Fly-Cutting Processing of Micro-Triangular Pyramid Arrays and Synchronous Micro-Scrap Removal
Abstract
:1. Introduction
2. Experiment Preparations
2.1. Geometric Parameters of the MTPs and the Diamond Tool
2.2. Machine Tool and Workpiece Material
2.3. Preparation of the Workpiece for Machining
3. Experimental Methods
3.1. Tool Installation, Tool Path, and Cutting Parameters
3.2. Tool Setting Process
4. Results and Discussion
4.1. MTP Size and Surface Roughness
4.2. Remaining Micro-Scraps
4.3. Diamond Tool Wear
4.4. Residual Burrs
5. Conclusions
- An MTPA produced by fly cutting when the working surface was vertically oriented had a clearly outlined structure, high dimensional accuracy, and a low surface roughness. Thus, fly-cutting machining of a vertical working surface is suitable for producing micro-structured arrays.
- There was no micro-scrap residue on the MTPA surface, the cutting edge of the diamond tool was not damaged, and the damage sustained by the tool nose was small. Thus, the vertical fly-cutting method effectively solves the problem of micro-scrap residue and prolongs the tool service life.
- Of six intersecting edges, 50% had no burrs and 50% had a few burrs. The edges with a few burrs were all cutting outlet edges. Edge burrs affect the edge straightness, making it necessary to reduce or eliminate them.
- The orthogonal experiment method was used to optimize the speed, feed speed, cutting depth, and cooling mode to reduce or eliminate the residual burrs on the edge, which will be the focus of future research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Yao, P.; Li, Y.; Jiang, L.; Xu, J.; Liang, S.; Chu, D.; He, W.; Huang, C.; Zhu, H.; et al. Inverted pyramid structure on monocrystalline silicon processed by wet etching after femtosecond laser machining in air and deionized water. Opt. Laser Technol. 2023, 157, 108647. [Google Scholar] [CrossRef]
- Srivastava, A.; Sharma, D.; Laxmi, S.; Tawale, J.S.; Pathi, P.; Srivastava, S.K. Excellent omnidirectional light trapping properties of inverted micro-pyramid structured silicon by copper catalyzed chemical etching. Opt. Mater. 2022, 131, 112677. [Google Scholar] [CrossRef]
- Zhou, T.; He, Y.; Wang, T.; Zhu, Z.; Xu, R.; Yu, Q.; Zhao, B.; Zhao, W.; Liu, P.; Wang, X. A review of the techniques for the mold manufacturing of micro/nanostructures for precision glass molding. Int. J. Extrem. Manuf. 2021, 3, 42002. [Google Scholar] [CrossRef]
- Wu, B.; Zong, W. A modified diamond micro chiseling method for machining large scale retroreflective microstructure on nickel phosphorus alloy. J. Mater. Process. Technol. 2022, 307, 117676. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, T.; Pang, S.; Liang, Z.; Yu, Q.; Ruan, B.; Wang, X. Comparison of fly cutting and transverse planing for micropyramid array machining on nickel phosphorus plating. Int. J. Adv. Manuf. Technol. 2019, 102, 2481–2489. [Google Scholar] [CrossRef]
- Gong, S.; Sun, Y. Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining. J. Manuf. Process. 2022, 79, 126–141. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Pi, J.; Zhou, F. Precision cutting of the molds of an optical functional texture film with a triangular pyramid texture. Micromachines 2020, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ma, Y.; Luo, T.; Cao, S.; Huang, Z. Fabrication of hierarchical micro-groove structures by vibration assisted end fly cutting. J. Mater. Process. Technol. 2023, 322, 118164. [Google Scholar] [CrossRef]
- Xia, S.; Yin, Z.; Zhang, J.; Meng, S.; Guo, Y.; Huang, C. Diamond shifting cutting of hexagonal cube corner retroreflectors. Precis. Eng. 2023, 79, 119–125. [Google Scholar] [CrossRef]
- Zhang, P.; Jing, Z.; Goel, S.; Hou, X.; Wang, C.; Cheung, C.F.; Tian, Y.; Guo, J. Theoretical and experimental investigations on conformal polishing of microstructured surfaces. Int. J. Mech. Sci. 2024, 268, 109050. [Google Scholar] [CrossRef]
- Mou, X.; Lu, Y.; Mo, R.; Sun, J. Precision grinding of ceramics and ceramic-matrix composites surfaces with controllable microarray structures. Mater. Today Commun. 2024, 38, 107620. [Google Scholar] [CrossRef]
- Joao, D.; Rangel, O.; Milliken, N.; Tutunea-Fatan, O.R.; Bordatchev, E. Single-flank machining strategy for ultraprecise single-point cutting of v-grooves. Int. J. Adv. Manuf. Technol. 2022, 120, 4505–4523. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Zhang, J.; Yang, C.; Liu, W. Research on shape error of microstructure array fabricated by fly cutting. Optik 2021, 241, 167031. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, T.; Zhang, G.; Dai, Y. Novel tool offset fly cutting straight-groove-type micro structure arrays. J. Mater. Process. Technol. 2021, 288, 116900. [Google Scholar] [CrossRef]
- Pu, X.; Xu, J.; Huang, P.; Du, H.; Zhu, Z. Fast tool servo-based ultra-precision diamond sculpturing for fabricating micro-structured surfaces. Int. J. Mech. Sci. 2024, 263, 108790. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Liao, Z.; Luo, X.; Yang, Y.; Li, M.; Yang, H.; Tan, C.; Wang, G.; Ding, W.; et al. Research on the light intensity modulation and characterizing methods of surface texture on kdp optics generated in fly-cutting and micro ball-end milling processes. CIRP J. Manuf. Sci. Technol. 2023, 41, 30–43. [Google Scholar] [CrossRef]
- Tanikawa, S.; Yan, J. Fabrication of micro-structured surface with controllable randomness by using fts-based diamond turning. Precis. Eng. 2022, 73, 363–376. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, X.; Wang, J.; Gong, T.; Sun, S.; Li, J.; Ye, L.; Li, X. Investigation of impact load and erosion behaviors on Ti-Ta alloy surface through the synergistic effect of ultrasonic cavitation and micro-abrasive particles. J. Mater. Res. Technol. 2023, 26, 3893–3904. [Google Scholar] [CrossRef]
- Ye, L.; Zhu, X.; He, Y. Micro-cutting force model of micro-jet induced by cavitation collapse in the ultrasonic field at micro-nano scale. Int. J. Adv. Manuf. Technol. 2022, 119, 3695–3702. [Google Scholar] [CrossRef]
- ASTM B36/B36M; Standard Specification for Brass Plate, Sheet, Strip, and Rolled Bar. ASTM: West Conshohocken, PA, USA.
- Zhou, X.; Yu, T.; Wang, G.; Guo, R.; Liu, Q.; Sun, Y.; Liu, H.; Chen, M. Comprehensive study of material removal mechanism of polycrystalline copper during ultra-precision cutting using molecular dynamics. Precis. Eng. 2024, 86, 123–139. [Google Scholar] [CrossRef]
- Fang, Z.; Yan, Y.; Li, Z.; Zhang, A.; Geng, Y. Molecular dynamics simulation of the tool geometry effect on nanowire formation behavior during nanoskiving. Mater. Des. 2023, 225, 111498. [Google Scholar] [CrossRef]
- Mikołajczyk, T.; Latos, H.; Szczepaniak, Z.; Paczkowski, T.; Pimenov, D.Y.; Giasin, K.; Kuntoğlu, M. Theoretical and experimental research of edge inclination angle effect on minimum uncut chip thickness in oblique cutting of c45 steel. Int. J. Adv. Manuf. Technol. 2023, 124, 2299–2312. [Google Scholar] [CrossRef]
- Mikolajczyk, T. Modeling of minimal thickness cutting layer influence on surface roughness in turning. Appl. Mech. Mater. 2014, 656, 262–269. [Google Scholar] [CrossRef]
- Blau, P.J. The significance and use of the friction coefficient. Tribol. Int. 2001, 34, 585–591. [Google Scholar] [CrossRef]
- Liu, T. Sliding friction of copper. Wear 1964, 7, 163–174. [Google Scholar] [CrossRef]
Rotational Speed, n | Feed Rate, F | Feed Amount, f | Actual Maximum Cutting Depth, apm |
---|---|---|---|
1000 r/min | 60 mm/min | 60 µm/r | 2 µm |
Measurement Area | Bottom Triangle Side Length, l | Angle between Opposite Sides, β | Edge Straightness, A/μm | Surface Roughness, RZ/nm | ||
---|---|---|---|---|---|---|
Mean Value/μm | Deviation | Mean Value/° | Deviation | |||
1 | 114.44 | 0.89% | 70.6 | 0.14% | 2.2 | 19.0 |
2 | 115.10 | 0.32% | 70.7 | 0.28% | 1.8 | 18.8 |
3 | 115.04 | 0.37% | 70.5 | 0.00% | 3.1 | 19.4 |
Overall mean | 114.86 | 0.53% | 70.6 | 0.14% | 2.37 | 19.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Xu, Z.; Lei, Y.; Huang, S. Fly-Cutting Processing of Micro-Triangular Pyramid Arrays and Synchronous Micro-Scrap Removal. Micromachines 2024, 15, 655. https://doi.org/10.3390/mi15050655
Gao J, Xu Z, Lei Y, Huang S. Fly-Cutting Processing of Micro-Triangular Pyramid Arrays and Synchronous Micro-Scrap Removal. Micromachines. 2024; 15(5):655. https://doi.org/10.3390/mi15050655
Chicago/Turabian StyleGao, Jiashun, Zhilong Xu, Yu Lei, and Su Huang. 2024. "Fly-Cutting Processing of Micro-Triangular Pyramid Arrays and Synchronous Micro-Scrap Removal" Micromachines 15, no. 5: 655. https://doi.org/10.3390/mi15050655
APA StyleGao, J., Xu, Z., Lei, Y., & Huang, S. (2024). Fly-Cutting Processing of Micro-Triangular Pyramid Arrays and Synchronous Micro-Scrap Removal. Micromachines, 15(5), 655. https://doi.org/10.3390/mi15050655