Enhancing Thickness Uniformity of Nb2O5/SiO2 Multilayers Using Shadow Masks for Flexible Color-Filtering Applications
Abstract
:1. Introduction
2. Experiments and Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vergöhl, M.; Werner, O.; Bruns, S. New developments in magnetron sputter processes for precision optics. SPIE 2008, 7101, 1–17. [Google Scholar] [CrossRef]
- Halenkovič, T.; Kotrla, M.; Gutwirth, J.; Nazabal, V.; Nĕmec, P. Insight into the photo-induced phenomena in ternary Ge-Sb-Se sputtered thin films. Photonics Res. 2022, 10, 2261–2266. [Google Scholar] [CrossRef]
- Yu, X.; Wang, C.; Liu, Y.; Yu, D.; Xing, T. Recent Development in Magnetron Sputtering. Plasma Sci. Technol. 2006, 8, 337–343. [Google Scholar] [CrossRef]
- Chen, K.-N.; Hsu, C.-M.; Liu, J.; Liou, Y.-C.; Yang, C.-F. Investigation of Antireflection Nb2O5 Thin Films by the Sputtering Method under Different Deposition Parameters. Micromachines 2016, 7, 151. [Google Scholar] [CrossRef]
- Welzel, T. Time-Resolved Characterisation of Pulsed Magnetron Discharges for the Deposition of Thin Films with Plasma Diagnostic Methods. Ph.D. Thesis, TU-Chemnitz, Chemnitz, Germany, 2010. Available online: https://www.researchgate.net/publication/44449638 (accessed on 9 March 2024).
- Belkind, A.; Freilich, A.; Scholl, R. Using pulsed direct current power for reactive sputtering of Al2O3. J. Vac. Sci. Technol. A 1999, 17, 1934–1940. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Krivobokov, V.P. Angular thickness distribution and target utilization for hot Ni target magnetron sputtering. Vacuum 2019, 160, 418–420. [Google Scholar] [CrossRef]
- Broadway, D.M.; Platonov, Y.Y.; Gomez, L.A. Achieving desired thickness gradients on flat and curved substrates. SPIE 1999, 1788, 262–274. [Google Scholar] [CrossRef]
- Wang, B.; Fu, X.; Song, S.; Chu, H.O.; Gibson, D.; Li, C.; Shi, Y.; Wu, Z. Simulation and Optimization of Film Thickness Uniformity in Physical Vapor Deposition. Coatings 2018, 8, 325. [Google Scholar] [CrossRef]
- Fernandez, D.A.R.; Brito, B.S.S.; Santos, I.A.D.; Soares, V.F.D.; Terto, A.R.; de Oliveira, G.B.; Hubler, R.; Batista, W.W.; Tentardini, E.K. Effect of hafnium contaminant present in zirconium targets on sputter deposited ZrN thin films. Nucl. Inst. Methods Phys. Res. B 2020, 462, 90–94. [Google Scholar] [CrossRef]
- Zhou, G.; Tian, Y.; Shi, F.; Song, C.; Tie, G.; Zhou, G.; Xie, L.; Shao, J.; Wu, Z. Low-Energy Pulsed Ion Beam Technology with Ultra-High Material Removal Resolution and Widely Adjustable Removal Efficiency. Micromachines 2021, 12, 1370. [Google Scholar] [CrossRef]
- Ho, J.-J.; Chen, C.-Y.; Huang, C.-M.; Lee, W.-J.; Liou, W.-R.; Chang, C.C. Ion-Assisted Sputtering Deposition of Antireflection. Appl. Opt. 2005, 44, 6176–6180. Available online: https://pubmed.ncbi.nlm.nih.gov/16237931/ (accessed on 3 March 2022). [CrossRef] [PubMed]
- Chen, S.; Sun, J.; Li, J.; Yi, K.; Wang, C.; Shao, J.; Zhu, M. Controlling lateral thickness distributions of magnetron sputtering deposited coatings using shadow masks. Opt. Mater. 2024, 14, 101–114. [Google Scholar] [CrossRef]
- Oshima, Y.; Kawara, K.; Shinohe, T.; Hitora, T.; Kasu, M.; Fujita, S. Epitaxial lateral overgrowth of α-Ga2O3 by halide vapor phase Epitaxy. APL Mater. 2019, 7, 022503. [Google Scholar] [CrossRef]
- Li, C.; Song, S.; Gibson, D.; Child, D.; Chu, H.O.; Waddell, E. Modeling and validation of uniform large-area optical coating deposition on a rotating drum using microwave plasma reactive sputtering. Appl. Opt. 2017, 56, C65–C70. [Google Scholar] [CrossRef] [PubMed]
- Khazaal, H.F.; Hburi, I.S.; Farhan, M.S. The Impact of ion-beam parameters on the characteristics of Nb2O5 thin films. Surf. Interfaces 2020, 20, 100593. [Google Scholar] [CrossRef]
- Guo, C.; Kong, M.; Liu, C.; Li, B. Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system. Appl. Opt. 2013, 52, B26–B32. [Google Scholar] [CrossRef] [PubMed]
- Elsholz, F.; Schöll, E.; Scharfenorth, C.; Seewald, G.; Eichler, H.J.; Rosenfeld, A. Roughness evolution in thin-film growth of SiO2 and Nb2O5. J. Appl. Phys. 2005, 98, 2130521. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Cheng, H.-H.; Li, J.-H.; Kuen, T.-Y.; Sheng, Y.-T. Refractive Index and Effective Thickness Measurement System for the RGB Color Filter Coatings with Absorption and Scattering Properties. J. Disp. Technol. 2014, 10, 57–70. [Google Scholar] [CrossRef]
- Manifacier, J.C.; Gasiot, J.; Fillard, J.P. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E Sci. Instrum. 1976, 9, 1002–1004. [Google Scholar] [CrossRef]
- Caglar, M.; Caglar, Y.; Ilican, S. The Determination of the Thickness and Optical Constants of the ZnO Crystalline Thin Film by Using Envelope Method. J. Optoelectron. Adv. Mater. 2006, 8, 1410–1413. Available online: https://www.researchgate.net/publication/228671678 (accessed on 13 March 2024).
- Yuan, Z.-S.; Jhang, J.-M.; Yu, P.-H.; Jiang, C.-M.; Huang, Y.-C.; Wu, Y.-L.; Lin, J.-J.; Yang, C.-F. Comparisons of Theoretical and Experimental Results of Blue Light SiO2–Nb2O5 Distributed Bragg Reflector Fabricated Using E-beam deposition. Vacuum 2020, 182, 109782. [Google Scholar] [CrossRef]
- Lalova, A.; Todorov, R. Optical properties of thin PMMA films for sensor application. Bulg. Chem. Commun. 2015, 47, 29–34. Available online: http://bcc.bas.bg/BCC_Volumes/Volume_47_Special_B_2015/BCC-47-SI-B-5.pdf (accessed on 13 March 2024).
- Kim, S.; In, J.-H.; Kim, S.H.; Han, K.; Lim, D.; Hwang, Y.S.; Lee, K.M.; Choi, J.H. Study of High Transmittance of SiO2/Nb2O5 Multilayer Thin Films Deposited by Plasma-Assisted Reactive Magnetron Sputtering. Appl. Sci. 2023, 13, 13271. [Google Scholar] [CrossRef]
- Zhang, K.; Forouhi, A.R.; Bloomer, I. Accurate and rapid determination of thickness, n and k spectra, and resistivity of indium–tin–oxide films. J. Vac. Sci. Technol. A 1999, 17, 1843–1847. [Google Scholar] [CrossRef]
Nb2O5 Film (~400 nm thickness) | |||||
Conditions | Rmax | Rmean | Ra | Rq (RMS) | |
Without Mask | 8.778 nm | 3.044 nm | 0.760 nm | 0.974 nm | |
With Mask | 8.710 nm | 2.746 nm | 0.603 nm | 0.792 nm | |
SiO2 Film (~600 nm thickness) | |||||
Conditions | Rmax | Rmean | Ra | Rq (RMS) | |
Without Mask | 5.36 nm | 2.211 nm | 0.488 nm | 0.631 nm | |
With Mask | 2.211 nm | 1.139 nm | 0.186 nm | 0.242 nm | |
Nb2O5 Film (Without Mask) | Nb2O5 Film (With Mask) | ||||
SiO2 Film (Without Mask) | SiO2 Film (With Mask) | ||||
Layer No. | Materials | Blue (nm) | Materials | Green (nm) | Materials | Red (nm) |
---|---|---|---|---|---|---|
1 | Nb2O5 | 88.68 | Nb2O5 | 33.44 | Nb2O5 | 51.37 |
2 | SiO2 | 72.51 | SiO2 | 208.32 | SiO2 | 95.47 |
3 | Nb2O5 | 77.72 | Nb2O5 | 53.21 | Nb2O5 | 46.69 |
4 | SiO2 | 104.64 | SiO2 | 88.38 | SiO2 | 60.74 |
5 | Nb2O5 | 50.16 | Nb2O5 | 50.8 | Nb2O5 | 58.74 |
6 | SiO2 | 114.59 | SiO2 | 31.57 | SiO2 | 86.72 |
7 | Nb2O5 | 63.81 | Nb2O5 | 39.72 | Nb2O5 | 53.51 |
8 | SiO2 | 90.03 | SiO2 | 87.3 | SiO2 | 89.31 |
9 | Nb2O5 | 58.52 | Nb2O5 | 52.12 | Nb2O5 | 51.35 |
10 | SiO2 | 118.93 | SiO2 | 87.14 | SiO2 | 76.69 |
11 | Nb2O5 | 50.42 | Nb2O5 | 48.13 | Nb2O5 | 85.81 |
12 | SiO2 | 94.5 | SiO2 | 29.07 | SiO2 | 55.64 |
13 | Nb2O5 | 68.67 | Nb2O5 | 44.68 | Nb2O5 | 55.37 |
14 | SiO2 | 95.41 | SiO2 | 88.81 | SiO2 | 89.31 |
15 | Nb2O5 | 59.86 | Nb2O5 | 55.83 | Nb2O5 | 47.77 |
16 | SiO2 | 94.52 | SiO2 | 70.86 | SiO2 | 85.07 |
17 | Nb2O5 | 68.84 | Nb2O5 | 117.67 | Nb2O5 | 117.88 |
18 | SiO2 | 91.41 | SiO2 | 99.89 | SiO2 | 45.9 |
19 | Nb2O5 | 61.59 | Nb2O5 | 72.11 | Nb2O5 | 47.98 |
20 | SiO2 | 109.15 | SiO2 | 97.2 | SiO2 | 64.15 |
21 | Nb2O5 | 76.77 | Nb2O5 | 99.87 | Nb2O5 | 52.39 |
22 | SiO2 | 167.97 | SiO2 | 109.35 | SiO2 | 79.56 |
23 | Nb2O5 | 75.99 | Nb2O5 | 60.94 | Nb2O5 | 20.62 |
24 | SiO2 | 109.41 | SiO2 | 129.06 | SiO2 | 71.25 |
25 | Nb2O5 | 64.96 | Nb2O5 | 75.56 | Nb2O5 | 47.44 |
26 | SiO2 | 101.2 | SiO2 | 141.68 | SiO2 | 42.11 |
27 | Nb2O5 | 86.55 | Nb2O5 | 63.64 | Nb2O5 | 46.29 |
28 | SiO2 | 166.54 | SiO2 | 98.73 | SiO2 | 66.22 |
29 | Nb2O5 | 68.15 | Nb2O5 | 89.84 | Nb2O5 | 54.71 |
30 | SiO2 | 115.67 | SiO2 | 130.8 | SiO2 | 78.49 |
31 | Nb2O5 | 64.19 | Nb2O5 | 70.27 | Nb2O5 | 63.17 |
32 | SiO2 | 88.72 | SiO2 | 105.79 | SiO2 | 76.52 |
33 | Nb2O5 | 76.02 | Nb2O5 | 98.46 | Nb2O5 | 51.69 |
34 | SiO2 | 91.92 | SiO2 | 32.49 | SiO2 | 67.28 |
35 | Nb2O5 | 69.49 | Nb2O5 | 70.49 | Nb2O5 | 42.73 |
36 | SiO2 | 53.92 | SiO2 | 30.19 | SiO2 | 40.63 |
Total (μm) | 3.11 | 2.86 | 2.21 | |||
(a) | ||||||
(b) |
Filters | Blue Filter (400~500 nm) | Green Filter (500~600 nm) | Red Filter (600~700 nm) | |
---|---|---|---|---|
Condition | ||||
Thickness | 3.11 μm | 2.86 μm | 2.21 μm | |
With Mask | 95.5041% | 95.6174% | 95.7046% | |
Without Mask | 91.4657% | 92.6601% | 93.5871% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.-C.; Li, D.-L.; Ho, J.; Yu, C.-C.; Wang, S.-S.; Ho, J.-J. Enhancing Thickness Uniformity of Nb2O5/SiO2 Multilayers Using Shadow Masks for Flexible Color-Filtering Applications. Micromachines 2024, 15, 551. https://doi.org/10.3390/mi15040551
Li T-C, Li D-L, Ho J, Yu C-C, Wang S-S, Ho J-J. Enhancing Thickness Uniformity of Nb2O5/SiO2 Multilayers Using Shadow Masks for Flexible Color-Filtering Applications. Micromachines. 2024; 15(4):551. https://doi.org/10.3390/mi15040551
Chicago/Turabian StyleLi, Tzu-Chien, Dong-Lin Li, Jiashow Ho, Chih-Chiang Yu, Sheng-Shih Wang, and Jyh-Jier Ho. 2024. "Enhancing Thickness Uniformity of Nb2O5/SiO2 Multilayers Using Shadow Masks for Flexible Color-Filtering Applications" Micromachines 15, no. 4: 551. https://doi.org/10.3390/mi15040551
APA StyleLi, T. -C., Li, D. -L., Ho, J., Yu, C. -C., Wang, S. -S., & Ho, J. -J. (2024). Enhancing Thickness Uniformity of Nb2O5/SiO2 Multilayers Using Shadow Masks for Flexible Color-Filtering Applications. Micromachines, 15(4), 551. https://doi.org/10.3390/mi15040551