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Abstract: In this paper, a novel asymmetric trench SiC MOSFET with a Poly-Si/SiC heterojunction
diode (HJD-ATMOS) is designed to improve its reverse conduction characteristics and switching
performance. This structure features an integrated heterojunction diode, which improves body
diode characteristics without affecting device static characteristics. The heterojunction diode acts
as a freewheeling diode during reverse conduction, reducing the cut-in voltage (Vcut-in) to a lower
level than conventional asymmetric trench SiC MOSFET (C-ATMOS), while maintaining a similar
breakdown voltage. Meanwhile, the split gate structure reduces gate-to-drain charge (Qgd). Through
TCAD simulation, the HJD-ATMOS decreases Vcut-in by 53.04% compared to the C-ATMOS. Both
Qgd and switching loss are reduced, with a decrease of 31.91% in Qgd and 40.29% in switching loss.

Keywords: silicon carbide; heterojunction; asymmetric trench MOSFET; low cut-in voltage; switching
loss

1. Introduction

The wide bandgap semiconductor properties of silicon carbide (SiC) make it a promis-
ing candidate for the development of future power switching devices [1,2]. This is primarily
due to SiC possessing properties such as a strong breakdown field, high physical and chem-
ical stability, high thermal conductivity, and high electron saturation velocity [3–5]. SiC
devices can operate in harsh environments due to their wide band gap of 3.25 eV and high
thermal conductivity of 5 W/(cm·K) [6]. The SiC MOSFET is the most significant SiC power
switching device due to its lack of trail current. This reduces switching loss and radiator
volume, improving system power density [7].

SiC MOSFETs commonly make use of parasitic body-PN diodes as freewheeling
diodes (FWD) in power inverter and converter systems [8]. However, parasitic body-PN
diodes in SiC MOSFETs are not ideal for use as freewheeling diodes [9]. The reasons for this
are as follows: Stacking faults (SFs) in SiC devices may cause reliability issues and increase
conduction loss [10]. Although recent papers concerning the measured degradation of
SiC MOSFETs [11] show a high level of current threshold (about 5× the nominal current
or more than 1000 A/cm2) for the starting of bipolar degradation, bipolar degradation
effects can still occur in SiC MOSFETs under large cyclic pulse current densities. This
will limit the application of SiC MOSFET devices in key areas, such as the surge current
that flows through a diode during the start-up of a power converter, which can be more
than ten times its rated current [12]. Furthermore, the body diode’s Vcut-in voltage (~2.7 V)
is much higher than that of its silicon counterparts due to SiC’s wide bandgap [13]. To
overcome the drawbacks of parasitic body-PN diodes, numerous approaches have been
devised to deactivate them. One approach is to integrate SiC MOSFETs with Schottky
barrier diodes (SBDs) [14–17]. However, the use of external diodes not only introduces
parasitic inductance, limiting switching frequency, but also consumes additional area in the
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package [18]. And Schottky contacts suffer from a significant increase in reverse leakage
current at high temperatures.

Furthermore, SiC MOSFETs with low-barrier and heterojunction diodes are avail-
able [19,20]. Heterojunction diodes formed between polysilicon and SiC are attractive.
Shenoy and Baliga [21] and Yamagami et al. [22] presented studies on heterojunction diodes
using P-Poly-Si and n-6H-SiC, and Poly-Si and 4H-SiC, respectively. Both studies demon-
strated low-forward-voltage Schottky-like characteristics. Ni et al. [23] proposed a trench
SiC MOSFET integrating polysilicon/SiC HJD, exhibiting excellent freewheeling diode
(FWD) performance in both the first and third quadrants. The HJD’s unipolar behavior,
similar to that of a Schottky diode, effectively suppresses the turn-on of the problematic
body diode, mitigating the aging degradation observed in conventional SiC MOSFETs.
Additionally, HJDs reduce reverse recovery voltage and losses, enhancing long-term oper-
ational reliability. Furthermore, HJD integration eliminates the need for a separate SBD,
leading to a smaller chip area, simpler packaging, and reduced overall system cost. This
also minimizes parasitic inductance arising from additional components.

A novel asymmetric trench SiC MOSFET with a heterojunction diode at the right of
the gate trench is proposed and simulated in this paper. The structure includes a trench
gate with split-gate electrodes and a thicker P-Poly-Si layer, resulting in reduced gate
charge and improved switching performance. To suppress the depletion layer, an n-type
doped current spreading layer (N-CSL) is formed under the entire P-well region [24]. To
maintain the breakdown voltage (BV) of the device structure while maintaining transfer
and output characteristics similar to those of C-ATMOS [25–27], the depth of the P-well on
the right side is not changed. The N-channel (Nch) is positioned below the P-Poly-Si and in
contact with the CSL. The integrated HJD structure of the proposed device eliminates the
requirement for an anti-parallel SiC SBD during reverse conduction. The HJD turns on at a
low source–drain voltage (Vsd), thus eliminating bipolar degradation by inactivating the
body diode. The split gate results in a decrease in gate charge, leading to a reduction in
switching losses in the HJD-ATMOS without affecting other characteristics.

2. Device Structure and Mechanism

The schematic cross section of HJD-ATMOS and C-ATMOS is shown in Figure 1.
Similar to C-ATMOS, the device forms an inversion layer channel in the first quadrant
to facilitate electron conduction. The N-CSL layer on the N-drift region reduces the on-
resistance. Deep P-wells are used to reduce the electric field stress in the gate oxide at the
trench bottom and corner [27]. The primary distinction is the body diode structure. The Nch
region under the P-Poly-Si provides a low-barrier path for electrons. Meanwhile, the HJD-
ATMOS has a split gate and HJD structure on the right of the gate oxide layer. The split gate
structure uses only a portion of the trench space for the gate electrode, while the other part
is thicker P-Poly-Si that forms a portion of the HJD structure. The HJD-TMOS facilitates
low-voltage conduction by allowing electrons to cross the lower heterojunction barrier in
the third quadrant. The structure of Nch and N-channel doping concentration (Nnch) will
be further discussed based on this optimization in this paper. Device specifications are
presented in Table 1.

Table 1. Main parameters used in the simulation.

Parameter HJD-ATMOS C-ATMOS

Tdrift 9 µm 9 µm
TCSL 1 µm 1 µm
WCSL 0.9 µm 0.9 µm
Ndrift 7 × 1015 cm−3 7 × 1015 cm−3

Wcell 2.7 µm 2.7 µm
TOX 50 nm 50 nm
DT 1 µm 1 µm
LG 0.25 µm -
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Table 1. Cont.

Parameter HJD-ATMOS C-ATMOS

LP 0.6 µm -
LGP 0.1 µm -

h 0.3 µm -
w 0.5 µm -

Nnch 2 × 1017 cm−3 -
NP-Poly-Si 1 × 1020 cm−3 -

NCSL 2.5 × 1016 cm−3 2.5 × 1016 cm−3

Fixed charges (SiC/SiO2) 6 × 1011 cm−2 6 × 1011 cm−2 [28]
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Figure 1. Schematic cross section of (a) HJD-ATMOS and (b) C-ATMOS.

Sentaurus TCAD simulations are used to analyze the performances of the HJD-ATMOS
and the C-ATMOS, considering doping and temperature-dependent Shockley–Read–Hall
and Auger recombination, doping-dependent transport, impact ionization, band narrowing,
high-field velocity saturation, and mobility degradation [29], as well as fixed charges at the
SiC/SiO2 interface for closer simulation results to experimental data.

The energy band diagram of the P-Poly-Si/N-SiC heterojunction at thermal equilib-
rium is shown in Figure 2b. The energy band diagram at thermal equilibrium along the
A-A’ cut-line is shown in Figure 2a. The heterojunction has a conduction energy gap of
0.46 eV and a valence barrier energy gap of 1.78 eV. The electron barrier height ΦBN is
determined by the Fermi level energy Ef and the conduction band peak energy Ec, which is
about 1.39 eV. Figure 2c shows the simulated carrier density at the heterojunction interface
under forward bias at the rated voltage. Electrons are injected from N-SiC to P-poly, but
there are few holes from P-poly to N-SiC due to the high hole barrier. Therefore, the HJD
exhibits unipolar action, similar to the SBD [30].

We also constructed a 3D band diagram of the device to better observe the working
state of the device. Figure 3a shows the 3-D conduction band energy distribution of
the device at Vds = 10 V and Vgs = 15 V. The band energy of Nch is higher than that of
N-CSL, which prevents electron current from flowing to P-poly and enables the device
to work normally like C-ATMOS. Figure 3b shows the distribution of the devices when
Vds = −5 V and Vgs = −5 V. The band energy of Nch is lower than that of N-CSL, resulting
in electron current flowing from N-CSL to P-poly and preventing the turn-on of parasitic
body-PN diodes.
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Figure 3. Three-dimensional conduction band energy distribution between P-poly, gate, Nch, N-CSL,
and P-well (a) when conduction is forward and (b) when conduction is reverse.

Figure 4 shows the distribution of the total current density, hole current density, and
electron current density of the device. From the total current density distribution, it can
be seen that the current does not flow from P-Poly-Si to P-well. But a high current density
is also noted at the gate corner of P-Poly-Si, which should be noted in use. From the hole
current density distribution, it can be seen that holes do not enter N-drift. This is due
to the difference in the band gap between SiC and polysilicon. Since the energy barrier
height between the SiC and polysilicon junctions in the valence band is very large, in the
HJD-ATMOS, electron current can move toward the source while hole current cannot move
toward the drain [31]. The device can operate normally at electron current densities of
10 A/cm2 and 500 A/cm2.
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Figure 5 shows the I–V curves of HJD-ATMOS and C-ATMOS in forward and reverse
conduction at room temperature. The steeper slope of the I–V curve of HJD-ATMOS in the
first quadrant indicates that its specific on-resistance (Ron,sp) is lower than that of C-ATMOS.
This is because the presence of Nch in HJD-ATMOS results in a smaller depletion region of P-
well on N-CSL, leading to a wider current conduction region. According to the calculations,
at Vgs = 15 V and Ids = 200 A/cm2, the Ron,sp values for HJD-ATMOS and C-ATMOS are
1.35 mΩ·cm2 and 1.46 mΩ·cm2, respectively. In the third quadrant, at Ids= −10 A/cm2,
HJD-TMOS exhibits a significantly lower Vcut-in of only 1.39 V compared to the PN diode
of C-TMOS. As a result, HJD-ATMOS is capable of reducing switching losses. The rated
operating current of the device in the third quadrant is generally Ids = −200 A/cm2 [8].
This means that the proposed HJD-ATMOS has a clear advantage over C-ATMOS in that it
can start working at a lower voltage. The hole density distribution diagram in Figure 5 for
Ids = −200 A/cm2 shows that the integrated HJD effectively suppresses minority carrier
injection, reducing bipolar degradation.

In Figure 6, the local magnification shows that the HJD-ATMOS is affected by current
spikes due to leakage. The figure demonstrates the change in breakdown voltage as a
function of h and w when Nnch is, respectively, 2 × 1017 cm−3 and 2.5 × 1017 cm−3. It
can be observed that when Nnch is 2.5 × 1017 cm−3, with h at 0.25 µm and w at 0.5 µm,
the spike in the current is large, indicating the occurrence of leakage. When Nnch is
2.5 × 1017 cm−3, increasing h to 0.30 µm and w to 0.4 µm also results in leakage. How-
ever, when Nnch is 2.0 × 1017 cm−3 and h increases to 0.3 µm, the device does not exhibit
leakage, demonstrating that variations in Nnch have a significant impact on device perfor-
mance. As shown in Figure 7, Vcut-in varies significantly with h. The minimum point of
Vcut-in is 1.31 V at Nnch = 2 × 1017 cm−3, which is lower compared to its value of 1.71 V
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at Nnch = 2.5 × 1017 cm−3 and h = 0.2 µm. This point represents the critical condition for
the device not exhibiting leakage when Nnch = 2.5 × 1017 cm−3. After h is greater than
0.25 µm, the variation in Vcut-in with h tends to be flat, and if the value of h is larger, the
protective effect of P-well on the gate oxide will also be weakened, and it will also increase
the difficulty of process manufacturing. As can be seen from Figure 8, when the device
Vds is 0 V, Nnch is 2.5 × 1017 cm−3, and h is 0.25 µm, the HJD-ATMOS has more leakage
than the device with Nnch is 2.0 × 1017 cm−3 and h is 0.30 µm. The darker regions in the
current density plot for the HJD-ATMOS with Nnch at 2.5 × 1017 cm−3 and h at 0.25 µm are
larger than those with Nnch at 2.0 × 1017 cm−3 and h at 0.30 µm, indicating higher leakage
currents. This also confirms the hypothesis that the breakdown voltage spike is caused by
heterojunction leakage. So the results indicate that Nnch = 2 × 1017 cm−3, h = 0.3 µm, and
w = 0.5 µm are the optimal values.
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3. Simulation Results and Discussion

Figure 9 shows the capacitances of HJD-ATMOS and C-ATMOS. Gate voltage was
fixed at 0 V, a 1 MHz AC signal was applied [32,33], and drain voltage was swept from 0
to 1000 V. HJD-ATMOS has lower gate-to-source capacitance (Cgs) than C-ATMOS due to
the smaller contact area with the source caused by the split gate structure. HJD-ATMOS’s
gate-to-drain capacitance (Cgd) does not decrease. This is because the P-well blocks the right
side of the gate of C-ATMOS, performing a similar function as the split gate. Therefore, it
can be observed that the Ciss (Cgs + Cgd) of the HJD-ATMOS with split gates is also smaller
than that of the C-ATMOS.

Gate-to-drain charge (Qgd) is critical for power device switching speed in device
applications. Figure 10 shows a test circuit to simulate HJD-ATMOS and C-ATMOS gate
charges during turn-on. The miller plateau height of HJD-ATMOS is less than that of
C-ATMOS, indicating that the threshold voltage of HJD-ATMOS is smaller than that of
C-ATMOS [34]. Because the gate charge is proportional to the gate capacitance, the HJD-
ATMOS has a lower gate charge (Qg) and Qgd compared with the C-ATMOS. The Miller
platform in HJD-ATMOS is shorter because of the reduced gate area. The Qgd values for
HJD-ATMOS and C-ATMOS are 32 nC/cm2 and 47 nC/cm2, respectively. Qgd of HJD-
ATMOS decreased by 31.91% compared to C-ATMOS. Reduced Qgd leads to a smaller
high-frequency figure of merit in HJD-ATMOS.
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Figure 10. The gate charge characteristics of HJD-ATMOS and C-ATMOS.

Figure 11 shows the electric field distribution at the breakdown of HJD-ATMOS and
C-ATMOS. The electric field at the gate oxide of HJD-ATMOS is smaller than that of C-
ATMOS. This is because the presence of the Nch introduces a portion of the electric field
into this region, which alleviates the electric field that the gate oxide withstands. Although
increasing the electric field at the heterojunction raises leakage current risk, it is a trade-off
for improved reverse conduction performance. Figure 12 shows the blocking characteristics
of the HJD-ATMOS and the C-ATMOS at room temperature and high temperature. At room
temperature, the data are represented by solid lines, whereas at elevated temperatures,
they are depicted by dashed lines. HJD-ATMOS and C-ATMOS have similar breakdown
voltages at room temperature. But the leakage current of the HJD-ATMOS increases at high
temperature due to the increased thermal energy of the charge carriers. The generation
of leakage currents, as demonstrated and discussed in Figures 6 and 8, arises due to
leakage occurring at the heterojunction, where higher Nnch and greater values of thickness
h both contribute to this effect. By improving the semiconductor material growth process,
reducing defects and traps, and enhancing the material quality and interface integrity, it
is possible to mitigate non-ideal scattering and trap effects experienced by charge carriers
at the heterojunction interface, thus suppressing the leakage current. As discussed in
reference [20,35,36], regarding leakage current, while the HJD-ATMOS structure does
indeed experience leakage under temperature influence, this leakage is within acceptable
limits, with the level of leakage current being 1 × 10−5 µA/cm2.
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Figure 13 shows a double pulse test circuit for investigating switching characteristics.
This is a common circuit configuration employed in device testing [16]. Stray inductance is
10 nH, and load inductance is 80 µH. The gate voltage source (Vg) is turned on from −5 V to
15 V at t = 16 µs and turned off from 15 V to 0 V at t = 11 µs. Figure 14 shows the switching
waveforms of devices. The switching speed of the HJD-ATMOS is faster than that of the
C-ATMOS with an external SBD diode, which results in a smaller switching loss. Figure 15
compares the switching losses between the two devices. In HJD-ATMOS, the turn-on
loss (Eon) is 0.26 mJ/cm2, and the turn-off loss (Eoff) is 0.41 mJ/cm2, which demonstrate
a reduction of 62.32% and 4.65%, respectively, compared to C-ATMOS. The total switch
loss of HJD-ATMOS is reduced by 40.29% compared to C-ATMOS. This is due to the
smaller Qgd compared with the C-ATMOS. Reduced switching losses in power electronic
devices are instrumental in improving operational longevity and reliability. As losses
during switching are directly proportional to heat generation, a significant decrease in these
losses curtails thermal build-up, mitigating the risk of device overheating and extending
its operational life. This reduction also sustains lower junction temperatures, crucial for
preventing material degradation in high-power-density applications where maintaining low
operating temperatures is vital for ensuring long-term stability and reliability. Furthermore,
minimizing switching losses allows power converters and similar equipment to function
efficiently at elevated frequencies without sacrificing efficiency, empowering designers to
develop compact, lightweight systems while consistently meeting reliability standards.

The majority of the process steps for HJD-ATMOS, including epitaxial growth, N+
source and P-well implantation, trench etching, P-base implantation, isolation oxidation,
gate oxidation, polysilicon gate deposition, and metallization, are fully compatible with the
manufacturing processes of C-ATMOS. The N-channel region is formed by ion implantation
at the bottom of the trench after trench etching [37]. The split gate is formed by etching
after trench oxidation, resulting in a thin layer of oxide between the gate and the P-Poly-Si.
The gate-P-Poly-Si trench isolation layer is formed by thermal oxidation, and the trench
oxide layer is fully etched and filled with P-Poly-Si.

Table 2 compares the HJD-ATMOS and the C-ATMOS in terms of their main character-
istics. Dynamic FOM indicates the value of Ron,sp × Qgd [38]. The HJD-ATMOS performs
better due to the integrated HJD structure.
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Table 2. Device characteristics comparison.

Parameter HJD-ATMOS C-ATMOS

Vcut-in 1.39 V 2.96 V
Ron,sp 1.35 mΩ·cm2 1.46 mΩ·cm2

Qgd 32 nC/cm2 47 nC/cm2

BV 1685.39 V 1686.21 V
Eon 0.26 mJ/cm2 0.69 mJ/cm2

Eoff 0.41 mJ/cm2 0.43 mJ/cm2

Vth 4.28 V 4.86 V
Dynamic FOM 43.20 mΩ·nC 68.62 mΩ·nC
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4. Conclusions

This paper proposes a novel asymmetric trench SiC MOSFET with a heterojunction
diode. The performance of HJD-ATMOS and C-ATMOS is compared in detail. It can be ob-
served that HJD-ATMOS demonstrates superior third-quadrant performance with a lower
Vcut-in because of the integrated HJD. Compared with C-ATMOS, the Qgd of HJD-ATMOS
has decreased by 31.91%. This is because the split gate design further reduces the total gate
charge, which reduces the switching loss of the HJD-ATMOS device without affecting other
key characteristics. As a result, HJD-ATMOS eliminates bipolar degradation and reduces
the turn-on loss from 0.69 mJ/cm2 in C-ATMOS to 0.26 mJ/cm2. With its advantageous
features, HJD-ATMOS is a strong contender for power electronic applications.
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