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Abstract: This article presents lithium niobate (LiNbO3) based on shear horizontal (SH0) resonators,
utilizing a suspended structure, for radio frequency (RF) applications. It demonstrates the design,
analysis, and fabrication of SH0 resonators based on a 36Y-cut LiNbO3 thin film. The spurious-free
SH0 resonator achieves an electromechanical coupling coefficient (k2

t ) of 42.67% and a quality factor
(Qr) of 254 at the wave-propagating orientation of 0◦ in the 36Y-cut plane.

Keywords: lithium niobate (LiNbO3); resonator; high electromechanical coupling coefficient; shear
horizontal wave

1. Introduction

For the next generation of mobile handsets, cognitive radios, and Internet of things,
radio frequency (RF) front ends need high functionality and flexibility simultaneously,
within the limited RF spectrum [1,2]. The implementation of piezoelectric resonators,
particularly surface acoustic wave (SAW) and bulk acoustic wave (BAW) resonators, favor
a technology framework that can provide high performance for different applications [3,4].
The use of DC-DC converters with a piezoelectric resonator as the only energy-storage
element has demonstrated the need for a high electromechanical coupling coefficient k2

t
and for spurious-free modes. Spurious-free modes can improve the operating range of
DC–DC converters [5]. The k2

t is proportional to the voltage-conversion efficiency [6]. The
spurious modes near the pass-band remain a major challenge as they lower the k2

t of the
intended resonance and create in-band ripples and out-of-band spurious responses in filter
applications [7].

Many piezoelectric devices have been investigated, such as surface acoustic wave
(SAW) devices, thin-film bulk acoustic resonators (FBARs), and laterally vibrating res-
onators (LVRs). In recent decades, these resonators, which are based on different kinds
of piezoelectric material, including aluminum nitride (AlN) [8,9], lead zirconate titanate
(PZT) [10,11], doped AlN [12–15], and lithium niobate (LiNbO3) [16–18], have attracted
wide research interest. Among these platforms, AlN FBARs have demonstrated 7% k2

t [19],
but it is challenging to implement multiple wide resonant frequencies on the same chip
with FBARs because of the thickness extensional mode. Furthermore, SAW devices cannot
be integrated into CMOS processes and have limited scalability for higher frequencies over
3 GHz due to their low acoustic velocity [1]. The low piezoelectric constant of AlN limits the
maximum k2

t to approximately 6% [20]. Recently, Sc-doped aluminum nitride (AlScN) was
studied to improve the piezoelectric constant of AlN. A 24% Sc-doped two-dimensional
resonant-rod resonator achieved a k2

t of 23.9%, but it had a low quality factor, of 101 [21].
A relatively high Sc concentration of up to 43% can help enhance the k2

t , but the structure
of AlScN loses all its piezoelectric properties close to 60% Sc [22]. Additionally, high Sc
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concentrations can also cause high density in anomalously oriented grains, which causes
k2

t and Q degradation [23,24].
Unlike FBARs and SAW devices, LVRs can cover multiple frequencies on the same

wafer, and are also compatible with the CMOS process. The LVRs leveraging transferred
LiNbO3 thin films have been developed to feature higher k2

t and Q at the same time. The
LiNbO3 LVRs based on various acoustic modes, including symmetric (S0), shear horizon-
tal (SH0), and first-order antisymmetric (A1) modes, have exhibited extraordinarily high
k2

t (>20%) and Q of up to several thousand at RF [7,24–30]. Despite their impressive perfor-
mance, these devices have not fully harnessed their pronounced piezoelectric properties
due to the spurious response in LiNbO3 resonators. The spurious response originates from
various kinds of unwanted mode. It will be challenging to fully utilize the piezoelectric
properties of LiNbO3 to achieve resonators with large k2

t and Q. In particular, the in-band
ripples caused by the spurious mode adjacent to the intended mode make it difficult to
obtain the maximum bandwidth and minimum insertion loss simultaneously. Therefore,
the suppression of these spurious modes is of great significance for the application of
LiNbO3 LVRs. Recently, a few studies focused on the origin and suppression of spurious
modes in LiNbO3 LVRs. Suppression techniques for spurious modes have been devel-
oped using modified edge shapes [31], length-controlled electrode configurations [1] and
2-electrode-array designs [32] in SH0 LiNbO3 LVRs, and weighted electrode configurations
in S0 LiNbO3 LVRs [33], as well as the method based on the recessed electrodes in LiNbO3
A1 resonators [34].

Specifically, this paper investigates the shear horizontal modes of 0-order (SH0) in thin
plates of 36Y-cut LiNbO3 to determine the trade-offs between different resonator-structure
parameters in order to suppress the spurious response and improve the k2

t . The 36Y-cut
was selected because it has a major advantage in terms of the piezoelectric stress coefficient
e16 compared with other orientations of LiNbO3 [1,24,35–37]. It can help excite the SH0
mode with its large electromechanical coupling coefficient. Additionally, most studies
on SH0 resonators have focused on the X-cut because it is more readily available from
wafer vendors, and it can also couple with other vibration modes easily [1,31,36,38,39]. A
few studies on SH0 resonators based on 36Y-cut lithium niobate on an insulator (LNOI)
focused on temperature-stability analysis [18,40]. Among the different modes of Lamb wave
resonator, the 0-th-order shear horizontal (SH0) mode possesses the highest k2

t . However,
few examples exist in the literature that make full use of the advantages of 36Y-cut LiNbO3
to achieve a k2

t of more than 40% and spurious-free modes simultaneously. In this work,
we explore the impact of various geometrical parameters, such as the pitch, length, and
width of the IDT electrodes on the k2

t of a SH0-mode resonator in 36Y-cut LiNbO3 and
demonstrate passband spurious-free devices, with a highest achieved k2

t of 42.6%. In
addition, the influence of the electrode parameters on the suppression of the spurious
modes is also discussed. Finally, spurious-free LVRs with high k2

t , which we fabricated in
this study, are characterized.

2. Design and Analysis
2.1. Excitement of SH0 Mode in LiNbO3

In this work, SH0 mode is focus because of the largest intrinsic electromechanical
coupling factor (K2

ij) in LiNbO3 for this particular mode and low velocity dispersion over a
wide range of film thicknesses [41]. The 36Y-cut LiNbO3 has a large piezoelectric-stress-
constant component of −4.48 (C/m2) in e16, which can excite shear horizontal mode
effectively [42]. The complete rotated e-matrix for 36Y-cut LiNbO3 is as follows [17]:

e =

 0 0 0
−1.65 −2.30 2.57
−1.94 −1.59 4.53

0 0.12 −4.48
0.47 0 0
−0.26 0 0

 C/m2 (1)
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To quantitatively compare different orientations, the electromechanical coupling K2
ij is

studied under a quasi-static approximation, where i is the electric field direction and j is
the stress component. Figure 1a shows K2

16 versus in-plane-propagation direction α for the
SH0 mode based on X and 36Y cuts. Compared with commonly used X-cut [1,24,35–37],
36Y-cut has larger K2

16. Here, the Euler rotated angle is (α, 54, 0) for 36Y-cut. The electrode-
arrangement direction is along the x-axis direction after Euler rotation, and α represents
the in-plane direction of wave propagation. The K2

ij is defined as follows [43]:

K2
ij = eij

2/
(

εii
T × sjj

E
)

(2)

where e is the piezoelectric coefficient, εT is the permittivity under constant stress, and
sE is elastic compliance under constant electric field. Obviously, when α is around 0, the
K2

16 of the SH0 mode is extremely high. Therefore, SH0 mode can be excited efficiently
in this case. Based on these results (i.e., α = 0◦), Figure 1b presents the K2

16 of SH0 with
the different normalized LiNbO3 thickness (hLN/λ) within 0.1 (wavelength λ equals twice
pitch of IDT). The K2

16 of SH0 mode gradually decreases as the hLN/λ increases. Here,
K2

16 (K2
16 =

(
vp

2 − vs
2)/vs

2) is calculated using the velocities of the same acoustic mode
under the open (vp) and short (vs) conditions. The vibration-mode shape of SH0 is also
shown in Figure 1b.
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(hLN) and wavelength (λ) under open and short conditions when α = 0◦ for SH0 mode.

2.2. Suppression of High-Order SH0 Spurious Mode

The SH0 wave on the bulk material leaks into the substrate, which can be mitigated
by utilizing a suspended thin-film structure [44]. Several studies of the suppression of
spurious modes focused on piezoelectric resonator [45], where longitudinal and transverse
indicate the direction along and perpendicular to the propagation direction. The top
view and cross-section view of conventional electrode configuration for SH0 resonator
are shown in Figure 2a,b. Here, W and L are the width and length of the suspended
plate, respectively. The We, Wp, and λ represent the width of the electrode, pitch, and the
wavelength, respectively. Neglecting the in-plane an-isotropic, the resonant frequencies of
all the acoustic modes in a plate can be expressed by:

fi,j =
v′

0

∣∣∣ĝ(i,j)∣∣∣
2π

= v′
0

√(
i

2W

)2
+

(
j

2L

)2
(3)

ĝi,j = ĝi + ĝj (4)
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where i and j are the wave vectors of the longitudinal and transverse modes and v′
0 is

the phase velocity of the acoustic wave. For a device with N electrodes, ĝN−1,1 is the
desired main mode. In operation, electric fields introduced by the top electrode induce
periodic strain and stress fields, forming acoustic modes of various orders, as depicted
in Figure 2c [24]. To form spurious-free filters, the nature of spurious modes in a typical
LiNbO3 LVR needed to be investigated first, before spurious-mode-mitigation feature could
be developed.
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Figure 2. (a) Top view and (b) cross-section view of conventional electrode configuration. (c) Admit-
tance response of a spurious-mode resonator with N top electrodes. The ∆ f1 represents the frequency
gap between the fundamental mode ĝN−1,1 and high-order longitudinal modes ĝN−1,3, and ∆ f2

represents the frequency gap between the fundamental mode ĝN−1,1 and high-order transverse
modes ĝN+1,1.

To visualize the displacement of shear horizontal modes of various orders, COM-
SOL finite element analysis (FEA) was used to simulate the eigenmodes in 3D LiNbO3
modes (Figure 3a). Various SH0 shape modes of ĝ1,1, ĝ1,3, ĝ3,1 and ĝ3,3 are shown, with a
mode order denoting the number of half-wavelength periodicities in the longitudinal and
transverse directions.
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2.2.1. The Number of Electrodes (N)

For a resonator with a particular number of electrodes (more than 2), spurious modes
occur at various frequencies. When the number of electrodes increases, the higher-order
transverse (ĝ(N+1),1, ĝ(N+3),1 . . .) and longitudinal (ĝ(N−1),3, ĝ(N−1),5 . . .) modes are often
positioned closer to the desired mode (ĝ(N−1),1). The minimum number of interdigitated
electrodes (N = 2) would make the value of ∆ f1 and ∆ f2 reach maximum (∆ f1 and ∆ f2
represent the frequency gap between the fundamental mode ĝN−1,1 and high-order longitu-
dinal mode ĝN−1,3, the fundamental mode ĝN−1,1, and high-order transverse mode ĝN+1,1,
respectively), as shown in Figure 3b. This can contribute to distancing and attenuating
higher transverse and longitudinal modes, and it can also create a large spurious-free
range for comprising filters. Consequently, the main mode distances from and attenuates
higher-order longitudinal and transverse modes to the greatest extent when the number of
electrodes N = 2, creating the largest spurious-free space.

2.2.2. The Pitch of Electrodes (Wp)

The simulated admittance curves with different pitches are shown in Figure 4a, where
electrodes are N = 2, hLN = 0.75 µm, L = 100 µm, he = 0.2 µm, and We/Wp = 50%. The
ĝ1,1 and ĝ1,3 are labeled on the curve when Wp = 10 µm, as an example. As expected,
as the pitch increased, ĝ1,3 is moved far away from the desired ĝ1,1. Considering the
fabrication accuracy and the suppression of the parasitic mode, Wp = 10 µm was selected
for the subsequent analysis. The simulated variations of frequency and k2

t with Wp are
shown in Figure 4b. They both increased significantly when Wp decreased. Larger Wp
values led to smaller frequency and k2

t , but spurious-free modes. In the early stage, the
k2

t was derived from the thickness mode, and the value was close to the definition of
K2

ij [46]. Next, the expression of k2
t was improved by fitting the measured value according

to the Butterworth Van Dyke (BVD) model, which was applicable to laterally vibrating
piezoelectric resonators [47]. The k2

t is defined using the series ( fs) and parallel ( fp) resonant
frequency [48]:

k2
t =

π2

8

f 2
p − f 2

s

f 2
s

(5)
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Figure 4. (a) Simulated admittance with different Wp settings of 4 µm, 6 µm, and 10 µm, respectively,
and (b) simulated frequency of ĝ1,1 and coupling coefficient k2

t with the changes in electrode pitch
Wp, while N = 2, hLN = 0.75 µm, L = 100 µm, he = 0.2 µm, and We/Wp = 50%.

2.2.3. The Lengths of Electrodes (L)

The 3D COMSOL FEA was used to analyze the suppression of transverse modes based
on different electrodes’ lengths. We set We/Wp = 50%, Wp = 10 µm. The values of the
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simulated k2
t of the ĝ1,1 mode at different electrode lengths L are shown in Figure 5a. The k2

t
was negatively correlated with the electrode length, indicating that longer L caused lower
k2

t . This can be explained by the fact that higher-order acoustic waves can be scattered
from the resonant cavity in the transverse direction, thereby eliminating the spurious
mode and improving k2

t of fundamental mode when L decreases [31]. Figure 5b presents a
no-dimensional analysis of the ratio of ∆ f1/ f1,1 and ∆ f1/ f1,3 with different Wp/L. The ∆ f1
was the same at fixed Wp and L, but f1,1 and f1,3 were different. As L gradually increased
or Wp gradually decreased, the curves of ∆ f1/ f1,1 and ∆ f1/ f1,3 gradually overlapped. This
indicates that the f1,1 and f1,3 were becoming closer, which also meant that the influence
of the spurious mode on the main mode increased. The ratio of ∆ f1 and f1,1 or f1,3 was
related to Wp/L, which can be explained by Equation (3). In conclusion, larger L not only
caused lower k2

t in ĝ1,1, but it also led to a tighter frequency gap between ĝ1,3 mode and
desired mode ĝ1,1, which probably led to spuriousness in passband. Larger L also had
more spurious modes and lower k2

t .
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Figure 5. Simulated (a) coupling coefficient k2
t of g1,1 with the changes in electrode length L, while

N = 2, hLN = 0.75 µm, Wp = 10 µm, he = 0.2 µm, and We/Wp = 30%; (b) ∆ f1/ f1,1 and ∆ f1/ f1,3 with
the changes in Wp/L.

In general, a resonator with a minimum number of interdigitated electrodes (N = 2)
would attenuate higher-order spurious modes and create a larger spurious-free tuning
range for wideband oscillators and RF filters. However, a single two-electrode resonator
would have a very small static capacitance (C0) in comparison to the feedthrough or
parasitic capacitance (Cf) between probing pads [49]. The measured results of single
resonators typically produce high rates of uncertainty, particularly when C0 is smaller than
Cf. To attain a higher static capacitance (C0) for better impedance matching, an array of
parallel-connected two-electrode resonators can be employed [48,50].

3. Fabrication and Measurement Results
3.1. Fabrication Process

Figure 6a shows the fabrication process of the LiNbO3-film resonator for SH0 modes.
Firstly, a 36Y-cut LiNbO3 film 0.75 µm in thickness was transferred onto a high-resistivity Si
wafer. The film was procured from Fluoroware (now part of Entegris). Before the ion-beam
etch (IBE) process, hard baking (115 ◦C for 10 min) was performed on the AZ5214 to harden
the photoresist (PR) to serve as the mask for the etching of the LiNbO3.
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LiNbO3 material, (2) deposit PR as the etching mask, (3) conduct the first lithography to define the
releasing windows, (4) perform LiNbO3 etching with IBE, (5) conduct the second lithography to
define the Al electrodes, deposit 10 nm Ti and 200 nm Al, lift off, and (6) release the resonator with
XeF2. (b) Optical image and (c) SEM image of a fabricated LiNbO3 resonator device (M = 8).

A bias voltage of 300 V was used in the IBE-etching process, and the etching rate was
approximately 13 nm/min [51]. In addition, the temperature variation in the whole process
was minimized to avoid thermal stress. Next, the photoresist mask (AZ5214) was removed
with Piranha, and 10 nm Ti and 200 nm Al were subsequently defined on top of the LiNbO3
thin film as the IDT electrodes, using a lift-off process. To suspend the resonator structure,
the Si under the LiNbO3 devices was removed with XeF2-based isotropic dry etching.

One of the fabricated LiNbO3 SH0 devices is shown in Figure 6b,c. The L of the
fabricated devices was 100 µm. Multiple groups with identical two-electrode resonators
were connected in parallel to increase the C0, which tuned the impedance matching with
the RF terminal. For the fabricated resonator, the dummy electrodes were implemented on
the edges of the resonators to ensure that the structure was symmetrical and that identical
resonances were obtained for all the parallel resonators [32].

3.2. Measured Results and Discussion
3.2.1. Measurement Analysis of N and L

The S-parameter data of the one-port LiNbO3 LVRs were measured by a network
analyzer (Keysight N5234B). The feedthrough capacitances of the signal-grounding probing
pads and routing connection were responsible for lowering the experimentally observed k2

t .
Thus, the extraction of accurate k2

t from the results measured from a single resonator re-
quires the de-embedding of the feedthrough or parasitic capacitance [49]. The S-parameter
matrix was converted to a Y-parameter matrix to extract the admittance of the device under
test (DUT), and the net admittance of the resonator was then obtained by de-embedding
the open structure on the same chip from the DUT [52]. The measured frequency gaps of
the ∆ f1 and ∆ f2 with different electrode numbers Ns are shown in Figure 7a. The lower N
contributed to larger spurious-free frequency gaps, which was consistent with the simu-
lated results shown in Figure 3b. Lower N values also caused lower excitement efficiency
in the ĝ1,3; therefore, the ĝ1,3 mode was not present in the measured admittance at N = 2.
The measured admittance responses with L = 100 µm, 120 µm, and 150 µm are shown in
Figure 7b. With the electrodes’ lengths L increasing, ĝ1,3 approached the desired ĝ1,1, and
the excitement efficiency of the spurious mode ĝ1,3 also increased. The measured k2

t and
Qr with different L values are shown in Figure 7c,d. Larger L values also increased the
quality factor Qr, which can be explained by the fact that the vibrational energy was better
confined within the resonator body, and little escaped through the anchors [30]. However,
the coupling coefficient k2

t decreased with increases in electrode length L.
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3.2.2. Measurement Analysis of Wp 
The device’s frequency responses as a function of pitches Wp are shown in Figure 8a. 

The main mode 𝑔ොଵ,ଵ and the spurious mode 𝑔ොଵ,ଷ  near the main mode are labeled on the 
curves when Wp = 6 µm, 8 µm, and 10 µm, respectively. Similar to the simulated results 
shown in Figure 4, the interval between 𝑔ොଵ,ଷ  and 𝑔ොଵ,ଵ  increased when the Wp increased. 

Figure 7. (a) Measured frequency gaps of ∆ f1 and ∆ f2 with differences in electrode number N.
(b) Measured de-embedded admittance responses with electrode length L set as 100, 120, and 150 µm,
respectively. (c) Measured coupling coefficient Qr and k2

t with the changes in electrode length L,
while M = 6, N = 2, hLN = 0.75 µm, Wp = 10 µm, he = 0.2 µm, and We/Wp = 30%. (d) MBVD model.

The k2
t of the resonator can be calculated by identifying fr and fp using Equation (5), in

line with common practice. The k2
t can be alternatively extracted by fitting the measured

admittance with the MBVD model (Figure 7d) [53]. The model consists of the static capacitor
C0, the motional resistor Rm, the motional inductor Lm, the motional capacitor Cm, and
the series resistance (Rs). The Rs shows the resistance of the pads and electrodes, which
is measured from test structures with shorted fingers [54]. The Rm represents the actual
energy dissipation in a resonator. The Lm and Cm represent the interchangeable mechanical
energy storage in a resonator, which can be expressed by referring to [8]. The quality factors
(Qr) can be expressed as follows [3,24,55,56]:

Qr =
fr

∆ f3dB
(6)

The single-resonance MBVD fitting method is reliable for extracting circuit parameters
in cases of spurious-free near-the-main-mode or low-coupling resonators, in which only
the resonance (fs) and antiresonance (fp) frequency peaks are fitted [3]. In this case, Qr can
be accurately obtained using the ratio of the frequency to the −3 dB frequency widths of
the impedance response at fr, as in Equation (6).

3.2.2. Measurement Analysis of Wp

The device’s frequency responses as a function of pitches Wp are shown in Figure 8a.
The main mode ĝ1,1 and the spurious mode ĝ1,3 near the main mode are labeled on the
curves when Wp = 6 µm, 8 µm, and 10 µm, respectively. Similar to the simulated results
shown in Figure 4, the interval between ĝ1,3 and ĝ1,1 increased when the Wp increased.
Figure 8b shows the comparison with the simulated and measured phase velocity of
the LVRs based on the 36Y-cut LiNbO3. The measured data were extracted through RF
measurement. The phase velocity of the LiNbO3 operating in the ĝ1,1 SH0 mode was about
3500 m/s. The operating frequency of the resonators was changed by varying the designed
devices’ wavelengths. Although increases in the Wp suppressed the spurious modes of the
devices, this eventually led to decreases in k2

t , as shown in Figure 8c.
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3.2.3. Measurement Analysis of Electrode Coverage (We/Wp)

Coverage can directly affect the capacitance per unit area under a given wavelength.
Increases in this parameter facilitate the fabrication of more compact devices and reduce
the need for arraying large numbers of resonators [57,58]. The k2

t depends on the electrode
coverage (We/Wp) of the device, as it directly influences C0 and Cm. Figure 9 shows the
measured admittance response and MBVD model fitting with different coverages (We/Wp).
The corresponding k2

t and resonant-quality factor Qr are marked. The increasing of We/Wp
represents a reduction in the spacing between the electrodes, which caused the C0 to grow
non-linearly as C0 ∝ 1/

(
1 − We/Wp

)
. At the same time, due to the increase in electrode

area, the Cm increased linearly with the We/Wp [54]. The k2
t dropped gradually when the

coverage increased. The device with We/Wp = 30% had the highest k2
t . This was consistent

with the analysis of electrode coverage in previous S0 resonators [58].
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Five electrodes’ coverage values were investigated, and the respective Qr values were
recorded (Figure 9a–e). The relationship between device We/Wp and Qr is still under
investigation [57]. Figure 9f illustrates the comparison between the values of the measured
mean electromechanical coupling k2

t under different degrees of electrode coverage We/Wp.
All had similar trends, in that smaller electrode coverage led to larger k2

t values. The mean
k2

t values varied from 33.9% to 16.1%, with the We/Wp increasing from 0.3 to 0.7.
In this study, we finally explored high-k2

t and spurious-less LVRs based on a 36Y-cut
LiNbO3/Si substrate, as shown in Figure 10a,b. It is worth mentioning that the equivalent
electrical MBVD model is a behavioral model, which is only valid around the resonance
frequency of a modeled resonator [59]. This means that it may have infinite configurations
for the same response when not considering the physical properties of the individual
resonator [60]. In order to ensure that the values of the MBVD fitting were within a
reasonable range, we used a Keysight Technologies B1500A semiconductor analyzer device
to measure the I–V curves of the pad and the routing connection. The contact losses
were used to model the series resistor Rs (~43 Ω). Using the FEM simulation and the
analysis results above, the cut angle of the LiNbO3 was optimized as 36◦, and the in-plane
propagation direction α was 0◦. The device was designed with an electrode coverage of
We/Wp = 0.3, the electrode array M = 8, and electrode length L = 100 µm. The fabricated
LVRs were confirmed as having a k2

t of 42.67% after de-embedding. The temperature
coefficient of frequency (TCF) was extracted by monitoring the shift in the series-resonance
frequency as a function of temperature. Temperature measurements in the range of 28 ◦C
to 128 ◦C were performed. Figure 10c shows the measured TCF for the fabricated SH0
resonator device. The extracted TCF was −97.05 ppm/◦C, which is larger than that of
pure AlN. This is attributable to the increased thermal expansion coefficients. Further
temperature-compensation techniques can be implemented to improve the device TCF.
The appearance of the spurious mode between the fs and the fp is attributable to a slight
variation in the mechanical boundary conditions and, thus, resonant-frequency mismatch
between individual resonators in the array [55]. The spurious mode can be eliminated by
improving the fabrication accuracy to ensure that each resonance unit in the array has the
same response.
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Figure 10. (a) Measured admittance response and MBVD fitting after de-embedding, (b) measured
admittance response before and after de-embedding the effects of feedthrough capacitances and
(c) temperature coefficient of frequency (TCF) for the device with We/Wp = 0.3, Wp = 10 µm, M = 8,
and L = 100 µm.

Finally, Table 1 provides a comparison between our work and previous thin-film
LiNbO3 LVRs. The A1 resonator has a higher frequency than the SH0 with the same
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fabrication accuracy because the A1 mode has a greater velocity than the SH0 mode. Due
to the high e16, the X-cut and 36Y-cut can both achieve high k2

t . Although the resonators
in [54] exhibited the best k2

t , they also have multiple spurious modes in the passband. As a
result, the proposed 36Y-cut LiNbO3 SH0 resonators not only feature a simple process but
show a well-balanced performance in terms of k2

t and spurious-mode suppression. Their
operating frequency can be improved by fabricating electrodes with shorter wavelengths
using E-beam lithography for higher-frequency applications. The fabrication process is
described in [54].

Table 1. Comparison of previous works.

Designs Cut Mode k2
t (%) Q * fr (MHz) Spurious Modes

[1] X-cut SH0 20.6 1064 ~150 No
[55] X-cut SH0 17.1 915 85.41 No
[61] X-cut SH0 32 798 907.87 Yes
[54] X-cut SH0 41 1900 288 Yes
[34] 128Y-cut A1 28 692 ~2.8 GHz No
[30] X-cut S0 30.7 5110 50.9 Yes

This Work 36Y-cut SH0 42.67 254 89.54 No

* note: different papers may have different definitions of k2
t and Q.

4. Conclusions

In this work, we designed and analyzed the performance of a 36Y-cut LiNbO3 thin
film based on resonator devices. By configuring the length and width of the IDT electrode,
the transverse spurious mode ĝ1,3 was suppressed efficiently. In addition, the influence of
the electrode coverage on the coupling coefficient k2

t of the SH0 mode was discussed. The
method of suppressing the transverse spurious mode and the influence of the coverage on
the coupling were verified by the experimental device’s fabrication and characterization.
The fabricated devices achieved a peak electromechanical coupling of 42.67% and a quality
factor (Qr) of 254. Future research could focus on improving the Q value of the array.
Potential methods for improving the Q value of the array include the improvement of the
etching sidewall and roughness, vacuum encapsulation, and addressing imperfections and
non-uniformities among the elements in the array.
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