Stray Magnetic Field Variations and Micromagnetic Simulations: Models for Ni0.8Fe0.2 Disks Used for Microparticle Trapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particle Trapping and Transport and Effects of Externally Applied Magnetic Fields
2.2. Methods for Field Calculations
3. Results
3.1. Field Calculation Results
3.2. Variation in Stray Fields across Simulations
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrne, R.L.; Cocker, D.; Alyayyoussi, G.; Mphasa, M.; Charles, M.; Mandula, T.; Williams, C.T.; Rigby, J.; Hearn, J.; Feasey, N.; et al. A Novel, Magnetic Bead-based Extraction Method for the Isolation of Antimicrobial Resistance Genes with a Case Study in River Water in Malawi. J. Appl. Microbiol. 2022, 133, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Gandhi, D.; Mutas, M.; Ran, Y.-F.; Carr, M.; Rampini, S.; Hall, W.; Lee, G.U. Direct Identification of the Herpes Simplex Virus UL27 Gene through Single Particle Manipulation and Optical Detection Using a Micromagnetic Array. Nanoscale 2020, 12, 3482–3490. [Google Scholar] [CrossRef] [PubMed]
- Levison, P.R.; Badger, S.E.; Dennis, J.; Hathi, P.; Davies, M.J.; Bruce, I.J.; Schimkat, D. Recent Developments of Magnetic Beads for Use in Nucleic Acid Purification. J. Chromatogr. A 1998, 816, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Haukanes, B.-I.; Kvam, C. Application of Magnetic Beads in Bioassays. Nat. Biotechnol. 1993, 11, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Issadore, D.; Shao, H.; Chung, J.; Newton, A.; Pittet, M.; Weissleder, R.; Lee, H. Self-Assembled Magnetic Filter for Highly Efficient Immunomagnetic Separation. Lab A Chip 2011, 11, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Bhagwat, N.; Yee, S.S.; Black, T.; Redlinger, C.; Romeo, J.; O’Hara, M.; Raj, A.; Carpenter, E.L.; Stanger, B.Z.; et al. A Magnetic Micropore Chip for Rapid (<1 Hour) Unbiased Circulating Tumor Cell Isolation and in Situ RNA Analysis. Lab Chip 2017, 17, 3086–3096. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Liu, J.; Saha, R.; Su, D.; Krishna, V.D.; Cheeran, M.C.-J.; Wang, J.-P. Magnetic Particle Spectroscopy for Detection of Influenza A Virus Subtype H1N1. ACS Appl. Mater. Interfaces 2020, 12, 13686–13697. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Saha, R.; Su, D.; Krishna, V.D.; Liu, J.; Cheeran, M.C.-J.; Wang, J.-P. Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19. ACS Appl. Nano Mater. 2020, 3, 9560–9580. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Ronquillo, N.; Belda-Ferre, P.; Alvarado, D.; Javidi, T.; Longhurst, C.A.; Knight, R. High-Throughput Wastewater SARS-CoV-2 Detection Enables Forecasting of Community Infection Dynamics in San Diego County. mSystems 2021, 6, e00045-21. [Google Scholar] [CrossRef]
- Parra-Guardado, A.L.; Sweeney, C.L.; Hayes, E.K.; Trueman, B.F.; Huang, Y.; Jamieson, R.C.; Rand, J.L.; Gagnon, G.A.; Stoddart, A.K. Development of a Rapid Pre-Concentration Protocol and a Magnetic Beads-Based RNA Extraction Method for SARS-CoV-2 Detection in Raw Municipal Wastewater. Environ. Sci. Water Res. Technol. 2022, 8, 47–61. [Google Scholar] [CrossRef]
- Baresel, C.; Schaller, V.; Jonasson, C.; Johansson, C.; Bordes, R.; Chauhan, V.; Sugunan, A.; Sommertune, J.; Welling, S. Functionalized Magnetic Particles for Water Treatment. Heliyon 2019, 5, e02325. [Google Scholar] [CrossRef] [PubMed]
- Prikockis, M.; Chen, A.; Byvank, T.; Vieira, G.B.; Peters, B.; Yang, F.; Sooryakumar, R. Programmable Self-Assembly, Disassembly, Transport, and Reconstruction of Ordered Planar Magnetic Micro-Constructs. IEEE Trans. Magn. 2014, 50, 1–6. [Google Scholar] [CrossRef]
- Henighan, T.; Giglio, D.; Chen, A.; Vieira, G.; Sooryakumar, R. Patterned Magnetic Traps for Magnetophoretic Assembly and Actuation of Microrotor Pumps. Appl. Phys. Lett. 2011, 98, 103505. [Google Scholar] [CrossRef]
- Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of Magnetic Fields and Nanoparticles to Trigger Drug Release and Improve Tumor Targeting. WIREs Nanomed. Nanobiotechnology 2019, 11, e1571. [Google Scholar] [CrossRef] [PubMed]
- Komlev, A.S.; Gimaev, R.R.; Zverev, V.I. Smart Magnetocaloric Coatings for Implants: Controlled Drug Release for Targeted Delivery. Phys. Open 2021, 7, 100063. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Chen, D.; Shang, P.; Yin, D.-C. A Review of Magnet Systems for Targeted Drug Delivery. J. Control. Release 2019, 302, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Goiriena-Goikoetxea, M.; Muñoz, D.; Orue, I.; Fernández-Gubieda, M.L.; Bokor, J.; Muela, A.; García-Arribas, A. Disk-Shaped Magnetic Particles for Cancer Therapy. Appl. Phys. Rev. 2020, 7, 011306. [Google Scholar] [CrossRef]
- Henighan, T.; Chen, A.; Vieira, G.; Hauser, A.J.; Yang, F.Y.; Chalmers, J.J.; Sooryakumar, R. Manipulation of Magnetically Labeled and Unlabeled Cells with Mobile Magnetic Traps. Biophys. J. 2010, 98, 412–417. [Google Scholar] [CrossRef]
- Yellen, B.B.; Erb, R.M.; Son, H.S.; Rodward Hewlin, J.; Shang, H.; Lee, G.U. Traveling Wave Magnetophoresis for High Resolution Chip Based Separations. Lab Chip 2007, 7, 1681–1688. [Google Scholar] [CrossRef]
- Vavassori, P.; Metlushko, V.; Ilic, B.; Gobbi, M.; Donolato, M.; Cantoni, M.; Bertacco, R. Domain Wall Displacement in Py Square Ring for Single Nanometric Magnetic Bead Detection. Appl. Phys. Lett. 2008, 93, 203502. [Google Scholar] [CrossRef]
- Donolato, M.; Gobbi, M.; Vavassori, P.; Leone, M.; Cantoni, M.; Metlushko, V.; Ilic, B.; Zhang, M.; Wang, S.X.; Bertacco, R. Nanosized Corners for Trapping and Detecting Magnetic Nanoparticles. Nanotechnology 2009, 20, 385501. [Google Scholar] [CrossRef] [PubMed]
- Donolato, M.; Vavassori, P.; Gobbi, M.; Deryabina, M.; Hansen, M.F.; Metlushko, V.; Ilic, B.; Cantoni, M.; Petti, D.; Brivio, S.; et al. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits. Adv. Mater. 2010, 22, 2706–2710. [Google Scholar] [CrossRef]
- Lim, B.; Reddy, V.; Hu, X.; Kim, K.; Jadhav, M.; Abedini-Nassab, R.; Noh, Y.-W.; Lim, Y.T.; Yellen, B.B.; Kim, C. Magnetophoretic Circuits for Digital Control of Single Particles and Cells. Nat. Commun. 2014, 5, 3846. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.; Torati, S.R.; Kim, K.W.; Hu, X.; Reddy, V.; Kim, C. Concentric Manipulation and Monitoring of Protein-Loaded Superparamagnetic Cargo Using Magnetophoretic Spider Web. NPG Asia Mater. 2017, 9, e369. [Google Scholar] [CrossRef]
- Kim, H.; Yoon, J.; Ali, A.; Torati, S.R.; Kang, Y.; Kim, K.; Lim, B.; Kim, C. The Trajectory of Bio-Carriers in Periodic Energy Landscape Regulated by the Multiple Collision History in a Magnetophoretic System. J. Sci. Adv. Mater. Devices 2022, 7, 100482. [Google Scholar] [CrossRef]
- Goudu, S.R.; Kim, H.; Hu, X.; Lim, B.; Kim, K.; Torati, S.R.; Ceylan, H.; Sheehan, D.; Sitti, M.; Kim, C. Mattertronics for Programmable Manipulation and Multiplex Storage of Pseudo-Diamagnetic Holes and Label-Free Cells. Nat. Commun. 2021, 12, 3024. [Google Scholar] [CrossRef]
- Klingbeil, F.; Block, F.; Sajjad, U.; Holländer, R.B.; Deshpande, S.; McCord, J. Evaluating and Forecasting Movement Patterns of Magnetically Driven Microbeads in Complex Geometries. Sci. Rep. 2020, 10, 8761. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, U.; Holländer, R.B.; Klingbeil, F.; McCord, J. Magnetomechanics of Superparamagnetic Beads on a Magnetic Merry-Go-Round: From Micromagnetics to Radial Looping. J. Phys. D Appl. Phys. 2017, 50, 135003. [Google Scholar] [CrossRef]
- Goudu, S.R.; Hu, X.; Lim, B.; Kim, K.; Kim, K.; Kim, H.; Yoon, J.; Kim, C. Characterization of Superparamagnetic Particles Mobility by On-Chip Micromagnets. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Chen, A.; Vieira, G.; Henighan, T.; Howdyshell, M.; North, J.A.; Hauser, A.J.; Yang, F.Y.; Poirier, M.G.; Jayaprakash, C.; Sooryakumar, R. Regulating Brownian Fluctuations with Tunable Microscopic Magnetic Traps. Phys. Rev. Lett. 2011, 107, 087206. [Google Scholar] [CrossRef]
- Zablotskii, V.; Polyakova, T.; Lunov, O.; Dejneka, A. How a High-Gradient Magnetic Field Could Affect Cell Life. Sci. Rep. 2016, 6, 37407. [Google Scholar] [CrossRef] [PubMed]
- Blinder, S.M. Magnetic Field of a Cylindrical Bar Magnet. Available online: http://demonstrations.wolfram.com/MagneticFieldOfACylindricalBarMagnet/ (accessed on 18 April 2024).
- Rakotoarison, H.L.; Yonnet, J.-P.; Delinchant, B. Using Coulombian Approach for Modeling Scalar Potential and Magnetic Field of a Permanent Magnet With Radial Polarization. IEEE Trans. Magn. 2007, 43, 1261–1264. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Lu, T.-F. Modelling of Magnetic Field Distributions of Elliptical Cylinder Permanent Magnets with Diametrical Magnetization. J. Magn. Magn. Mater. 2019, 491, 165569. [Google Scholar] [CrossRef]
- Donahue, M.J.; Porter, D.G. OOMMF User’s Guide, Version 1.0; NISTIR 6376; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Block, F.; Klingbeil, F.; Sajjad, U.; Arndt, C.; Sindt, S.; Seidler, D.; Thormählen, L.; Selhuber-Unkel, C.; McCord, J. Magnetic Bucket Brigade Transport Networks for Cell Transport. Adv. Mater. Technol. 2023, 8, 2300260. [Google Scholar] [CrossRef]
- Sajjad, U.; Klingbeil, F.; Block, F.; Holländer, R.B.; Bhatti, S.; Lage, E.; McCord, J. Efficient Flowless Separation of Mixed Microbead Populations on Periodic Ferromagnetic Surface Structures. Lab A Chip 2021, 21, 3174–3183. [Google Scholar] [CrossRef] [PubMed]
- Block, F.; Klingbeil, F.; Deshpande, S.; Sajjad, U.; Seidler, D.; Arndt, C.; Sindt, S.; Selhuber-Unkel, C.; McCord, J. Unidirectional Transport of Superparamagnetic Beads and Biological Cells along Oval Magnetic Elements. Appl. Phys. Lett. 2021, 118, 232405. [Google Scholar] [CrossRef]
- Rapoport, E.; Beach, G.S.D. Architecture for Directed Transport of Superparamagnetic Microbeads in a Magnetic Domain Wall Routing Network. Sci. Rep. 2017, 7, 10139. [Google Scholar] [CrossRef]
- Vieira, G.B.; Howard, E.; Hoang, D.; Simms, R.; Raymond, D.A.; Cullom, E.T. Short- and Long-Range Microparticle Transport on Permalloy Disk Arrays in Time-Varying Magnetic Fields. Magnetochemistry 2021, 7, 120. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, G.B.; Howard, E.; Lankapalli, P.; Phillips, I.; Hoffmeister, K.; Holley, J. Stray Magnetic Field Variations and Micromagnetic Simulations: Models for Ni0.8Fe0.2 Disks Used for Microparticle Trapping. Micromachines 2024, 15, 567. https://doi.org/10.3390/mi15050567
Vieira GB, Howard E, Lankapalli P, Phillips I, Hoffmeister K, Holley J. Stray Magnetic Field Variations and Micromagnetic Simulations: Models for Ni0.8Fe0.2 Disks Used for Microparticle Trapping. Micromachines. 2024; 15(5):567. https://doi.org/10.3390/mi15050567
Chicago/Turabian StyleVieira, Gregory B., Eliza Howard, Prannoy Lankapalli, Iesha Phillips, Keith Hoffmeister, and Jackson Holley. 2024. "Stray Magnetic Field Variations and Micromagnetic Simulations: Models for Ni0.8Fe0.2 Disks Used for Microparticle Trapping" Micromachines 15, no. 5: 567. https://doi.org/10.3390/mi15050567
APA StyleVieira, G. B., Howard, E., Lankapalli, P., Phillips, I., Hoffmeister, K., & Holley, J. (2024). Stray Magnetic Field Variations and Micromagnetic Simulations: Models for Ni0.8Fe0.2 Disks Used for Microparticle Trapping. Micromachines, 15(5), 567. https://doi.org/10.3390/mi15050567