Ultra-Wideband Transformer Feedback Monolithic Microwave Integrated Circuit Power Amplifier Design on 0.25 μm GaN Process
Abstract
:1. Introduction
2. Transformer Design Process Comparison
3. Analysis of Transformer Feedback Technique
4. Circuit Design and Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhagavatula, V.; Rudell, J.C. Analysis and design of a transformer-feedback-based wideband receiver. IEEE Trans. Microw. Theory Tech. 2013, 61, 1347–1358. [Google Scholar] [CrossRef]
- Zhang, G.; Chang, S.; Chen, S.; Sun, J. Dual mode efficiency enhanced linear power amplifiers using a new balanced structure. In Proceedings of the 2009 IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, USA, 7–9 June 2009; pp. 245–248. [Google Scholar] [CrossRef]
- Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler. Int. J. RF Microw. Comput. -Aided Eng. 2020, 30, e22252. [Google Scholar] [CrossRef]
- Ginzberg, N.; Cohen, E. A Wideband CMOS Power Amplifier with 52% Peak PAE Employing Resistive Shunt Feedback for Sub-6GHz 5G Applications. IEEE Microw. Wirel. Technol. Lett. 2022, 33, 192–195. [Google Scholar] [CrossRef]
- Sapawi, R.; Sahari, S.K.; Kipli, K. A low power 3.1-10.6 GHz ultra-wideband CMOS power amplifier with resistive shunt feedback technique. In Proceedings of the 2013 International Conference on Advanced Computer Science Applications and Technologies, Kuching, Malaysia, 23–24 December 2013; pp. 172–175. [Google Scholar] [CrossRef]
- Nikandish, G.; Medi, A. Transformer-feedback dual-band neutralization technique. IEEE Trans. Circuits Syst. II Express Briefs 2016, 64, 495–499. [Google Scholar] [CrossRef]
- Luo, X.; Feng, W.; Zhu, H.; Wu, L.; Che, W.; Xue, Q. A 21–41 GHz Compact Wideband Low-Noise Amplifier Based on Transformer-Feedback Technique in 65-nm CMOS. In Proceedings of the 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 8–11 December 2020; pp. 92–94. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, J.; Yuan, B.; Zeng, J.; Fan, J.; Yu, Z. Analysis and Design of a Gain-Enhanced 1-20 GHz LNA With Output-Stage Transformer Feedback. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3539–3543. [Google Scholar] [CrossRef]
- Cassan, D.J.; Long, J.R. A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS. IEEE J. Solid-State Circuits 2003, 38, 427–435. [Google Scholar] [CrossRef]
- Van Der Heijden, M.P.; de Vreede, L.C.N.; Burghartz, J.N. On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and IIP3 match. IEEE J. Solid-State Circuits 2004, 39, 1727–1736. [Google Scholar] [CrossRef]
- Li, X.; Shekhar, S.; Allstot, D.J. Low-power g/sub m/-boosted LNA and VCO circuits in 0.18/spl mu/m CMOS. In Proceedings of the ISSCC 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, San Francisco, CA, USA, 10 February 2005; pp. 534–615. [Google Scholar] [CrossRef]
- Reiha, M.T.; Long, J.R. A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13-μm CMOS. IEEE J. Solid-State Circuits 2007, 42, 1023–1033. [Google Scholar] [CrossRef]
- Khanpour, M.; Tang, K.W.; Garcia, P.; Voinigescu, S.P. A wideband W-band receiver front-end in 65-nm CMOS. IEEE J. Solid-State Circuits 2008, 43, 1717–1730. [Google Scholar] [CrossRef]
- Heiberg, A.C.; Brown, T.W.; Fiez, T.S.; Mayaram, K. A 250 mV, 352μW GPS Receiver RF Front-End in 130 nm CMOS. IEEE J. Solid-State Circuits 2011, 46, 938–949. [Google Scholar] [CrossRef]
- Roderick, J.; Krishnaswamy, H.; Newton, K.; Hashemi, H. Silicon-based ultra-wideband beam-forming. IEEE J. Solid-State Circuits 2006, 41, 1726–1739. [Google Scholar] [CrossRef]
- Hashemi, H.; Chu, T.S.; Roderick, J. Integrated true-time-delay-based ultra-wideband array processing. IEEE Commun. Mag. 2008, 46, 162–172. [Google Scholar] [CrossRef]
- Yeh, H.C.; Liao, Z.Y.; Wang, H. Analysis and design of millimeter-wave low-power CMOS LNA with transformer-multicascode topology. IEEE Trans. Microw. Theory Tech. 2011, 59, 3441–3454. [Google Scholar] [CrossRef]
- Yeh, H.C.; Chiong, C.C.; Aloui, S.; Wang, H. Analysis and design of millimeter-wave low-voltage CMOS cascode LNA with magnetic coupled technique. IEEE Trans. Microw. Theory Tech. 2012, 60, 4066–4079. [Google Scholar] [CrossRef]
- Chowdhury, D.; Reynaert, P.; Niknejad, A.M. A 60GHz 1V+ 12.3 dBm transformer-coupled wideband PA in 90 nm CMOS. In Proceedings of the 2008 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2008; pp. 560–635. [Google Scholar] [CrossRef]
- Ali, S.N.; Agarwal, P.; Renaud, L.; Molavi, R.; Mirabbasi, S.; Pande, P.P.; Heo, D. A 40% PAE frequency-reconfigurable CMOS power amplifier with tunable gate–drain neutralization for 28-GHz 5G radios. IEEE Trans. Microw. Theory Tech. 2018, 66, 2231–2245. [Google Scholar] [CrossRef]
- Ali, S.N.; Agarwal, P.; Gopal, S.; Mirabbasi, S.; Heo, D. A 25–35 GHz neutralized continuous class-F CMOS power amplifier for 5G mobile communications achieving 26% modulation PAE at 1.5 Gb/s and 46.4% peak PAE. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 66, 834–847. [Google Scholar] [CrossRef]
- Nikandish, G.; Medi, A. Transformer-feedback interstage bandwidth enhancement for MMIC multistage amplifiers. IEEE Trans. Microw. Theory Tech. 2014, 63, 441–448. [Google Scholar] [CrossRef]
- Cao, Y.; Groves, R.A.; Huang, X.; Zamdmer, N.; Plouchart, J.-O.; Wachnik, R.; King, T.-J.; Hu, C. Frequency-independent equivalent-circuit model for on-chip spiral inductors. IEEE J. Solid-State Circuits 2003, 38, 419–426. [Google Scholar] [CrossRef]
- Chowdhury, D.; Reynaert, P.; Niknejad, A.M. Design consideration for 60 GHz transformer-coupled CMOS power amplifiers. IEEE J. Solid-State Circuits 2009, 44, 2733–2744. [Google Scholar] [CrossRef]
- Niknejad, A.M.; Bohsali, M.; Adabi, E.; Heydari, B. Integrated circuit transmission-line transformer power combiner for millimetre-wave applications. Electron. Lett. 2007, 43, 1. [Google Scholar] [CrossRef]
- Zhao, D.; Zhong, J. Design and modeling of millimeter-wave transformer in silicon: A tutorial. In Proceedings of the 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nanjing, China, 28–30 August 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Wang, F. Design of Broadband Linear and Efficient Mm-Wave Power Amplifiers in Silicon for 5g Applications. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, August 2020. [Google Scholar]
- Wang, F.; Wang, H. A broadband linear ultra-compact mm-wave power amplifier with distributed-balun output network: Analysis and design. IEEE J. Solid-State Circuits 2021, 56, 2308–2323. [Google Scholar] [CrossRef]
- Peng, L.; Chen, J.; Zhang, Z.; Huang, Y.; Wang, T.; Zhang, G. Design of broadband high-gain GaN MMIC power amplifier based on reactive/resistive matching and feedback technique. IEICE Electron. Express 2021, 18, 20210313. [Google Scholar] [CrossRef]
- Hammad, H.F.; Freundorfer, A.P.; Antar, Y.M.M. Feedback for multiband stabilization of CS and CG MESFET transistors. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 122–124. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, H.F.; Hua, Y.N.; Chen, Y.-J.; Hu, L.-L.; Liu, L.-S.; Chen, S.-J. A 2–20-GHz 10-W high-efficiency GaN power amplifier using reactive matching technique. IEEE Trans. Microw. Theory Tech. 2020, 68, 3148–3158. [Google Scholar] [CrossRef]
- Lee, H.; Lee, W.; Kim, T.; Helaoui, M.; Ghannouchi, F.M.; Yang, Y. 6–18 GHz GaAs pHEMT broadband power amplifier based on dual-frequency selective impedance matching technique. IEEE Access 2019, 7, 66275–66280. [Google Scholar] [CrossRef]
- Santhakumar, R.; Thibeault, B.; Higashiwaki, M.; Keller, S.; Chen, Z.; Mishra, U.K.; York, R.A. Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs. IEEE Trans. Microw. Theory Tech. 2011, 59, 2059–2063. [Google Scholar] [CrossRef]
- Lee, S.; Park, H.; Kim, J.; Kwon, Y. A 6–18 GHz GaN pHEMT power amplifier using non-foster matching. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
Property | Si | SiC | GaAs | InP | AlN | GaN |
---|---|---|---|---|---|---|
Energy bandgap (eV) | 1.12 | 3.2 | 1.43 | 1.34 | 6.2 | 3.4 |
Breakdown field (106 V/cm) | 0.3 | 3.2 | 0.4 | 0.6 | 11.7 | 3.3 |
Electron mobility (cm2/V·S) | 1500 | 700 | 8500 | 4600 | 300 | 2000 |
Saturation velocity (105 m/s) | 1.0 | 2.0 | 1.2 | 1.0 | 2.0 | 2.5 |
Thermal conductivity (W/cm·K) | 1.31 | 4.9 | 0.46 | 0.77 | 3.4 | 1.5 |
Technology Process | TSMC 0.13 µm RF CMOS | TSMC 0.18 µm RF CMOS | TSMC 0.25 µm RF CMOS | WIN 0.15 µm InGaAs pHEMT | WIN 0.25 µm GaN on SiC |
---|---|---|---|---|---|
Number of metal layers | 8 | 6 | 5 | 2 | 2 |
Min. metal layer space (µm) | / | 1.5 | / | 4 | 6 |
Top layer metal thickness (µm) | 3.3 | 2.34 | 0.99 | 2 | 4 |
Top metal to substrate distance (µm) | 7.47 | 8.15 | 7.47 | 5.2 | 1.62 |
Top metal conductance (S/m) | 5.816 × 107 | 2.464 × 107 | 2.464 × 107 | 4.1 × 107 | 4.1 × 107 |
Substrate dielectric constant | 11.9 | 11.9 | 11.9 | 12.9 | 9.7 |
Reference | [21] | [32] | [33] | [34] | This Work |
---|---|---|---|---|---|
Technology Process | 65 nm CMOS | 0.15 μm GaAs | 0.2 μm GaN | 0.25 μm GaN | 0.25 μm GaN |
Matching Topology | Transformer Feedback | RLC Feedback | Distributed | Non-Foster | Transformer Feedback |
Frequency (GHz) | 25–35 | 6–18 | 2–18 | 6–18 | 6–19 |
S21 (dB) | 10 | 17.4 | 18 | 15 | 15 |
Gain Flatness (dB) | 3 | 2 | 3 | 5.6 | 0.78 |
Input Return (dB) | −5 | −8 | −14 | NA | −10 |
Psat (dBm) | 14.75 | 19.2 | 29 | 35.7–37.5 | 25.55–27.15 |
PAEsat (%) | 40–46.4 | 13–21.7 | 5–15 | 13–21 | 4.92–11.6 |
Chip Area (mm2) | 0.19 | 0.982 | 8 | 8.77 | 1.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Fan, Y.; Wan, J.; Sun, X.; Liang, X. Ultra-Wideband Transformer Feedback Monolithic Microwave Integrated Circuit Power Amplifier Design on 0.25 μm GaN Process. Micromachines 2024, 15, 546. https://doi.org/10.3390/mi15040546
Luo J, Fan Y, Wan J, Sun X, Liang X. Ultra-Wideband Transformer Feedback Monolithic Microwave Integrated Circuit Power Amplifier Design on 0.25 μm GaN Process. Micromachines. 2024; 15(4):546. https://doi.org/10.3390/mi15040546
Chicago/Turabian StyleLuo, Jialin, Yihui Fan, Jing Wan, Xuming Sun, and Xiaoxin Liang. 2024. "Ultra-Wideband Transformer Feedback Monolithic Microwave Integrated Circuit Power Amplifier Design on 0.25 μm GaN Process" Micromachines 15, no. 4: 546. https://doi.org/10.3390/mi15040546
APA StyleLuo, J., Fan, Y., Wan, J., Sun, X., & Liang, X. (2024). Ultra-Wideband Transformer Feedback Monolithic Microwave Integrated Circuit Power Amplifier Design on 0.25 μm GaN Process. Micromachines, 15(4), 546. https://doi.org/10.3390/mi15040546