Modulation Steering Motion by Quantitative Electrical Stimulation in Pigeon Robots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Subjects
2.2. The Electrode Adapter
2.3. Electrode Adapter Installation Scheme
2.4. Wireless Stimulation System
2.5. Electrical Stimulation Protocols
2.6. Animal Behavior and Motion Capture
2.7. Data Analysis
2.8. Histology
2.9. Statistical Analyses
3. Results
3.1. Motor Behavior Induced by Micro-Electrical Stimulation in Light Anesthesia State
3.2. Parameters in Free-Flight Tests
3.2.1. Response Time and Success Rate of Steering Control
3.2.2. Effects of Different Electrical Stimulation Parameters on Pigeon Steering Behavior
3.2.3. Effectiveness of Post-Implantation Control
4. Discussion
4.1. Relationship between FRM and Motion Behavior
4.2. Impact of Gradient Voltage Variation on Electrical Stimulation Effects
4.3. Motion Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, J.; Cui, H.; Rahmouni, K. Optogenetics and pharmacogenetics: Principles and applications. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, G.T. Uber die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. 1870, 37, 300–332. [Google Scholar]
- Ferrier, D. The Functions of the Brain; Smith, Elder: London, UK, 1886. [Google Scholar]
- Normann, R.A.; Fernandez, E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J. Neural Eng. 2016, 13, 061003. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, C.; Ramadi, K.B.; Joe, P.; Spencer, K.; Schwerdt, H.N.; Shimazu, H.; Delcasso, S.; Amemori, K.-i.; Nunez-Lopez, C.; Graybiel, A.M. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl. Med. 2018, 10, eaan2742. [Google Scholar] [CrossRef] [PubMed]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Widge, A.S.; Moritz, C.T. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain–computer interface. J. Neural Eng. 2014, 11, 024001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhuang, L.; Qin, Z.; Wei, X.; Yuan, Q.; Qin, C.; Wang, P. A wearable system for olfactory electrophysiological recording and animal motion control. J. Neurosci. Methods 2018, 307, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Mei, H.; Li, R.; Wang, C.; Fang, K.; Wang, W.; Tang, Y.; Dai, Z. Progresses of animal robots: A historical review and perspectiveness. Heliyon 2022, 8, e11499. [Google Scholar] [CrossRef]
- Obidin, N.; Tasnim, F.; Dagdeviren, C. The future of neuroimplantable devices: A materials science and regulatory perspective. Adv. Mater. 2020, 32, 1901482. [Google Scholar] [CrossRef]
- Holzer, R.; Shimoyama, I. Locomotion control of a bio-robotic system via electric stimulation. In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications, Grenoble, France, 7–11 September 1997; Volume 3, pp. 1514–1519. [Google Scholar]
- Sato, H.; Peeri, Y.; Baghoomian, E.; Berry, C.; Maharbiz, M. Radio-controlled cyborg beetles: A radio-frequency system for insect neural flight control. In Proceedings of the 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009; pp. 216–219. [Google Scholar]
- Wang, W.B.; Dai, Z.D.; Guo, C.; Tan, H.; Cai, L.; Sun, J.R. A Study on Electric Stimulation of the Midbrain in Giant Gecko (Gekko gecko) to Induce Turning Movement. Prog. Nat. Sci. 2008, 18, 979–986. (In Chinese) [Google Scholar]
- Talwar, S.K.; Xu, S.; Hawley, E.S.; Weiss, S.A.; Moxon, K.A.; Chapin, J.K. Rat navigation guided by remote control. Nature 2002, 417, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Su, X.C.; Huai, R.T.; Yang, J.Q.; Wang, H.; Lv, C.Z. Brain mechanism and methods for robo-animal motor behavior control. Sci. China Inf. Sci. 2012, 42, 1130–1146. (In Chinese) [Google Scholar]
- Dickinson, M.H.; Farley, C.T.; Full, R.J.; Koehl, M.; Kram, R.; Lehman, S. How animals move: An integrative view. Science 2000, 288, 100–106. [Google Scholar] [CrossRef]
- Higham, T.E.; Biewener, A.A.; Delp, S.L. Mechanics, modulation and modelling: How muscles actuate and control movement. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1463–1465. [Google Scholar] [CrossRef] [PubMed]
- Arbib, M.A.; Fellous, J.-M. Emotions: From brain to robot. Trends Cogn. Sci. 2004, 8, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.; Dai, Z.; Zhou, L. Research development of bio-inspired robotics. Robot 2005, 27, 284–288. [Google Scholar]
- Bozkurt, A.; Lobaton, E.; Sichitiu, M. A biobotic distributed sensor network for under-rubble search and rescue. Computer 2016, 49, 38–46. [Google Scholar] [CrossRef]
- Yang, J.; Huai, R.; Wang, H.; Lv, C.; Su, X. A robo-pigeon based on an innovative multi-mode telestimulation system. Bio-Med. Mater. Eng. 2015, 26, S357–S363. [Google Scholar] [CrossRef]
- Jang, J.; Baek, C.; Kim, S.; Lee, T.-K.; Choi, G.-J.; Shim, S.; Yun, S.; Jung, Y.; Lee, C.-E.; Ko, S. Current stimulation of the midbrain nucleus in pigeons for avian flight control. Micromachines 2021, 12, 788. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Mei, H.; Tang, Y.; Wang, W.; Wang, H.; Wang, Z.; Dai, Z. Grade-control outdoor turning flight of robo-pigeon with quantitative stimulus parameters. Front. Neurorobotics 2023, 17, 1143601. [Google Scholar] [CrossRef]
- Cai, L.; Dai, Z.; Wang, W.; Wang, H.; Tang, Y. Modulating motor behaviors by electrical stimulation of specific nuclei in pigeons. J. Bionic Eng. 2015, 12, 555–564. [Google Scholar] [CrossRef]
- Güntürkün, O.; Verhoye, M.; De Groof, G.; Van der Linden, A. A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. Brain Struct. Funct. 2013, 218, 269–281. [Google Scholar] [CrossRef]
- Karten, H.J.; Hodos, W. A Stereotaxic Atlas of the Brain of the Pigeon: (Columba Livia); Johns Hopkins Press: Baltimore, MD, USA, 1967. [Google Scholar]
- Zheng, N.; Chen, W.; Hu, F.; Bao, L.; Zhao, H.; Wang, S. Research progress and challenges in cyborg insects. Sci. Sin. Vitae 2011, 41, 259–272. [Google Scholar]
- Huai, R.-t.; Yang, J.-q.; Wang, H. The robo-pigeon based on the multiple brain regions synchronization implanted microelectrodes. Bioengineered 2016, 7, 213–218. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, J.; Zhou, H.; Lee, J.C.; Zheng, X. A novel turning behavior control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus. Behav. Brain Res. 2016, 298, 150–157. [Google Scholar] [CrossRef]
- Cai, L.; Wang, H.; Wang, W.B.; Shi, A.J.; Dai, Z.D. Design and Application of An Electrode Adapter for Chronic Experiments in Pigeon. Chin. J. Zool. 2014, 49, 280–285. (In Chinese) [Google Scholar]
- Yang, L.; Ma, Z.; Li, M.; Yang, L.; Shang, Z. Creating Virtual Fear to Control the Locomotion Behavior of Pigeon Robots Using Micro-Stimulation. In Proceedings of the 2022 IEEE International Conference on Cyborg and Bionic Systems (CBS), Wuhan, China, 24–26 March 2023; pp. 257–262. [Google Scholar]
- Wang, H.; Yang, J.; Lv, C.; Huai, R.; Li, Y. Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. Anim. Biol. 2018, 68, 213–225. [Google Scholar] [CrossRef]
- Hahn, L.A.; Rose, J. Executive control of sequence behavior in pigeons involves two distinct brain regions. Eneuro 2023, 10. [Google Scholar] [CrossRef]
- Reiner, A.; Karten, H.J. Laminar distribution of the cells of origin of the descending tectofugal pathways in the pigeon (Columba livia). J. Comp. Neurol. 1982, 204, 165–187. [Google Scholar] [CrossRef]
- Neafsey, E.; Bold, E.; Haas, G.; Hurley-Gius, K.; Quirk, G.; Sievert, C.; Terreberry, R. The organization of the rat motor cortex: A microstimulation mapping study. Brain Res. Rev. 1986, 11, 77–96. [Google Scholar] [CrossRef]
- Fouriezos, G.; Wise, R.A. Current-distance relation for rewarding brain stimulation. Behav. Brain Res. 1984, 14, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Cabelguen, J.-M.; Bourcier-Lucas, C.; Dubuc, R. Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens. J. Neurosci. 2003, 23, 2434–2439. [Google Scholar] [CrossRef] [PubMed]
- Gulyás, M.; Bencsik, N.; Pusztai, S.; Liliom, H.; Schlett, K. AnimalTracker: An ImageJ-based tracking API to create a customized behaviour analyser program. Neuroinformatics 2016, 14, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Bos, R.; Mes, W.; Galligani, P.; Heil, A.; Zethof, J.; Flik, G.; Gorissen, M. Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stage. PLoS ONE 2017, 12, e0175420. [Google Scholar]
- McLean, D.J.; Skowron Volponi, M.A. trajr: An R package for characterisation of animal trajectories. Ethology 2018, 124, 440–448. [Google Scholar] [CrossRef]
- Brown, D.; Christian, W. Simulating what you see: Combining computer modeling with video analysis. In Proceedings of the 8th International Conference on Hands on Science, Ljubljana, Slovenija, 15–17 September 2011. [Google Scholar]
Stimulus Intensity (V) | Distance (cm) | Velocity (cm/s) | Angular Velocity (deg/s) | Turning Radius (cm) | Response Time (s) |
1.2 | 43.45 ± 6.95 | 13.45 ± 1.48 | 33.11 ± 14.16 | 21.30 ± 0.70 | 0.89 ± 0.04 |
1.4 | 62.1 ± 5.10 | 17.89 ± 2.55 | 36.34 ± 10.74 | 21.20 ± 1.30 | 0.85 ± 0.02 |
1.6 | 70.57 ± 3.19 | 25.13 ± 2.45 | 108.55 ± 10.45 | 14.07 ± 2.24 | 0.53 ± 0.06 |
1.8 | 73.30 ± 4.63 | 33.60 ± 2.90 | 134.13 ± 12.36 | 11.80 ± 1.02 | 0.32 ± 0.04 |
2.0 | 76.75 ± 3.52 | 34.31 ± 3.19 | 147.82 ± 7.97 | 10.73 ± 1.48 | 0.31 ± 0.03 |
2.2 | 77.45 ± 4.75 | 37.10 ± 1.53 | 167.57 ± 18.30 | 8.88 ± 0.90 | 0.21 ± 0.04 |
2.4 | 78.70 ± 4.05 | 37.55 ± 3.57 | 184.35 ± 12.03 | 8.60 ± 0.85 | 0.18 ± 0.04 |
2.6 | 79.30 ± 4.78 | 37.39 ± 1.94 | 184.42 ± 16.22 | 7.97 ± 0.75 | 0.19 ± 0.05 |
2.8 | 79.42 ± 4.37 | 37.50 ± 2.16 | 185.86 ± 10.28 | 5.38 ± 0.53 | 0.16 ± 0.03 |
3.0 | 80.33 ± 3.07 | 38.61 ± 2.02 | 188.70 ± 15.01 | 5.49 ± 0.72 | 0.16 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, M.; Zhang, H.; Ma, Y.; Wang, H.; Wang, W.; Shi, Y.; Sheng, W.; Li, Q.; Gao, G.; Cai, L. Modulation Steering Motion by Quantitative Electrical Stimulation in Pigeon Robots. Micromachines 2024, 15, 595. https://doi.org/10.3390/mi15050595
Bi M, Zhang H, Ma Y, Wang H, Wang W, Shi Y, Sheng W, Li Q, Gao G, Cai L. Modulation Steering Motion by Quantitative Electrical Stimulation in Pigeon Robots. Micromachines. 2024; 15(5):595. https://doi.org/10.3390/mi15050595
Chicago/Turabian StyleBi, Mingxuan, Huimin Zhang, Yaohong Ma, Hao Wang, Wenbo Wang, Yuan Shi, Wenlong Sheng, Qiushun Li, Guangheng Gao, and Lei Cai. 2024. "Modulation Steering Motion by Quantitative Electrical Stimulation in Pigeon Robots" Micromachines 15, no. 5: 595. https://doi.org/10.3390/mi15050595
APA StyleBi, M., Zhang, H., Ma, Y., Wang, H., Wang, W., Shi, Y., Sheng, W., Li, Q., Gao, G., & Cai, L. (2024). Modulation Steering Motion by Quantitative Electrical Stimulation in Pigeon Robots. Micromachines, 15(5), 595. https://doi.org/10.3390/mi15050595