Research on Single-Event Burnout Reinforcement Structure of SiC MOSFET
Abstract
:1. Introduction
2. Analysis of Single-Event Effect
2.1. Device Structure
2.2. The Physical Models and Other Simulation Information for the TCAD
2.3. Principle of Single-Event Effect
2.4. Analysis of Single-Event Burnout Effect at Different Incident Positions
2.5. The Regularity of Electric Field Peak Distribution Transfer
3. Design of SEB-Reinforced Structures
3.1. Case1: Expansion of P+ Body Contact Area
3.2. Case2: Design of Multi-Layer N-Type Interval Buffer Layer
3.2.1. Design of Buffer1
3.2.2. Optimization Design of Buffer2 and Buffer3
3.3. Case3: Device Optimized by Comprehensive Reinforcement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, H.; Dogmus, E.; Villamor, A. Power SiC 2019: Materials, Devices and Applications; Yelo Development: Paris, France, 2019. [Google Scholar]
- She, X.; Huang, A.Q.; Lucia, O.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Sung, W.; Baliga, B.J. Monolithically integrated 4H-SiC MOSFET and JBS diode (JBSFET) using a single ohmic/schottky process scheme. IEEE Electron Device Lett. 2016, 37, 1605–1608. [Google Scholar] [CrossRef]
- Jonathan, H.; William, A.C.; Sparkman, B.; Martin, D.; Olejniczak, K.; Wijenayake, A.; McNutt, T. Dynamic Characterization of NextGeneration Medium Voltage (3.3 kV, 10 kV) Silicon Carbide Power Modules. In Proceedings of the PCIM Europe, International Exhibition & Conference for Power Electronics, Nuremberg, Germany, 16–18 May 2017; VDE: Berlin, Germany, 2017; pp. 1–7. [Google Scholar]
- Wada, K.; Tamaso, H.; Itoh, S.; Kanbara, K.; Hiyoshi, T.; Toyoshima, S.; Genba, J.; Tokuda, H.; Sugimura, T.; Michikoshi, H.; et al. Static and Dynamic Characteristics of SiC MOSFETs and SBDs for 3.3 kV 400 A Full SiC Modules. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2015; Volume 821–823, pp. 592–595. [Google Scholar]
- Ryu, S.H.; Husna, F.; Haney, S.K.; Zhang, Q.C.J.; Stahlbush, R.E.; Agarwal, A.K. Effect of Recombination-Induced Stacking Faults on Majority Carrier Conduction and Reverse Leakage Current on 10 kV SiC DMOSFETs. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2009; Volume 600–603, pp. 1127–1130. [Google Scholar]
- Ebihara, Y.; Uehara, J.; Ichimura, A.; Mitani, S.; Noborio, M.; Takeuchi, Y.; Tsuruta, K. Suppression of Bipolar Degradation in Deep-P Encapsulated 4H-SiC Trench MOSFETs up to Ultra-High Current Density. In Proceedings of the International Symposium on Power Semiconductor Devices and IC’s, Shanghai, China, 19–23 May 2019; pp. 101–105. [Google Scholar]
- Yen, C.T.; Hung, C.C.; Hung, H.T.; Lee, L.S.; Lee, C.Y.; Yang, T.M.; Huang, Y.F.; Cheng, C.Y.; Chuang, P.J. 1700 V/30A 4H-SiC MOSFET with low cut-in voltage embedded diode and room temperature boron implanted termination. In Proceedings of the 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 265–268. [Google Scholar]
- Kobayashi, Y.; Ishimori, H.; Kinoshita, A.; Kojima, T.; Takei, M.; Kimura, H.; Harada, S. Evaluation of Schottky barrier height on 4H-SiC m-face for Schottky barrier diode wall integrated trench MOSFET. Jpn. J. Appl. Phys. 2017, 56, 04CR08. [Google Scholar] [CrossRef]
- Murakami, T.; Sadamatsu, K.; Imaizumi, M.; Suekawa, E.; Hino, S. Comparative study of electrical characteristics between conventional and SBD-embedded MOSFETs for next generation 3.3 kV SiC modules. In Proceedings of the PCIM Europe Digital Days 2020, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 7–8 July 2020; pp. 1–5. [Google Scholar]
- Matsui, K.; Aiba, R.; Yano, H.; Iwamuro, N.; Baba, M.; Harada, S. Comprehensive Study on Electrical Characteristics in 1.2kV SiC SBD-integrated Trench and Planar MOSFETs. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May–3 June 2021. [Google Scholar]
- Chen, H.; Zhang, Y.; Luo, M.; Li, S.; He, P.; Bai, S.; Zhang, B. High temperature performance of 6500 V 4H-SiC MOSFET With embedded schottky barrier diode. In Proceedings of the 2022 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Oita, Japan, 6–9 March 2022; IEEE: New York, NY, USA, 2022; pp. 198–200. [Google Scholar]
- Mitsubishi Electric Co., Ltd. The New Chip Structure Realizes the Application of SBD Built-in SiC MOSFET in Power Modules. Available online: https://www.mitsubishielectric.co.jp/ (accessed on 1 June 2023).
- Powerex. Full SiC & Hybrid SiC IGBTs & IPMs. Available online: https://www.pwrx.com//Promotion/Full%20Sic%20Hybrid%20Design (accessed on 20 December 2019).
- Glaser, P.E. Power from the Sun: Its Future. Science 1968, 162, 857–861. [Google Scholar] [CrossRef]
- Mankins, J.C. A fresh look at space solar power: New architectures, concepts and technologies. Acta Astronaut. 1997, 41, 347–359. [Google Scholar] [CrossRef]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications; John Wiley & Sons Singapore Pte. Ltd.: Singapore, 2014; pp. 189–263. [Google Scholar]
- Synopsys Inc. Sentaurus User Guide; Synopsys Inc.: Mountain View, CA, USA, 2018. [Google Scholar]
- Liu, Z.Y.; Cai, L.; Liu, B.J.; Liu, X.Q. Single-event burnout effect of 4H-SiC and 6H-SiC power VDMOSFETs. IMicronanoelectronic Technol. 2017, 54, 80–85. [Google Scholar]
- Khan, I.A.; Cooper, J.A. Measurement of high-field electron transport in silicon carbide. IEEE Trans. Electron. Devices 2000, 47, 269–273. [Google Scholar] [CrossRef]
- Yu, Q.; Cao, S.; Zhang, H.; Mei, B.; Sun, Y.; Wang, H.; Li, X.; Lv, H.; Li, P.; Tang, M. Sensitivity analysis of single event effects in SiC devices. At. Energy Sci. Technol. 2019, 53, 2114–2119. [Google Scholar]
Incident Position | Position A | Position B | Position C |
---|---|---|---|
SEB threshold voltage (V) | 430 | 430 | 640 |
Expand Location | Unexpanded | a | b | c |
---|---|---|---|---|
SEB threshold voltage (V) | 640 | 735 | 740 | 745 |
Third-quadrant conduction voltage (V) | 1.283 | 1.283 | 1.283 | 1.312 |
Breakdown voltage of the device (V) | 1632.935 | 1641.787 | 1642.935 | 1642.888 |
Reinforcement Design and Device Characteristics | Data | |||||
---|---|---|---|---|---|---|
Doping Concentration of Buffer1 (cm−3) | - | 1.0 × 1015 | 6.0 × 1015 | 8.0 × 1015 | 1.0 × 1016 | 1.5 × 1016 |
SEB threshold voltage (V) | 430 | 440 | 440 | 440 | 440 | 440 |
Breakdown voltage of the device (V) | 1632.935 | 1392.659 | 1359.178 | 1342.803 | 1333.024 | 1293.024 |
Reinforcement Design and Device Characteristics | Data | |||
---|---|---|---|---|
Doping Concentration of Buffer2 (cm−3) | 1 × 1017 | 1 × 1017 | 3 × 1017 | 3 × 1017 |
Doping concentration of Buffer3 (cm−3) | 8 × 1017 | 1 × 1018 | 3 × 1018 | 6 × 1018 |
SEB threshold voltage (V) | 430 | 440 | 505 | 555 |
Breakdown voltage of the device (V) | 1392.659 | 1392.659 | 1392.659 | 1392.659 |
Before or after Reinforcement | Unreinforced | Case3 |
---|---|---|
SEB threshold voltage for position C (V) | 640 | 635 |
SEB threshold voltage for position B (V) | 430 | 555 |
SEB threshold voltage for position A (V) | 430 | 570 |
Breakdown voltage of the device (V) | 1632.935 | 1403.135 |
Before or after Reinforcement | Unreinforced | Case1 | Case2 | Case3 |
---|---|---|---|---|
SEB threshold voltage for position C (V) | 640 | 740 | -- | 635 |
SEB threshold voltage for position A (V) | 430 | -- | 555 | 570 |
Breakdown voltage of the device (V) | 1632.935 | 1642.935 | 1392.659 | 1403.135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Q.; Liu, H. Research on Single-Event Burnout Reinforcement Structure of SiC MOSFET. Micromachines 2024, 15, 642. https://doi.org/10.3390/mi15050642
Liao Q, Liu H. Research on Single-Event Burnout Reinforcement Structure of SiC MOSFET. Micromachines. 2024; 15(5):642. https://doi.org/10.3390/mi15050642
Chicago/Turabian StyleLiao, Qiulan, and Hongxia Liu. 2024. "Research on Single-Event Burnout Reinforcement Structure of SiC MOSFET" Micromachines 15, no. 5: 642. https://doi.org/10.3390/mi15050642
APA StyleLiao, Q., & Liu, H. (2024). Research on Single-Event Burnout Reinforcement Structure of SiC MOSFET. Micromachines, 15(5), 642. https://doi.org/10.3390/mi15050642