-grown WO3 thin-film NWs enhance the electrical conductivity, resulting in an
increased current associated with the methylamine [73]. In our work, the deposited WO3
thin film exhibits uniformly distributed nanowalls of an average grain size of ~20–25 nm.
This structure might provide a large surface area for adsorption, making it highly efficient
for the detection of methylamine, ensuring exceptional electrochemical performance.

4. Conclusions

This study focuses on the development of a sensitive sensor for detecting the hazardous
chemical methylamine. A uniform WO3 thin-film nanowall structure on a Si substrate is
obtained at a relatively low temperature of ~400 ◦C through HFCVD. The resulting WO3
NW-based thin-film-based electrode exhibits highly effective detection of methylamine at
very low concentrations. The obtained results are attributed to the unique nanowall-like
structure of WO3 thin films, which might offer a large surface area, facilitating efficient
electron transfer during the electrochemical detection of methylamine. The WO3 NW-based
fabricated chemical sensor demonstrates a promising sensitivity of ~196.33 µA µM−1 cm−2,
a low limit of detection (LOD) of ~12 µM, and a strong retention coefficient of ~0.97708.
Thus, our fabricated sensor has the potential for application in environmental monitoring,
making it adaptable for the detection of other harmful chemicals in the future.
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