Synthesis of Submicron CaCO3 Particles in 3D-Printed Microfluidic Chips Supporting Advection and Diffusion Mixing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Instruments and Techniques for Investigating the Physical, Chemical, and Optical Properties of Samples
2.3. Microfluidic Chip Fabrication
2.4. Computational Fluid Dynamics Simulations
2.5. Synthesis of CaCO3 Particles
3. Results and Discussion
3.1. Passive Inhibition of CaCO3 Synthesis
3.2. Reagent Mixing Efficiency in Microfluidic Chips
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EG | Ethylene glycol |
MSLA | Masked stereolithography apparatus |
DLS | Dynamic light scattering |
SEM | Scanning electron microscopy |
References
- Hafeez, M.; Celia, C.; Petrikaite, V. Challenges towards targeted drug delivery in cancer nanomedicines. Processes 2021, 9, 1527. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Kuznetsova, V.; Osipova, V.; Tkach, A.; Miropoltsev, M.; Kurshanov, D.; Sokolova, A.; Cherevkov, S.; Zakharov, V.; Fedorov, A.; Baranov, A.; et al. Lab-on-Microsphere—FRET-Based Multiplex Sensor Platform. Nanomaterials 2021, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Xiang, J.; Zhou, Q.; Piao, Y.; Tang, J.; Shao, S.; Zhou, Z.; Bae, Y.; Shen, Y. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives. Adv. Drug Deliv. Rev. 2022, 191, 114614. [Google Scholar] [CrossRef]
- Zi, Y.; Yang, K.; He, J.; Wu, Z.; Liu, J.; Zhang, W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv. Drug Deliv. Rev. 2022, 188, 114449. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Cho, W.; Ansariesfahani, A.; Tarharoudi, R.; Malekisarvar, H.; Sari, S.; Bloukh, S.; Edis, Z.; Amin, M.; Gleghorn, J.; et al. An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment. Cancers 2022, 14, 2868. [Google Scholar] [CrossRef] [PubMed]
- Parodi, A.; Kolesova, E.; Voronina, M.; Frolova, A.; Kostyushev, D.; Trushina, D.; Akasov, R.; Pallaeva, T.; Zamyatnin, A., Jr. Anticancer nanotherapeutics in clinical trials: The work behind clinical translation of nanomedicine. Int. J. Mol. Sci. 2022, 23, 13368. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.; Velmurugan, K.; Nirmal, J.; Goel, S. Development of dexamethasone loaded nanomicelles using a 3D printed microfluidic device for ocular drug delivery applications. Sens. Actuators A Phys. 2023, 357, 114385. [Google Scholar] [CrossRef]
- Maleki Dizaj, S.; Barzegar-Jalali, M.; Zarrintan, M.; Adibkia, K.; Lotfipour, F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin. Drug Deliv. 2015, 12, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, A.; Chapek, S.; Lengert, E.; Konarev, P.; Volkov, V.; Artemov, V.; Soldatov, M.; Trushina, D. Microfluidically Assisted Synthesis of Calcium Carbonate Submicron Particles with Improved Loading Properties. Micromachines 2023, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Egorova, V.; Kolesova, E.; Lopus, M.; Yan, N.; Parodi, A.; Zamyatnin, A., Jr. Smart Delivery Systems Responsive to Cathepsin B Activity for Cancer Treatment. Pharmaceutics 2023, 15, 1848. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Li, W.; Su, X.; Li, G.; Zhou, Y.; Kundu, S.; Yao, J.; Cai, Y. Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Colloids Surfaces B Biointerfaces 2016, 143, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Sukhorukov, G.; Volodkin, D.; Günther, A.; Petrov, A.; Shenoy, D.; Möhwald, H. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J. Mater. Chem. 2004, 14, 2073–2081. [Google Scholar] [CrossRef]
- Antipov, A.; Shchukin, D.; Fedutik, Y.; Petrov, A.; Sukhorukov, G.; Möhwald, H. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids Surfaces A Physicochem. Eng. Asp. 2003, 224, 175–183. [Google Scholar] [CrossRef]
- Lu, F.; Wu, S.; Hung, Y.; Mou, C. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003, 55, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Lengert, E.; Trushina, D.; Soldatov, M.; Ermakov, A. Microfluidic synthesis and analysis of bioinspired structures based on CaCO3 for potential applications as drug delivery carriers. Pharmaceutics 2022, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, K.; Srinivasakannan, C.; Li, S.; Yin, S.; Peng, J.; Guo, S.; Zhang, L. Intensified extraction and separation Pr (III)/Nd (III) from chloride solution in presence of a complexing agent using a serpentine microreactor. Chem. Eng. J. 2018, 354, 1068–1074. [Google Scholar] [CrossRef]
- Tofighi, G.; Degler, D.; Junker, B.; Müller, S.; Lichtenberg, H.; Wang, W.; Weimar, U.; Barsan, N.; Grunwaldt, J. Microfluidically synthesized Au, Pd and AuPd nanoparticles supported on SnO2 for gas sensing applications. Sens. Actuators B Chem. 2019, 292, 48–56. [Google Scholar] [CrossRef]
- Shi, H.; Nie, K.; Dong, B.; Long, M.; Xu, H.; Liu, Z. Recent progress of microfluidic reactors for biomedical applications. Chem. Eng. J. 2019, 361, 635–650. [Google Scholar] [CrossRef]
- Kung, C.; Hou, C.; Wang, Y.; Fu, L. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sens. Actuators B Chem. 2019, 301, 126855. [Google Scholar] [CrossRef]
- Tichit, D.; Layrac, G.; Gerardin, C. Synthesis of layered double hydroxides through continuous flow processes: A review. Chem. Eng. J. 2019, 369, 302–332. [Google Scholar] [CrossRef]
- Abedini-Nassab, R.; Pouryosef Miandoab, M.; Şaşmaz, M. Microfluidic synthesis, control, and sensing of magnetic nanoparticles: A review. Micromachines 2021, 12, 768. [Google Scholar] [CrossRef] [PubMed]
- Gimondi, S.; Ferreira, H.; Reis, R.; Neves, N. Microfluidic devices: A tool for nanoparticle synthesis and performance evaluation. ACS Nano 2023, 17, 14205–14228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dehoff, K.; Hess, N.; Oostrom, M.; Wietsma, T.; Valocchi, A.; Fouke, B.; Werth, C. Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system. Environ. Sci. Technol. 2010, 44, 7833–7838. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Valocchi, A.; Werth, C.; Dewers, T. Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Zhao, C.; Xiao, Y.; Chu, J.; Hu, R.; Liu, H.; He, X.; Liu, Y.; Jiang, X. Microfluidic experiments of biological CaCO3 precipitation in transverse mixing reactive environments. Acta Geotech. 2023, 18, 5299–5318. [Google Scholar] [CrossRef]
- Yashina, A.; Meldrum, F.; Demello, A. Calcium carbonate polymorph control using droplet-based microfluidics. Biomicrofluidics 2012, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Levenstein, M.; Anduix-Canto, C.; Kim, Y.; Holden, M.; González Niño, C.; Green, D.; Foster, S.; Kulak, A.; Govada, L.; Chayen, N.; et al. Droplet microfluidics xrd identifies effective nucleating agents for calcium carbonate. Adv. Funct. Mater. 2019, 29, 1808172. [Google Scholar] [CrossRef]
- Reznik, I.; Baranov, M.; Cherevkov, S.; Konarev, P.; Volkov, V.; Moshkalev, S.; Trushina, D. Microfluidic Vaterite Synthesis: Approaching the Nanoscale Particles. Nanomaterials 2023, 13, 3075. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Ji, B.; Dobson, P.; Mosbahi, K.; Glidle, A.; Gadegaard, N.; Freer, A.; Cooper, J.; Cusack, M. Screening of biomineralization using microfluidics. Anal. Chem. 2009, 81, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Cao, J.; Wang, Z.; Guo, J.; Lu, J. Formation of amorphous calcium carbonate and its transformation mechanism to crystalline CaCO3 in laminar microfluidics. Cryst. Growth Des. 2018, 18, 1710–1721. [Google Scholar] [CrossRef]
- Wu, K.; Li, X.; Xu, Z.; Liu, C. 3D Printed Gas Distributor for Enhanced Production of CaCO3 via Bubbling Carbonation. ACS Omega 2023, 8, 2398–2405. [Google Scholar] [CrossRef]
- Baranov, K.; Reznik, I.; Karamysheva, S.; Swart, J.; Moshkalev, S.; Orlova, A. Optical Properties of AgInS2 Quantum Dots Synthesized in a 3D-Printed Microfluidic Chip. Technologies 2023, 11, 93. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Pareek, V.; Liu, J. Synthesis of micro and nano-sized calcium carbonate particles and their applications. J. Mater. Chem. A 2014, 2, 14270–14288. [Google Scholar] [CrossRef]
- Sovova, S.; Abalymov, A.; Pekar, M.; Skirtach, A.; Parakhonskiy, B. Calcium carbonate particles: Synthesis, temperature and time influence on the size, shape, phase, and their impact on cell hydroxyapatite formation. J. Mater. Chem. B 2021, 9, 8308–8320. [Google Scholar] [CrossRef]
- Donnelly, F.; Purcell-Milton, F.; Framont, V.; Cleary, O.; Dunne, P.; Gun’ko, Y. Synthesis of CaCO3 nano-and micro-particles by dry ice carbonation. Chem. Commun. 2017, 53, 6657–6660. [Google Scholar] [CrossRef]
- Chaussemier, M.; Pourmohtasham, E.; Gelus, D.; Pécoul, N.; Perrot, H.; Lédion, J.; Cheap-Charpentier, H.; Horner, O. State of art of natural inhibitors of calcium carbonate scaling. A review article. Desalination 2015, 356, 47–55. [Google Scholar] [CrossRef]
- Oral, Ç.; Ercan, B. Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technol. 2018, 339, 781–788. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, L.; Parakhonskiy, B.; Skirtach, A. Hard, soft, and hard-and-soft drug delivery carriers based on CaCO3 and alginate biomaterials: Synthesis, properties, pharmaceutical applications. Pharmaceutics 2022, 14, 909. [Google Scholar] [CrossRef] [PubMed]
- Bahiraei, M.; Mazaheri, N.; Bakhti, A. Irreversibility characteristics of nanofluid flow under chaotic advection in a minichannel for different nanoparticle types. J. Taiwan Inst. Chem. Eng. 2018, 88, 25–36. [Google Scholar] [CrossRef]
- Nguyen, N.; Wu, Z. TOPICAL REVIEW: Micromixers—A review. J. Micromech. Microeng. 2005, 15, R1–R16. [Google Scholar] [CrossRef]
- Song, H.; Bringer, M.; Tice, J.; Gerdts, C.; Ismagilov, R. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl. Phys. Lett. 2003, 83, 4664–4666. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Kim, M.; Park, J.; Lee, N. An effective passive microfluidic mixer utilizing chaotic advection. Sens. Actuators B Chem. 2008, 132, 172–181. [Google Scholar] [CrossRef]
- Beck, R.; Andreassen, J. Spherulitic growth of calcium carbonate. Cryst. Growth Des. 2010, 10, 2934–2947. [Google Scholar] [CrossRef]
Parameter | CaCl2 | Na2CO3 |
---|---|---|
Viscosity, mPa×s | 1.0016 | |
Density, g/mL | 1.0279 | 1.0207 |
Diffusion coefficient, m2/s ×10−9 | 1.134 | 1.11 |
Concentration, mole/m3 | 330 | |
Temperature, °C | 25 | |
Volumetric flow rate, mL/s | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reznik, I.; Kolesova, E.; Pestereva, A.; Baranov, K.; Osin, Y.; Bogdanov, K.; Swart, J.; Moshkalev, S.; Orlova, A. Synthesis of Submicron CaCO3 Particles in 3D-Printed Microfluidic Chips Supporting Advection and Diffusion Mixing. Micromachines 2024, 15, 652. https://doi.org/10.3390/mi15050652
Reznik I, Kolesova E, Pestereva A, Baranov K, Osin Y, Bogdanov K, Swart J, Moshkalev S, Orlova A. Synthesis of Submicron CaCO3 Particles in 3D-Printed Microfluidic Chips Supporting Advection and Diffusion Mixing. Micromachines. 2024; 15(5):652. https://doi.org/10.3390/mi15050652
Chicago/Turabian StyleReznik, Ivan, Ekaterina Kolesova, Anna Pestereva, Konstantin Baranov, Yury Osin, Kirill Bogdanov, Jacobus Swart, Stanislav Moshkalev, and Anna Orlova. 2024. "Synthesis of Submicron CaCO3 Particles in 3D-Printed Microfluidic Chips Supporting Advection and Diffusion Mixing" Micromachines 15, no. 5: 652. https://doi.org/10.3390/mi15050652
APA StyleReznik, I., Kolesova, E., Pestereva, A., Baranov, K., Osin, Y., Bogdanov, K., Swart, J., Moshkalev, S., & Orlova, A. (2024). Synthesis of Submicron CaCO3 Particles in 3D-Printed Microfluidic Chips Supporting Advection and Diffusion Mixing. Micromachines, 15(5), 652. https://doi.org/10.3390/mi15050652