Enhancement of Convection and Molecular Transport into Film Stacked Structures by Introduction of Notch Shape for Micro-Immunoassay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of 3D-Stack
2.2. Mathematical Models and Numerical Analysis
2.2.1. Flow in Film Gap
2.2.2. Bulk Analyte Transport
2.2.3. Surface Binding Kinetics
2.2.4. Computational Environment and Analytical Model
2.3. Materials and Methods for ELISA
2.4. Evaluation of Binding Rate
2.5. Conditions of Sandwich ELISA Using 3D-Stack and Conventional Method
3. Results and Discussions
3.1. Numerical Simulation
3.2. Effect of the Notched Shape on Binding Rate
3.3. Effect of the Notched Shape on ELISA
4. Conclusions
- (1)
- By adding a notch to the disk, the formation of axial flow and the inflow into the film using the circumferential flow were confirmed, and it was expected that circulation was promoted by the notch.
- (2)
- It was confirmed that the Reynolds number was changed by changing the lamination spacing between the notched films, which affected the circumferential flow in the film, and that convection promotion reduced the concentration diffusion layer and promoted the antigen–antibody reaction.
- (3)
- From the coupling rate evaluation, the formation and utilization of the circumferential flow were confirmed, and the coupling speed of the 3D-stack was increased regardless of the notch shape for the lamination spacing.
- (4)
- In the sensitivity evaluation, the sensitivity of the plate was higher, but it was confirmed that the difference in the binding amount was narrowed in the low-concentration region (6.25 and 3.125 ng/mL), indicating that the circulation promotion by the notch shape was effective for both the low concentration and rapid concentration.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Metcalf Infectious disease in an era of global change. Nature Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- David, M.M.; Folkers, G.K.; Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature 2004, 430, 242–249. [Google Scholar] [CrossRef]
- Van Weemen, B.K.; Schuurs, A.H.W.M. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971, 15, 232–236. [Google Scholar] [CrossRef]
- Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971, 8, 871–874. [Google Scholar] [CrossRef]
- Lequin, R.M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Advantages, Disadvantages and Modifications of Conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA); Springer: Berlin, Germany, 2018; pp. 67–115. [Google Scholar]
- Kusnezow, W.; Syagailo, Y.V.; Goychuk, I.; Hoheisel, J.D.; Wild, D.G. Antibody microarrays: The crucial impact of mass transport on assay kinetics and sensitivity. Expert Rev. Mol. Diagn. 2006, 6, 111–124. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, J.; Pang, Y.; Wang, J.; Li, W.; Ge, Z.; Huang, Y. High-throughput immunoassay through in-channel microfluidic patterning. Lab Chip 2012, 12, 2487–2490. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Yuan, F.; Yu, H.; Li, Z. An ultrasensitive ELISA method for the detection of procalcitonin based on magnetic beads and enzyme-antibody labeled gold nanoparticles. Anal. Methods 2016, 8, 1577–1585. [Google Scholar] [CrossRef]
- Gorkin, R.; Park, J.; Siegrist, J.; Amasia, M.; Lee, B.S.; Park, J.-M.; Kim, J.; Kim, H.; Madou, M.; Cho, Y.-K. Centrifugal microfluidics for biomedical applications. Lab. Chip 2010, 10, 1758–1773. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, H.; Liu, W.; Guo, Y.; Chu, W. Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice. Biosens. Bioelectron. 2016, 79, 581–588. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, D.; Yan, C.; Chen, W.; Ren, J.; Jiang, Y.; Jiang, L.; Xue, F.; Ji, D.; Tang, F.; et al. Rapid and accurate detection of Escherichia coli O157:H7 in beef using microfluidic wax-printed paper-based ELISA. Analyst 2020, 145, 3106–3115. [Google Scholar] [CrossRef]
- Kai, J.; Puntambekar, A.; Santiago, N.; Lee, S.H.; Sehy, D.W.; Moore, V.; Han, J.; Ahn, C.H. A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA). Lab Chip 2012, 12, 4257–4262. [Google Scholar] [CrossRef]
- Su, W.; Cook, B.S.; Fang, Y.; Tentzeris, M.M. Fully inkjet-printed microfluidics: A solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. Sci. Rep. 2016, 6, 35111. [Google Scholar] [CrossRef]
- Li, H.; Fan, Y.; Kodzius, R.; Foulds, I.G. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst. Technol. 2011, 18, 373–379. [Google Scholar] [CrossRef]
- Suzuki, Y.; Morioka, K.; Ohata, S.; Shimizu, T.; Nakajima, H.; Uchiyama, K.; Yang, M. Rapid ELISA Using a Film-Stack Reaction Field with Micropillar Arrays. Sensors 2017, 17, 1608. [Google Scholar] [CrossRef]
- Maeno, H.; Wong, P.F.; Abubakar, S.; Yang, M.; Sam, S.S.; Jamil-Abd, J.; Shunmugarajoo, A.; Mustafa, M.; Said, R.M.; Mageswaren, E.; et al. A 3d microfluidic elisa for the detection of severe dengue: Sensitivity improvement and vroman effect amelioration by edc–nhs surface modification. Micromachines 2021, 12, 1503. [Google Scholar] [CrossRef]
- Maeno, H.; Ogata, S.; Shimizu, T.; Yang, M. Enhancement of Molecular Transport into Film Stacked Structures for Micro-Immunoassay by Unsteady Rotation. Micromachines 2023, 14, 744. [Google Scholar] [CrossRef]
- Tesla, N. Turbine. US Patent US1,061,206A, 6 May 1913. [Google Scholar]
- Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Akbarzadeh, A.H. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses. Chem. Eng. J. 2021, 413, 127497. [Google Scholar] [CrossRef]
- Ming, Y.A.N.G.; Shimizu, T.; Hu, J.; Shiratori, T. An integrated precise engineering for micro forming. MATEC Web Conf. 2018, 190, 01003. [Google Scholar] [CrossRef]
- Ducrée, J.; Haeberle, S.; Brenner, T.; Glatzel, T.; Zengerle, R. Patterning of flow and mixing in rotating radial microchannels. Microfluid. Nanofluidics 2006, 2, 97–105. [Google Scholar] [CrossRef]
- Bahri, M.; Dermoul, I.; Getaye, M.; Ben Ali, M.; Abdelhamid, E. 2D simulation of a microfluidic biosensor for CRP detection into a rotating micro-channel. SN Appl. Sci. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Glatzel, T.; Litterst, C.; Cupelli, C.; Lindemann, T.; Moosmann, C.; Niekrawietz, R.; Streule, W.; Zengerle, R.; Koltay, P. Computational fluid dynamics (CFD) software tools for microfluidic applications—A case study. Comput. Fluids 2008, 37, 218–235. [Google Scholar] [CrossRef]
- Hibbert, D.B.; Gooding, J.J.; Erokhin, P. Kinetics of Irreversible Adsorption with Diffusion: Application to Biomolecule Immobilization. Langmuir 2002, 18, 1770–1776. [Google Scholar] [CrossRef]
- Nygren, H.; Werthen, M.; Stenberg, M. Kinetics of antibody binding to solid-phase-immobilised antigen Effect of diffusion rate limitation steric interaction. J. Immunol. Methods 1987, 101, 63–71. [Google Scholar] [CrossRef]
- M Stenberg 1, H Nygren Kinetics of antigen-antibody reactions at solid-liquid interfaces. J. Immunol. Methods 1988, 113, 3–15. [CrossRef]
- Saltzman, W.M.; Radomsky, M.L.; Whaley, K.J.; Cone, R.A. Antibody diffusion in human cervical mucus. Biophys. J. 1994, 66, 508–515. [Google Scholar] [CrossRef]
- Hu, G.; Gao, Y.; Li, D. Modeling micropatterned antigen-antibody binding kinetics in a microfluidic chip. Biosens. Bioelectron. 2007, 22, 1403–1409. [Google Scholar] [CrossRef]
- Hajji, H.; Kolsi, L.; Hassen, W.; Al-Rashed, A.A.A.A.; Borjini, M.N.; Aichouni, M.A. Finite element simulation of antigen-antibody transport and adsorption in a microfluidic chip. Phys. E Low-Dimens. Syst. Nanostructures 2018, 104, 177–186. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Rotation speed | 2000 rpm |
Viscosity (water) | 0.89 mPa·s |
Density (water) | 997 kg/m3 |
Association constant (kon) | 1 × 105 m3/mol/s |
Dissociation constant (koff) | 1 × 10−4 1/s |
Surface diffusion coefficient (Ds) | 1 × 10−9 m2/s |
Diffusion coefficient (D) | 4 × 10−7 cm2/s |
Immobilized ligand concentration (B0) | 1 × 10−11 mol/cm2 |
Element Number | |
---|---|
Film Gap: 20, 40, 60, 80, 100 (µm) | 68.3, 136, 205, 273, 341 (×104) |
Type | Film Gap | ||
---|---|---|---|
20 µm | 100 µm | ||
3D-stack | 3D-stack (N) | 3D-stack(N)-20 | 3D-stack(N)-100 |
3D-stack (C) | 3D-stack(C)-20 | 3D-stack(C)-100 |
Film Gap (mm) | Flow Velocity (mm/s) | Re |
---|---|---|
0.02 | 2.45 | 0.0485 |
0.04 | 9.82 | 0.389 |
0.06 | 22.2 | 1.32 |
0.08 | 40.4 | 3.19 |
0.1 | 65.7 | 6.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arai, D.; Ogata, S.; Shimizu, T.; Yang, M. Enhancement of Convection and Molecular Transport into Film Stacked Structures by Introduction of Notch Shape for Micro-Immunoassay. Micromachines 2024, 15, 613. https://doi.org/10.3390/mi15050613
Arai D, Ogata S, Shimizu T, Yang M. Enhancement of Convection and Molecular Transport into Film Stacked Structures by Introduction of Notch Shape for Micro-Immunoassay. Micromachines. 2024; 15(5):613. https://doi.org/10.3390/mi15050613
Chicago/Turabian StyleArai, Daiki, Satoshi Ogata, Tetsuhide Shimizu, and Ming Yang. 2024. "Enhancement of Convection and Molecular Transport into Film Stacked Structures by Introduction of Notch Shape for Micro-Immunoassay" Micromachines 15, no. 5: 613. https://doi.org/10.3390/mi15050613
APA StyleArai, D., Ogata, S., Shimizu, T., & Yang, M. (2024). Enhancement of Convection and Molecular Transport into Film Stacked Structures by Introduction of Notch Shape for Micro-Immunoassay. Micromachines, 15(5), 613. https://doi.org/10.3390/mi15050613