LDH-Based Voltammetric Sensors
Abstract
:1. Introduction
2. LDHs Containing Redox-Active Metal Centers
2.1. Ni- and/or Co-Based LDHs
2.2. Composites Based on LDHs and Carbon Nanomaterials
2.3. Composites Based on LDHs and Metal Nanoparticles
2.4. Supports for LDHs
3. LDHs Not Containing Redox-Active Metal Centers
3.1. LDHs Loaded with Redox-Active Molecules
3.2. LDHs Loaded with Anionic Chelating Agents
3.3. LDHs Acting as Analyte Preconcentrators
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tonelli, D.; Scavetta, E.; Giorgetti, M. Layered-double-hydroxide-modified electrodes: Electroanalytical applications. Anal. Bioanal. Chem. 2013, 405, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Maddipatla, R.; Loka, C.; Lee, K.-S. Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 54608–54618. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Y.; Zhang, S.; Wang, T.; Zhuang, A.; Tian, C.; Luan, F.; Ni, S.-Q.; Fu, X. Enhanced electrochemical sensor based on gold nanoparticles and MoS2 nanoflowers decorated ionic liquid-functionalized graphene for sensitive detection of bisphenol A in environmental water. Microchem. J. 2021, 161, 105769. [Google Scholar] [CrossRef]
- Vlamidis, Y.; Fiorilli, S.; Giorgetti, M.; Gualandi, I.; Scavetta, E.; Tonelli, D. Role of Fe in the oxidation of methanol electrocatalyzed by Ni based layered double hydroxides: X-ray spectroscopic and electrochemical studies. RSC Adv. 2016, 6, 110976. [Google Scholar] [CrossRef]
- Amini, R.; Asadpour-Zeynal, K. Layered double hydroxide decorated with Ag nanodendrites as an enhanced sensing platform for voltammetric determination of pyrazinamide. New J. Chem. 2018, 42, 2140. [Google Scholar] [CrossRef]
- Qiu, J.; Villemure, G. Anionic clay modified electrodes: Electrochemical activity of nickel(II) sites in layered double hydroxide films. J. Electroanal. Chem. 1995, 395, 159–166. [Google Scholar] [CrossRef]
- Qiu, J.; Villemure, G. Anionic clay modified electrodes: Electron transfer mediated by electroactive nickel, cobalt or manganese sites in layered double hydroxide films. J. Electroanal. Chem. 1997, 428, 165–172. [Google Scholar] [CrossRef]
- Tonelli, D.; Gualandi, I.; Musella, E.; Scavetta, E. Synthesis and Characterization of Layered Double Hydroxides as Materials for Electrocatalytic Applications. Nanomaterials 2021, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Baiga, N.; Sajid, M. Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review. Trends Environ. Anal. Chem. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Baciu, D.D.; Bîrjega, R.; Mặrặscu, V.; Zặvoianu, R.; Matei, A.; Vlad, A.; Cojocaru, A.; Visan, T. Enhanced voltammetric response of monosodium glutamate on screen-printed electrodes modified with NiAl layered double hydroxide films. Surf. Interfaces 2021, 24, 101055. [Google Scholar] [CrossRef]
- Gualandi, I.; Vlamidis, Y.; Mazzei, L.; Musella, E.; Giorgetti, M.; Christian, M.; Morandi, V.; Scavetta, E.; Tonelli, D. Ni/Al Layered Double Hydroxide and Carbon Nanomaterial Composites for Glucose Sensing. ACS Appl. Nano Mater. 2019, 2, 143–155. [Google Scholar] [CrossRef]
- Itaya, K.; Chang, H.C.; Uchida, I. Anion-exchanged clay (hydrotalcite-like compounds) modified electrodes. Inorg. Chem. 1987, 26, 624–626. [Google Scholar] [CrossRef]
- Therias, S.; Mousty, C.; Forano, C.; Besse, J.P. Electrochemical Transfer at Anionic Clay Modified Electrodes. Case of 2,2′-Azinobis(3-ethylbenzothiazoline-6-sulfonate). Langmuir 1996, 12, 4914–4920. [Google Scholar] [CrossRef]
- Lü, L. Doxorubicin Hydrochloride Electrochemical Sensor Based on a Nickel Hexacyanoferrate/Ni–Al–LDH Modified Gold Electrode. Anal. Sci. 2020, 36, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Coros, M.; Pruneanu, S.; Stefan-van Staden, R.-I. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J. Electrochem. Soc. 2020, 167, 037528. [Google Scholar] [CrossRef]
- Wu, X.; Ma, P.; Sun, Y.; Du, F.; Song, D.; Xu, G. Application of MXene in Electrochemical Sensors: A Review. Electroanalysis 2021, 33, 1827–1851. [Google Scholar] [CrossRef]
- Wu, L.; Lu, X.; Wu, Z.S.; Dong, Y.; Wang, X.; Zheng, S.; Chen, J. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectron. 2018, 107, 69–75. [Google Scholar] [CrossRef]
- Ballarin, B.; Seeber, R.; Tonelli, D.; Vaccari, A. Electrocatalytic properties of nickel(II) hydrotalcite-type anionic clay: To methanol and ethanol oxidation. J. Electroanal. Chem. 1999, 463, 123–127. [Google Scholar] [CrossRef]
- Scavetta, E.; Berrettoni, M.; Nobili, F.; Tonelli, D. Electrochemical characterisation of electrodes modified with a Co/Al hydrotalcite-like compound. Electrochim. Acta 2005, 50, 3305–3311. [Google Scholar] [CrossRef]
- Heidari, M.; Ghaffarinejad, A. Electrochemical sensor for L-cysteine by using a cobalt(II)/aluminum(III) layered double hydroxide as a nanocatalyst. Microchim. Acta 2019, 186, 365. [Google Scholar] [CrossRef]
- Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettche, S.W. Nickel−Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753. [Google Scholar] [CrossRef] [PubMed]
- Farithkhan, A.; John, S.A. Three-Dimensional Coral-Like NiFe-Layered Double Hydroxides on Biomass-Derived Nitrogen-Doped Carbonized Wood as a Sensitive Probe for Nonenzymatic Urea Determination. ACS Sustain. Chem. Eng. 2022, 10, 6952–6962. [Google Scholar] [CrossRef]
- Beitollahi, H.; Dourandish, Z.; Tajik, S.; Sharifi, F.; Jahani, P.M. Electrochemical Sensor Based on Ni-Co Layered Double Hydroxide Hollow Nanostructures for Ultrasensitive Detection of Sumatriptan and Naproxen. Biosensors 2022, 12, 872. [Google Scholar] [CrossRef]
- Wua, C.; Lia, J.; Liua, X.; Zhanga, H.; Lia, R.; Wanga, G.; Wanga, Z.; Lia, Q.; Shangguan, E. Simultaneous voltammetric determination of epinephrine and acetaminophen using a highly sensitive CoAl-OOH/reduced graphene oxide sensor in pharmaceutical samples and biological fluids. Mater. Sci. Eng. C 2021, 119, 111557. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, B.; Khosropour, H.; Ensafi, A.A.; Dinari, M.; Nabiyan, A. A new electrochemical sensor for the simultaneous determination of guanine and adenine: Using a NiAl-layered double hydroxide/graphene oxidemulti wall carbon nanotube modified glassy carbon electrode. RSC Adv. 2015, 5, 75756–75765. [Google Scholar] [CrossRef]
- Taei, M.; Hasanpour, F.; Dinari, M.; Dehghani, E. Au nanoparticles decorated reduced graphene oxide/layered double hydroxide modified glassy carbon as a sensitive sensor for electrocatalytic determination of phenazopyridine. Measurement 2017, 99, 90–97. [Google Scholar] [CrossRef]
- Xu, L.; Lian, M.; Chen, X.; Lu, Y.; Yang, W. Amperometric sensing of hydrogen peroxide via an ITO electrode modified with gold nanoparticles electrodeposited on a CoMn-layered double hydroxide. Microchim. Acta 2017, 184, 3989–3996. [Google Scholar] [CrossRef]
- Kuo, C.C.; Lan, W.J.; Chen, C.H. Redox preparation of mixed valence cobalt manganese oxide nanostructured materials: Highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale 2014, 6, 334–341. [Google Scholar] [CrossRef]
- Djebbi, M.A.; Boubakri, S.; Braiek, M.; Jaffrezic-Renault, N.; Namour, P.; Amara, A.B.H. Chlorpromazine Electro-oxidation at BDD Electrode Modified with nZVI Nanoparticles Impregnated NiAl LDH. Electroanalysis 2020, 32, 1186–1197. [Google Scholar] [CrossRef]
- Qin, W.; Wang, H.; Wang, X.; Miao, Z.; Fang, Y.; Chen, Q.; Shao, X. Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction. Electrochim. Acta 2011, 56, 3170–3174. [Google Scholar] [CrossRef]
- Majidi, M.R.; Ghaderi, S.; Asadpour-Zeynali, K.; Dastango, H. Synthesis of dendritic silver nanostructures supported by graphene nanosheets and its application for highly sensitive detection of diazepam. Mater. Sci. Eng. C 2015, 57, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Gianvittorio, S.; Tonelli, D.; Lesch, A. Print-Light-Synthesis for Single-Step Metal Nanoparticle Synthesis and Patterned Electrode Production. Nanomaterials 2023, 13, 1915. [Google Scholar] [CrossRef]
- Rosa, M.; Costa Bassetto, V.; Girault, H.H.; Lesch, A.; Esposito, V. Assembling Ni–Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes. ACS Appl. Energy Mater. 2020, 3, 1017–1026. [Google Scholar] [CrossRef]
- Azis, N.A.; Isa, I.M.; Hashim, N.; Ahmad, M.S.; Yazid, S.N.A.M.; Saidin, M.I.; Si, S.M.; Zainul, R.; Ulianas, A.; Mukdasai, S. Voltammetric Determination of Bisphenol A in the Presence of Uric Acid Using a Zn/Al-LDH-QM Modified MWCNT Paste Electrode. Int. J. Electrochem. Sci. 2019, 14, 10607–10621. [Google Scholar] [CrossRef]
- Esfahani, S.L.; Rouhani, S.; Ranjbar, Z. Electrochemical solid-state nanosensor based on a dual amplification strategy for sensitive detection of (FeIII-dopamine). Electrochim. Acta 2019, 299, 1011–1023. [Google Scholar] [CrossRef]
- Pandey, P.C.; Pandey, A.K. Cyclohexanone and 3-aminopropyltrimethoxysilane mediated controlled synthesis of mixed nickel-iron hexacyanoferrate nanosol for selective sensing of glutathione and hydrogen peroxide. Analyst 2013, 138, 952. [Google Scholar] [CrossRef] [PubMed]
- Isa, I.M.; Fasyir, M.R.; Hashim, N.; Ghani, S.A.; Bakar, S.A.; Mohamed, A.; Kamari, A. A Highly Sensitive Mercury(II) Sensor Using Zn/Al Layered Double Hydroxide-3(4-hydroxyphenyl)propionate Modified Multi-Walled Carbon Nanotube Paste Electrode. Int. J. Electrochem. Sci. 2015, 10, 6227–6240. [Google Scholar] [CrossRef]
- Asadpour-Zeynali, K.; Amini, R. A novel voltammetric sensor for mercury(II) based on mercaptocarboxylic acid intercalated layered double hydroxide nanoparticles modified electrode. Sens. Actuators B 2017, 246, 961–968. [Google Scholar] [CrossRef]
- Sankarlinkam, S.; Suresh, I.; Harihara, G.; Nesakumar, N.; Kulandaisamy, A.J.; Rayappan, J.B.B. Ethylenediaminetetraacetic acid intercalated MgAl-layered double-hydroxides nanocomposite as an efficient platform in the development of electrochemical sensor for the detection of iron (II). J Appl. Electrochem. 2024, 54, 309–321. [Google Scholar] [CrossRef]
- Ramavataram, P.M. Non transferrin bound iron: Nature, manifestations and analytical approaches for estimation. Indian J. Clin. Biochem. 2012, 27, 322–332. [Google Scholar] [CrossRef]
- Yin, H.; Shang, K.; Meng, X.; Ai, S. Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide. Microchim. Acta 2011, 175, 39–46. [Google Scholar] [CrossRef]
- Ogata, F.; Nagai, N.; Kariya, Y.; Nagahashi, E.; Kobayashi, Y.; Nakamura, T.; Kawasaki, N. Adsorption of Nitrite and Nitrate Ions from an Aqueous Solution by Fe–Mg-Type Hydrotalcites at Different Molar Ratios. Chem. Pharm. Bull. 2018, 66, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, Y.; Razmi, H. Design of an electrochemical platform for the determination of diclofenac sodium utilizing a graphenized pencil graphite electrode modified with a Cu–Al layered double hydroxide/chicken feet yellow membrane. New J. Chem. 2021, 45, 14616. [Google Scholar] [CrossRef]
- Razmi, H.; Bahadori, Y. Chicken feet yellow membrane/Over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem. J. 2021, 168, 106442. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, M.; Wang, L.; Huang, Z.; Chu, Y. One-Step Voltammetric Deposition of l-Proline Assisted Silver Nanoparticles Modified Glassy Carbon Electrode for Electrochemical Detection of Hydrogen Peroxide. J. Electroanal. Chem. 2019, 833, 205–212. [Google Scholar] [CrossRef]
- Tomassetti, M.; Pezzilli, R.; Prestopino, G.; Natale, C.D.; Medaglia, P.G. Novel Electrochemical Sensors Based on L-Proline Assisted LDH for H2O2 Determination in Healthy and Diabetic Urine. Sensors 2022, 22, 7159. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonelli, D.; Tonelli, M.; Gianvittorio, S.; Lesch, A. LDH-Based Voltammetric Sensors. Micromachines 2024, 15, 640. https://doi.org/10.3390/mi15050640
Tonelli D, Tonelli M, Gianvittorio S, Lesch A. LDH-Based Voltammetric Sensors. Micromachines. 2024; 15(5):640. https://doi.org/10.3390/mi15050640
Chicago/Turabian StyleTonelli, Domenica, Matteo Tonelli, Stefano Gianvittorio, and Andreas Lesch. 2024. "LDH-Based Voltammetric Sensors" Micromachines 15, no. 5: 640. https://doi.org/10.3390/mi15050640
APA StyleTonelli, D., Tonelli, M., Gianvittorio, S., & Lesch, A. (2024). LDH-Based Voltammetric Sensors. Micromachines, 15(5), 640. https://doi.org/10.3390/mi15050640