Modeling and Reliability Analysis of MEMS Gyroscope Rotor Parameters under Vibrational Stress
Abstract
:1. Introduction
2. Reliability Evaluation of MEMS Gyroscope Rotor’s Parameter Degradation
2.1. MEMS Gyroscope Rotor Working Principle
2.2. The Impact of Vibration Environment on MEMS Gyroscopes Rotor’s Parameters
2.3. Construction of Accelerated Degradation Model Based on Distribution Assumption
2.4. Reliability Evaluation of MEMS Gyroscope Rotor Parameter Degradation Based on Copula Function
2.4.1. Copula Function for Independent Parameter Failures
2.4.2. Copula Function for Correlated Parameter Failures
3. Experimental Analysis
- (1)
- First, we set the vibration stress level, such as frequency, amplitude, etc.
- (2)
- Subsequently, the L3GD20H MEMS gyroscope model was fixed on the vibration table, and the corresponding circuit and data acquisition equipment was connected to monitor and record the experimental data in real time.
- (3)
- Finally, we initiated the vibration equipment to apply vibrations of varying stress levels to the MEMS gyroscope according to preset parameters and recorded the data information.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tanner, D.M.; Walraven, J.A.; Helgesen, K.; Irwin, L.W.; Brown, F.; Smith, N.F.; Masters, N. MEMS reliability in shock environments. In Proceedings of the 2000 IEEE 38th Annual International Reliability Physics Symposium Proceedings, San Jose, CA, USA, 10–13 April 2000. [Google Scholar]
- Li, X.; Wang, W.; Wang, S.; Peng, Y.; Jin, X. Status and development trend of MEMS inertial sensors. Meas. Technol. 2019, 39, 7. [Google Scholar] [CrossRef]
- Gill, W.A.; Howard, I.; Mazhar, I.; McKee, K. A Review of MEMS Vibrating Gyroscopes and Their Reliability Issues in Harsh Environments. Sensors 2022, 22, 7405. [Google Scholar] [CrossRef]
- Kang, Q.; Lin, Y.; Tao, J. A Reliability Analysis of a MEMS Flow Sensor with an Accelerated Degradation Test. Sensors 2023, 23, 8733. [Google Scholar] [CrossRef]
- Ge, H.; Liu, Y.; Chen, X.; Wang, Y.; Zhang, S.; Jiang, Y.; Fan, Z. Performance Degradation Analysis of MEMS Gyroscopes in Typical Weapon Equipment under Vibration Environment. In Proceedings of the 2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Zhangjiajie, China, 6–9 August 2019. [Google Scholar]
- Xu, G.; Xu, L.; Yu, Z. Reliability analysis of MEMS gyroscopes based on Monte Carlo simulation. J. Hefei Univ. Technol. (Nat. Sci.) 2021, 44, 61–66. [Google Scholar]
- Jiang, W.; Feng, L.; Guo, L. Reliability evaluation of a certain type of missile gyroscope rotor. Ship Electron. Eng. 2022, 42, 114–118. [Google Scholar]
- Qin, L.; Wang, M.; He, Y. Reliability evaluation of MEMS accelerometers in vibration environments. J. Sens. Technol. 2016, 29, 670–674. [Google Scholar]
- He, C.; Qin, L.; Yu, L. Reliability evaluation of MEMS accelerometers based on Copula in vibration environments. Instrum. Technol. Sens. 2018, 4, 46–50. [Google Scholar]
- Qin, L.; He, C.; Yu, L. Multivariate Dependent Reliability Assessment of Large Range MEMS Accelerometers in High Temperature Environments. J. Meas. Sci. Instrum. 2019, 10, 9–15. [Google Scholar]
- Li, M.; Xu, G.; Dong, N. Reliability analysis of MEMS accelerometers in vibration environments. Semicond. Optoelectron. 2022, 43, 1055–1061. [Google Scholar]
- Lu, X.; Li, B.; Xu, S. Vibration characteristics analysis and performance optimization of MEMS gyroscopes. Micronanoelectronic Technol. 2018, 55, 503–509. [Google Scholar]
- Yang, J.; Ma, X.; Wu, Q. Reliability study of MEMS micro accelerometers in vibration environments. Chin. J. Electron. Devices 2015, 38, 396–401. [Google Scholar]
- Mirzaei, M.; Hosseini, I.; Ghaffari, V. MEMS gyroscope fault detection and elimination for an underwater robot using the combination of smooth switching and dynamic redundancy method. Microelectron. Reliab. 2020, 109, 113677. [Google Scholar] [CrossRef]
- Marozau, I.; Auchlin, M.; Pejchal, V.; Souchon, F.; Vogel, D.; Lahti, M.; Saillen, N.; Sereda, O. Reliability assessment and failure mode analysis of MEMS accelerometers for space applications. Microelectron. Reliab. 2018, 88–90, 846–854. [Google Scholar] [CrossRef]
- Tahir, M.A.R.; Saleem, M.M.; Bukhari, S.A.R.; Hamza, A.; Shakoor, R.I. An efficient design of dual-axis MEMS accelerometer considering microfabrication process limitations and operating environment variations. Microelectron. Int. 2021, 38, 144–156. [Google Scholar] [CrossRef]
- Shea, H.R. Allan variance evaluation of the performance and filtering algorithm of MEMS gyroscopes on optoelectronic platforms. Laser Infrared 2023, 53, 413–418. [Google Scholar]
- Srikar, V.T.; Senturia, S.D. The reliability of microelectromechanical systems (MEMS) in shock environments. J. Microelectromechanical Syst. 2002, 11, 206–214. [Google Scholar] [CrossRef]
- Guo, Z.; Cheng, F.; Li, B.; Cao, L.; Lu, C.; Song, K. Research development of silicon MEMS gyroscopes: A review. Microsyst. Technol. 2015, 21, 2053–2066. [Google Scholar]
- Huang, G.; Zhuang, X.; Xie, L. A denoising algorithm for MEMS gyroscopes based on CEEMDAN-WP-SG. J. Electron. Meas. Instrum. 2022, 36, 106–113. [Google Scholar]
- Mustafa, M.S.; Cheng, P.; Oelmann, B. Stator-Free Low Angular Speed Sensor Based on a MEMS Gyroscope. IEEE Trans. Instrum. Meas. 2014, 63, 2591–2598. [Google Scholar] [CrossRef]
- Challoner, A.D.; Ge, H.; Liu, J. Boeing Disc Resonator Gyroscope. In Proceedings of the 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, Monterey, CA, USA, 5–8 May 2014. [Google Scholar]
- Vicentini Ferreira do Valle, T.; Mariani, S.; Ghisi, A.; De Masi, B.; Rizzini, F.; Gattere, G.; Valzasina, C. MEMS Reliability: On-Chip Testing for the Characterization of the Out-of-Plane Polysilicon Strength. Micromachines 2023, 14, 443. [Google Scholar] [CrossRef]
- Escobar, L.A.; Meeker, W.Q. A review of accelerated test models. Stat. Sci. 2006, 21, 552–577. [Google Scholar] [CrossRef]
- Heringhaus, M.E.; Zhang, Y.; Zimmermann, A.; Mikelsons, L. Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference. Sensors 2022, 22, 5408. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Chen, J.; Li, A. A Review of Symmetric Silicon MEMS Gyroscope Mode-Matching Technologies. Micromachines 2022, 13, 1255. [Google Scholar] [CrossRef]
- Meszmer, P.; Hahn, S.; Hiller, K.; Wunderle, B. Highly Miniaturized MEMS-Based Test Platforms for Thermo-Mechanical and Reliability Characterization of Nano-Functional Elements-Technology and Functional Test Results. Phys. Status Solidi (A) 2019, 216, 1800936. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Q.; King, C.B.; Hong, Y. A general accelerated destructive degradation testing model for reliability analysis. IEEE Trans. Rel. 2019, 68, 1272–1282. [Google Scholar] [CrossRef]
- Luo, W.; Su, W.; Nie, Z.; Huang, Q.; Li, S.; Dong, X. Vibration Characteristic Measurement Method of MEMS Gyroscopes in Vacuum, High and Low Temperature Environment and Verification of Excitation Method. IEEE Access 2021, 9, 129582–129593. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, K.; Tian, J.; Wu, X. Research on the Application of MEMS Intelligent Sensor in Abnormal Monitoring of Metro Tunnel by Simplified Model Tests. Micromachines 2022, 13, 1242. [Google Scholar] [CrossRef]
- Cysela, R.Y.; Setiawan, T. Design of Borehole Seismometer Based on MEMS Accelerometer. In Proceedings of the 9th Asian Physics Symposium 2021 (APS 2021), Online, 5–6 October 2021. [Google Scholar]
- Ali, S.; Ali, S.; Shah, I.; Siddiqui, G.F.; Saba, T.; Rehman, A. Reliability analysis for electronic devices using generalized exponential distribution. IEEE Access 2020, 8, 108629–108644. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S. Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and wiener process. Reliab. Eng. Syst. Saf. 2021, 205, 107231. [Google Scholar] [CrossRef]
- Lu, C.J.; Meeker, W.O. Using degradation measures to estimate a time-to-failure distribution. Technometrics 1993, 35, 161–174. [Google Scholar] [CrossRef]
- Limon, S.; Yadav, O.P.; Liao, H. A literature review on planning and analysis of accelerated testing for reliability assessment. Qual. Reliab. Eng. Int. 2017, 33, 2361–2383. [Google Scholar] [CrossRef]
- Raghavan, V.A.; Roggeman, B.; Meilunas, M.; Borgesen, P. Effects of ‘latent damage’ on pad cratering: Reduction in life and a potential change in failure mode. Microelectron. Reliab. 2013, 53, 303–313. [Google Scholar] [CrossRef]
- Ali, S.; Ali, S.; Shah, I.; Khajavi, A.N. Reliability analysis for electronic devices using beta generalized Weibull distribution. Iran. J. Sci. Technol. Trans. A-Sci. 2019, 43, 2501–2514. [Google Scholar] [CrossRef]
Device Parameters | Numerical Value |
---|---|
package | LGA-16 |
resolution ratio | 16bit |
sensitivity | 70 mdps/digit |
Minimum operating temperature | −40 °C |
Maximum operating temperature | 85 °C |
Minimum power supply voltage | 2.2 V |
Maximum power supply voltage | 3.6 V |
size | 3 mm × 3 mm × 1 mm |
Number of Tests | Stress Level | ||
---|---|---|---|
30 | 40 | 50 | |
1 | 56 | 41 | 24 |
2 | 55 | 40 | 23 |
3 | 54 | 39 | 21 |
4 | 52 | 38 | 20 |
5 | 48 | 35 | 18 |
6 | 48 | 33 | 20 |
7 | 47 | 35 | 19 |
8 | 46 | 35 | 16 |
9 | 48 | 40 | 17 |
10 | 48 | 38 | 16 |
11 | 45 | 38 | 16 |
12 | 44 | 26 | 14 |
Number of Tests | Stress Level | ||
---|---|---|---|
30 | 40 | 50 | |
1 | 2.411 | 2.518 | 2.597 |
2 | 2.432 | 2.506 | 2.600 |
3 | 2.404 | 2.524 | 2.596 |
4 | 2.408 | 2.578 | 2.535 |
5 | 2.412 | 2.541 | 2.563 |
6 | 2.420 | 2.650 | 2.565 |
7 | 2.413 | 2.529 | 2.576 |
8 | 2.427 | 2.584 | 2.577 |
9 | 2.433 | 2.546 | 2.549 |
10 | 2.438 | 2.554 | 2.547 |
11 | 2.409 | 2.583 | 2.588 |
12 | 2.411 | 2.623 | 2.549 |
Number of Tests | Stress Level | |||
---|---|---|---|---|
30 | 40 | 50 | ||
Scale factor | Parameter m | 23.507 | 31.519 | 21.665 |
Parameter η | 47.219 | 36.884 | 18.579 | |
Zero bias | Parameter m | 24.911 | 28.535 | 21.439 |
Parameter η | 46.302 | 37.641 | 16.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Pan, Y.; Li, K.; He, L.; Wang, Q.; Wang, W. Modeling and Reliability Analysis of MEMS Gyroscope Rotor Parameters under Vibrational Stress. Micromachines 2024, 15, 648. https://doi.org/10.3390/mi15050648
Wang L, Pan Y, Li K, He L, Wang Q, Wang W. Modeling and Reliability Analysis of MEMS Gyroscope Rotor Parameters under Vibrational Stress. Micromachines. 2024; 15(5):648. https://doi.org/10.3390/mi15050648
Chicago/Turabian StyleWang, Lei, Yuehong Pan, Kai Li, Lilong He, Qingyi Wang, and Weidong Wang. 2024. "Modeling and Reliability Analysis of MEMS Gyroscope Rotor Parameters under Vibrational Stress" Micromachines 15, no. 5: 648. https://doi.org/10.3390/mi15050648
APA StyleWang, L., Pan, Y., Li, K., He, L., Wang, Q., & Wang, W. (2024). Modeling and Reliability Analysis of MEMS Gyroscope Rotor Parameters under Vibrational Stress. Micromachines, 15(5), 648. https://doi.org/10.3390/mi15050648