Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors
Abstract
:1. Introduction
2. Principle of the SAW Micro-Force Sensor
3. The BAW Propagation in SAW Micro-Force Sensor
3.1. Phase Matching of IDT to BAW
3.2. The BAW in ST-X Quartz Material
- Nonlinear effects: PZT and PMN-PT are known for their nonlinear piezoelectric effects, which can be exploited for certain applications such as frequency multiplication or for creating devices with tunable properties. However, these nonlinearities can also introduce complexities in wave propagation that might not be present in quartz.
- Piezoelectric saturation: At high drive levels, the piezoelectric effect in PZT and PMN-PT can saturate, leading to a nonlinear response. This can affect the accuracy and stability of the SAW device, particularly in applications that require high-power handling or large signal modulation.
- Cutting angle: The properties of SAW devices are highly dependent on the cut and orientation of the crystal. Quartz has well-established cuts (e.g., Y-cut, AT-cut, ST-cut) that are optimized for SAW propagation.
- Signal distortion: Nonlinear effects can cause signal distortion in SAW devices, particularly for applications that involve large signal swings or high-power operation. This can be more pronounced in PZT and PMN-PT devices compared to those made from quartz.
- Fabrication complexity and cost: PZT and PMN-PT might be more challenging to fabricate into the precise geometries required for SAW devices, potentially leading to higher costs or lower yields.
4. Manufactured of the SAW Micro-Force Sensor
4.1. Arranging Acoustic Absorbers at Ends of Piezoelectric Substrate
4.2. Piezoelectric Substrate with Slotted Bi-Directional Grooves
5. Measurement of the SAW Micro-Force Sensor
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Yu, Y.; Zhao, X.; Zhao, X.; Sun, J.; Wang, Y.; Zhu, H. A review on the size-dependent bulking, vibration and, wave propagation of nanostructures. J. Phys. Condens. Matter 2023, 7, 27. [Google Scholar] [CrossRef]
- Da Cunha, M.P. High-Temperature Harsh-Environment SAW Sensor Technology. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3–8 September 2023; pp. 1–10. [Google Scholar]
- Mengue, P.; Meistersheim, L.; Hage-Ali, S.; Floer, C.; Petit-Watelot, S.; Lacour, D.; Hehn, M.; Elmazria, O. Magnetic SAW RFID sensor based on Love wave for detection of magnetic field and temperature. IEEE J. Radio Freq. Identif. 2023, 7, 528–535. [Google Scholar] [CrossRef]
- Memon, M.M.; Liu, Q.; Manthar, A.; Wang, T.; Zhang, W. Surface Acoustic Wave Humidity Sensor: A Review. Micromachines 2023, 14, 945. [Google Scholar] [CrossRef]
- Li, X.; Sun, W.; Fu, W.; Lv, H.; Zu, X.; Guo, Y.; Gibson, D.; Fu, Y.-Q. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. J. Mater. Chem. A 2023, 11, 9216–9238. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Hung, T.-T.; Chuang, Y.-W.; Lai, S.-K.; Tai, C.-M. Room-Temperature NH3 gas surface acoustic wave (saw) sensors based on graphene/PPy composite films decorated by Au nanoparticles with ppb detection ability. Polymers 2023, 15, 4353. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xue, Q.; Zhang, Z.; Bian, Y.; Jin, B.; Yang, F. Pressure sensors with ultrahigh sensitivity inspired by spider slit sensilla. IEEE Sens. J. 2023, 23, 11729–11737. [Google Scholar] [CrossRef]
- Lei, B.; Lu, W.; Mian, Z.; Bao, W. Effect of IDT position parameters on SAW yarn tension sensor sensitivity. Meas. Control 2020, 53, 2055–2062. [Google Scholar] [CrossRef]
- Xiao, J.; Cheng, G.; Yuan, Y.; Feng, D.; Cheng, Y. Designing and optimizing method of SAW force sensor based on oneport resonator. Int. Conf. Adv. Sens. Smart Manuf. 2022, 12351, 215–224. [Google Scholar]
- Koigerov, A.S.; Balysheva, O.L. Finite element simulation of SAW delay line operating with the use of third harmonic frequency. Comput. Telecommun. Control 2022, 15, 72. [Google Scholar] [CrossRef]
- Zhao, P.; Sharma, C.H.; Liang, R.; Glasenapp, C.; Mourokh, L.; Kovalev, V.M.; Huber, P.; Prada, M.; Tiemann, L.; Blick, R.H. Acoustically induced giant synthetic Hall voltages in graphene. Phys. Rev. Lett. 2022, 128, 256601. [Google Scholar] [CrossRef]
- Gao, P.; Li, K.; Wei, S.; Long, G.-L. Quantum second-order optimization algorithm for general polynomials. Sci. China Phys. Mech. Astron. 2021, 64, 100311. [Google Scholar] [CrossRef]
- Hwang, H.; Lee, J.; Eum, S.; Nam, K. Kalman-Filter-Based Tension Control Design for Industrial Roll-to-Roll System. Algorithms 2019, 12, 86. [Google Scholar] [CrossRef]
- Wen, C.; Zhu, C. A novel architecture of implementing wavelet transform and reconstruction processor with SAW device based on MSC. Sens. Actuators A Phys. 2006, 126, 148–153. [Google Scholar] [CrossRef]
- Wen, C.; Zhu, C.; Ju, Y.; Qiu, Y.; Xu, H.; Lu, W.; Hu, X.; Wu, Y.; Liu, J. Dual track architecture and time synchronous scheme for wavelet reconstruction processor using SAW device based on MSC. Sens. Actuators A Phys. 2008, 147, 222–228. [Google Scholar] [CrossRef]
- Lu, W.; Zhu, C. Solving three key problems of wavelet transform processor using surface acoustic wave devices. IEEE Trans. Ind. Electron. 2010, 57, 3801–3806. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, W.; Zhang, G.; Xie, Z. A solution to reducing insertion loss and achieving high sidelobe rejection for wavelet transform and reconstruction processor using SAW devices. Solid State Electron. 2013, 80, 105–109. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, W.; Yu, H.; Hu, K.; Sun, S.; Wang, B. Temperature Compensation of SAW Winding Tension Sensor Based on PSO-LSSVM Algorithm. Micromachines 2023, 14, 2093. [Google Scholar] [CrossRef]
- Neaz, A.; Lee, E.H.; Jin, T.H.; Cho, K.C.; Nam, K. Optimizing Yarn Tension in Textile Production with Tension–Position Cascade Control Method Using Kalman Filter. Sensors 2023, 23, 5494. [Google Scholar] [CrossRef] [PubMed]
- Krebs, M. The effect of nonlinearity of the bond forces on the temperature dependence of the elastic moduli of quartz. 2nd Eur. Workshop Piezoelectric Mater. 1997, 22, 721–724. [Google Scholar]
- Dal Bó, M.; Cantavella, V.; Sanchéz, E.; Gilabert, F.A.; Boschi, A.O.; Hotza, D. An estimate of quartz content and particle size in porcelain tiles from young’s modulus measurements. Ceram. Int. 2017, 43, 2233–2238. [Google Scholar] [CrossRef]
- Helmick, C.N.; White, D.J.; Lakin, K.M. Deep-Bulk-Acoustic-Wave (DBAW) Devices Utilizing Interdigital Transducers. IEEE Symp. Ultrason. 1981, 10, 280–285. [Google Scholar]
- Yang, Z.; Zu, J. Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting. Energy Convers. Manag. 2016, 122, 321–329. [Google Scholar] [CrossRef]
- Hall, D.A. Review nonlinearity in piezoelectric ceramics. J. Mater. Sci. 2001, 36, 4575–4601. [Google Scholar] [CrossRef]
- Sumit; Kane, S.R.; Sinha, A.K.; Shukla, R. Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode. Mech. Adv. Mater. Struct. 2023, 30, 2111–2120. [Google Scholar] [CrossRef]
- Anand, S.; Arockiarajan, A. Temperature dependent ferroelectric and ferroelastic behaviour of PZT wafers. Ceram. Int. 2016, 42, 15517–15529. [Google Scholar] [CrossRef]
- Soloviev, A.N.; Chebanenko, V.A.; Zakharov, Y.N.; Rozhkov, E.V.; Parinov, I.A.; Gupta, V.K. Study of the output characteristics of ferroelectric ceramic beam made from non-polarized ceramics pzt-19: Experiment and modeling. Springer Int. Publ. 2017, 193, 485–499. [Google Scholar]
- Yan, S.; Sun, C.; Cui, Q.; He, M.; Willhandy; Wang, R.; Hao, J.; Chu, X. Dielectric, piezoelectric and dc bias characteristics of Bi-doped PZT multilayer ceramic actuator. Mater. Chem. Phys. 2020, 255, 123605. [Google Scholar] [CrossRef]
- Singh, C.; Vats, G.; Kumar, A. Improved piezoelectric, ferroelectric, pyroelectric and electrocaloric properties of Sm-substituted PMN-PT. J. Alloys Compd. 2023, 965, 171355. [Google Scholar] [CrossRef]
- Pérez-Moyet, R.; Cardona-Quintero, Y.; Doyle, I.M.; Heitmann, A.A. Anisotropy free energy contribution of the ferroelectric domain dynamics in PMN-PT and PIN-PMN-PT relaxor ferroelectrics. J. Am. Ceram. Soc. 2023, 106, 5522–5540. [Google Scholar] [CrossRef]
- Wang, Z.; Song, R.; Shen, Z.; Huang, W.; Li, C.; Ke, S.; Shu, L. Non-linear behavior of flexoelectricity. Appl. Phys. Lett. 2019, 115, 252905. [Google Scholar] [CrossRef]
- Yang, B.; Lu, W.; Gao, L.; Feng, Y. Methods of solving passband ripples and sidelobes for wavelet transform processor using surface acoustic wave device. IEEE Trans. Ind. Electron. 2022, 70, 2897–2906. [Google Scholar] [CrossRef]
- Campbell, C. Surface Acoustic Wave Devices and Their Signal Processing Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Feng, Y.; Lu, Z.; Lu, W.; Zhu, C.; Liu, Q.; Zhang, H. Study of the Doubly-clamped Beam Yarn Tension Sensor Based on the Surface Acoustic Wave. IEEE Trans. Ind. Electron. 2019, 66, 3256–3264. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, W.; Wang, B. Enhanced Frequency Stability of SAW Yarn Tension Sensor by Using the Dual Differential Channel Surface Acoustic Wave Oscillator. Sensors 2023, 23, 464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, J.; Wang, Y.; Jiang, G. Flexible Three-Dimensional Force Tactile Sensor Based on Velostat Piezoresistive Films. Micromachines 2024, 15, 486. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, W.; Zhu, C.; Liu, Q.; Zhang, H.; Lei, B. Finite element analysis of surface acoustic wave based on a micro force sensor. Measurement 2015, 65, 112–119. [Google Scholar] [CrossRef]
- Länge, K. Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review. Sensors 2019, 19, 5382. [Google Scholar] [CrossRef]
- Yang, B.; Lu, W.; Gao, L. An efficient modeling approach for wavelet transform processors using surface acoustic wave devices. Meas. Sci. Technol. 2023, 34, 085119. [Google Scholar] [CrossRef]
Piezoelectric Substrate | Center Frequency (MHz) | −3 dB Bandwidth (MHz) | Electrode Width (μm) | Space between Electrodes (μm) | Electrode Number | |||
---|---|---|---|---|---|---|---|---|
Length (mm) | Width (mm) | Thickness (mm) | Input IDT | Output IDT | ||||
28 | 6 | 0.5 | 59.83 | 0.798 | 8.77 | 14.54 | 73 | 25 |
F(mN) (Hz) | 20 284 | 40 571 | 60 858 | 80 1139 | 100 1441 | 140 1993 | 160 2278 | 180 2564 | 200 2872 |
F(mN) (Hz) | 220 3129 | 240 3417 | 260 3688 | 280 3969 | 300 4167 | 340 4835 | 360 5117 | 380 5402 | 400 5652 |
F(mN) (Hz) | 420 5953 | 440 6257 | 460 6541 | 480 6801 | 500 7034 | 540 7660 | 560 7948 | 580 8256 | 600 8427 |
F(mN) (Hz) | 620 8799 | 640 9066 | 660 9357 | 680 9662 | 700 9907 | 740 10,496 | 760 10,786 | 780 11,025 | 800 11,328 |
F(mN) (Hz) | 820 11,641 | 840 11,932 | 860 12,219 | 880 12,507 | 900 12,855 | 940 13,359 | 960 13,641 | 980 13,923 | 1000 14,227 |
Range | Linearity | Hysteresis | Repeatability | Accuracy |
---|---|---|---|---|
0–1 N | 1.02% | 0.59% | 1.11% | 1.34% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Yu, H.; Liu, W.; Hu, K.; Sun, S.; Yang, Z.; Wang, B. Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors. Micromachines 2024, 15, 637. https://doi.org/10.3390/mi15050637
Feng Y, Yu H, Liu W, Hu K, Sun S, Yang Z, Wang B. Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors. Micromachines. 2024; 15(5):637. https://doi.org/10.3390/mi15050637
Chicago/Turabian StyleFeng, Yang, Haoda Yu, Wenbo Liu, Keyong Hu, Shuifa Sun, Zhen Yang, and Ben Wang. 2024. "Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors" Micromachines 15, no. 5: 637. https://doi.org/10.3390/mi15050637
APA StyleFeng, Y., Yu, H., Liu, W., Hu, K., Sun, S., Yang, Z., & Wang, B. (2024). Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors. Micromachines, 15(5), 637. https://doi.org/10.3390/mi15050637