Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Analysis of MSF Error Source
2.2. Material Removal Profile Model
3. Simulation Analysis
3.1. Simulation Analysis of the Influence of Material Removal Profile on MSF Errors
3.2. Path Spacing Optimization Method
4. Experiments
4.1. Experiment Setup
4.2. Influence of Material Removal Profile on MSF Error
4.3. Validation of Path Spacing Optimization Method
4.4. Application of Path Spacing Optimization Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Spaeth, M.L.; Manes, K.R.; Widmayer, C.C.; Williams, W.H.; Whitman, P.K.; Henesian, M.A.; Stowers, I.F.; Honig, J. National Ignition Facility wavefront requirements and optical architecture. Opt. Eng. 2004, 43, 2854–2865. [Google Scholar] [CrossRef]
- Yu, G.; Li, H.; Walker, D. Removal of mid spatial-frequency features in mirror segments. J. Eur. Opt. Soc.-Rapid Publ. 2011, 6, 11044. [Google Scholar] [CrossRef]
- Neisser, M.; Jen, S.H.; Chun, J.S.; Antohe, A.; He, L.; Kearney, P.; Goodwin, F. EUV Research Activity at SEMATECH. J. Photopolym. Sci. Technol. 2014, 27, 595–600. [Google Scholar] [CrossRef]
- Krishnan, A.; Fang, F.Z. Review on mechanism and process of surface polishing using lasers. Front. Mech. Eng. 2019, 14, 299–319. [Google Scholar] [CrossRef]
- Peng, Y.F.; Shen, B.Y.; Wang, Z.Z.; Yang, P.; Yang, W.; Bi, G. Review on polishing technology of small-scale aspheric optics. Int. J. Adv. Manuf. Technol. 2021, 1115, 965–987. [Google Scholar] [CrossRef]
- Xia, Z.B.; Fang, F.Z.; Ahearne, E.; Tao, M.R. Advances in polishing of optical freeform surfaces: A review. J. Mater. Process. Technol. 2020, 286, 116828. [Google Scholar] [CrossRef]
- Jones, R.A. Optimization of computer controlled polishing. Appl. Opt. 1977, 16, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Barman, A.; Das, M. Nano-finishing of bio-titanium alloy to generate different surface morphologies by changing magnetorheological polishing fluid compositions. Precis. Eng. 2018, 51, 145–152. [Google Scholar] [CrossRef]
- Xie, D.G.; Gao, B.; Yao, Y.X. Investigation of the material removal model for bonnet tool polishing with precession. Int. J. Comput. Appl. Technol. 2007, 29, 178–181. [Google Scholar] [CrossRef]
- Xiao, H.; Dai, Y.F.; Duan, J.; Tian, Y.; Li, J. Material removal and surface evolution of single crystal silicon during ion beam polishing. Appl. Surf. Sci. 2021, 544, 148954. [Google Scholar] [CrossRef]
- Booij, S.M.; Vanbrug, H.; Braat, J.J.M.; Fähnle, O.W. Nanometer deep shaping with fluid jet polishing. Opt. Eng. 2002, 47, 1926–1931. [Google Scholar] [CrossRef]
- Huang, W.R.; Tsai, T.Y.; Lin, Y.J.; Kuo, C.H.; Yu, Z.R.; Ho, C.F.; Hsu, W.Y.; Young, H.T. Experimental investigation of mid-spatial frequency surface textures on fused silica after computer numerical control bonnet polishing. Int. J. Adv. Manuf. Technol. 2020, 108, 1367–1380. [Google Scholar] [CrossRef]
- Pohl, M.; Kukso, O.; Boerret, R.; Rascher, R. Mid-spatial frequency error generation mechanisms and prevention strategies for the grinding process. J. Eur. Opt. Soc.-Rapid Publ. 2020, 16, 20. [Google Scholar] [CrossRef]
- Tamkin, J.M.; Dallas, W.J.; Milster, T.D. Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors. Appl. Opt. 2010, 49, 4814–4824. [Google Scholar] [CrossRef] [PubMed]
- Dunn, C.R.; Walker, D.D. Pseudo-random tool paths for CNC sub-aperture polishing and other applications. Opt. Express 2008, 16, 18942–18949. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, Z.Z.; Xu, Q. Unicursal random maze tool path for computer- controlled optical surfacing. Appl. Opt. 2015, 45, 10128–10136. [Google Scholar] [CrossRef] [PubMed]
- Tam, H.Y.; Cheng, H.B.; Dong, Z.C. Peano-like paths for subaperture polishing of optical aspherical surfaces. Appl. Opt. 2013, 52, 3624–3636. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.Z.; Zhang, L.; Fan, C. Six-directional pseudorandom consecutive unicursal polishing path for suppressing mid-spatial frequency error and realizing consecutive uniform coverage. Appl. Opt. 2019, 58, 8529–8541. [Google Scholar] [CrossRef] [PubMed]
- Beaucamp, A.; Takizawa, K.; Han, Y.J.; Zhu, W.L. Reduction of mid-spatial frequency errors on aspheric and freeform optics by circular-random path polishing. Opt. Express 2021, 29, 29802–29812. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.L.; W, C.Y.; Hong, Z.; Shao, J.D. Modeling and analysis of the mid-spatial-frequency error characteristics and generation mechanism in sub-aperture optical polishing. Opt. Express 2020, 28, 8959–8973. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Burge, J.H. Rigid conformal polishing tool using non-linear visco-elastic effect. Opt. Express 2010, 18, 2242–2257. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Kim, D.W.; Martin, H.M.; Burge, J.H. Correlation based smoothing model for optical polishing. Opt. Express 2013, 21, 28771–28782. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhang, X.J.; Zhang, X.; Hu, H.F.; Zeng, X.F. Improving Smoothing Efficiency of Rigid Conformal Polishing Tool Using Time-Dependent Smoothing Evaluation Model. Photonic Sens. 2017, 7, 171–181. [Google Scholar] [CrossRef]
- Yu, G.Y.; Wu, L.Z.; Su, X.; Li, Y.C.; Wang, K.; Li, H.Y.; Walker, D. Rigid aspheric smoothing tool for mid-spatial frequency errors on aspheric or freeform optical surfaces. J. Eur. Opt. Soc.-Rapid Publ. 2019, 15, 18. [Google Scholar] [CrossRef]
- Hou, J.; Lei, P.L.; Liu, S.W.; Chen, X.H.; Wang, J.; Deng, W.H.; Zhong, B. A predictable smoothing evolution model for computer-controlled polishing. J. Eur. Opt. Soc.-Rapid Publ. 2020, 16, 23. [Google Scholar] [CrossRef]
- Ke, X.L.; Wang, C.J.; Guo, Y.B.; Xu, Q. Modeling of tool influence function for high-efficiency polishing. Int. J. Adv. Manuf. Technol. 2016, 84, 2479–2489. [Google Scholar] [CrossRef]
- Feng, J.B.; Zhang, Y.F.; Rao, M.Q.; Zhao, Y.Y.; Yin, Y.H. An adaptive bonnet polishing approach based on dual-mode contact depth TIF. Int. J. Adv. Manuf. Technol. 2023, 125, 2183–2194. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, J.D.; Pi, J.; Xu, Z.L.; Shen, Z.H. Simulation and experimental study on the concave influence function in high efficiency bonnet polishing for large aperture optics. Int. J. Adv. Manuf. Technol. 2018, 97, 2431–2437. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhang, W.; Yu, G.Y. Study of weighted space deconvolution algorithm in computer controlled optical surfacing formation. Chin. Opt. Lett. 2009, 7, 627–631. [Google Scholar]
- Preston, F.W. The theory and design of plate glass polishing machines. J. Soc. Glass Technol. 1927, 11, 214–256. [Google Scholar]
- Wang, B.; Tie, G.P.; Shi, F.; Song, C.; Guo, S.P. Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces. Opt. Express 2023, 31, 35016–35031. [Google Scholar] [CrossRef] [PubMed]
- Duparré, A.; Ferre-Borrull, J.; Gliech, S.; Notni, G.; Steinert, J.; Bennett, J.M. Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components. Appl. Opt. 2002, 41, 154–171. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Walker, D.D.; Zheng, X.; Su, X.; Wu, L.Z.; Reynolds, C.; Yu, G.Y.; Li, O.; Zhang, P. Mid-spatial frequency removal on aluminum free-form mirror. Opt. Express 2019, 27, 24885–24899. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Tool radius (mm) | 20 |
Tool offset (mm) | 0.2 |
Precession angle (˚) | 3, 7, 11 |
Rotation rate (rpm) | 300 |
Dwell time (s) | 10 |
Experiment | No. 1 | No. 2 | No. 3 |
---|---|---|---|
Tool radius (mm) | 20 | 20 | 20 |
Tool offset (mm) | 0.2 | 0.2 | 0.2 |
Precession angle (°) | 3 | 11 | 11 |
Rotation rate (rpm) | 300 | 300 | 300 |
Scanning velocity (mm/min) | 6.2 | 7.5 | 7.5 |
Path spacing (mm) | 0.3, 0.5, 1 | 0.3, 0.5, 1 | 0.2, 0.4 |
Parameter | Value |
---|---|
Tool radius (mm) | 20 |
Tool offset (mm) | 0.6 |
Precession angle (°) | 5, 18 |
Rotation rate (rpm) | 300 |
Dwell time (s) | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Hai, K.; Li, K.; Yu, J.; Wu, L.; Zhang, L.; Su, X.; Cai, L.; Huang, W.; Hang, W. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces. Micromachines 2024, 15, 654. https://doi.org/10.3390/mi15050654
He Z, Hai K, Li K, Yu J, Wu L, Zhang L, Su X, Cai L, Huang W, Hang W. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces. Micromachines. 2024; 15(5):654. https://doi.org/10.3390/mi15050654
Chicago/Turabian StyleHe, Zhaohao, Kuo Hai, Kailong Li, Jiahao Yu, Lingwei Wu, Lin Zhang, Xing Su, Lisheng Cai, Wen Huang, and Wei Hang. 2024. "Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces" Micromachines 15, no. 5: 654. https://doi.org/10.3390/mi15050654
APA StyleHe, Z., Hai, K., Li, K., Yu, J., Wu, L., Zhang, L., Su, X., Cai, L., Huang, W., & Hang, W. (2024). Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces. Micromachines, 15(5), 654. https://doi.org/10.3390/mi15050654