Passive Wireless Partial Discharge Sensors with Multiple Resonances
Abstract
:1. Introduction
2. Sensor Design and Fabrication
2.1. PD Spectrum Analysis
2.2. Design and Fabrication of Multi-Resonant PD Sensor
2.3. Internal Electric Field Distribution in GIS
3. Experiments and Results
3.1. Wireless Experiment Setup
3.2. Results of the Multi-Resonance PD Sensor
3.3. Comparison with UHF Sensor
3.4. Generation of PRPD Pattern
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schichler, U.; Koltunowicz, W.; Gautschi, D.; Girodet, A.; Hama, H.; Juhre, K.; Lopez-Roldan, J.; Okabe, S.; Neuhold, S.; Neumann, C.; et al. UHF Partial Discharge Detection System for GIS: Application Guide for Sensitivity Verification. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1313–1321. [Google Scholar] [CrossRef]
- Li, T.H.; Rong, M.Z.; Zheng, C.; Wang, X.H. Development Simulation and Experiment Study on UHF Partial Discharge Sensor in GIS. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1421–1430. [Google Scholar] [CrossRef]
- Mondal, M.; Kumbhar, G.B. Detection, Measurement, and Classification of Partial Discharge in a Power Transformer: Methods, Trends, and Future Research. IETE Tech. Rev. 2018, 35, 483–493. [Google Scholar] [CrossRef]
- Hussain, M.R.; Refaat, S.S.; Abu-Rub, H. Overview and Partial Discharge Analysis of Power Transformers: A Literature Review. IEEE Access 2021, 9, 64587–64605. [Google Scholar] [CrossRef]
- Kaziz, S.; Said, M.H.; Imburgia, A.; Maamer, B.; Flandre, D.; Romano, P.; Tounsi, F. Radiometric Partial Discharge Detection: A Review. Energies 2023, 16, 1978. [Google Scholar] [CrossRef]
- Xia, C.J.; Ren, M.; Chen, R.F.; Yu, J.H.; Li, C.; Chen, Y.; Wang, K.; Wang, S.Y.; Dong, M. Multispectral Optical Partial Discharge Detection, Recognition, and Assessment. IEEE Trans. Instrum. Meas. 2022, 71, 11. [Google Scholar] [CrossRef]
- Ilkhechi, H.D.; Samimi, M.H. Applications of the Acoustic Method in Partial Discharge Measurement: A Review. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 42–51. [Google Scholar] [CrossRef]
- Si, W.R.; Fu, C.Z.; Yuan, P. An Integrated Sensor With AE and UHF Methods for Partial Discharges Detection in Transformers Based on Oil Valve. IEEE Sens. Lett. 2019, 3, 3. [Google Scholar] [CrossRef]
- Chai, H.; Phung, B.T.; Mitchell, S. Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review. Sensors 2019, 19, 1029. [Google Scholar] [CrossRef]
- Raymond, W.J.K.; Illias, H.A.; Abu Bakar, A.H.; Mokhlis, H. Partial discharge classifications: Review of recent progress. Measurement 2015, 68, 164–181. [Google Scholar] [CrossRef]
- Roslizan, N.D.; Rohani, M.N.K.H.; Wooi, C.L.; Is`a, M.; Ismail, B.; Rosmi, A.S.; Mustafa, W.A. A Review: Partial Discharge Detection using UHF sensor on High Voltage Equipment. J. Phys. Conf. Ser. 2020, 1432, 012003. [Google Scholar] [CrossRef]
- Gorla, D.P.M.; Edin, H.; IEEE. Study on Non-Contact Antenna-based Partial Discharge Measurements. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Quebec City, QC, Canada, 18–21 June 2023. [Google Scholar]
- Tian, J.W.; Zhang, G.Z.; Ming, C.; He, L.Y.; Liu, Y.; Liu, J.B.; Zhang, X.X. Design of a Flexible UHF Hilbert Antenna for Partial Discharge Detection in Gas-Insulated Switchgear. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 794–798. [Google Scholar] [CrossRef]
- Khayam, U.; Suryandi, A.A.; Rachmawati. Design of Bowtie Antenna With Rounded Edge and Middle-Sliced Modifications for UHF Partial Discharge Sensor. IEEE Access 2023, 11, 22822–22834. [Google Scholar] [CrossRef]
- Azam, S.M.K.; Othman, M.; Illias, H.A.; Latef, T.A.; Islam, M.T.; Ain, M.F. Ultra-high frequency printable antennas for partial discharge diagnostics in high voltage equipment. Alex. Eng. J. 2023, 64, 709–729. [Google Scholar] [CrossRef]
- Romano, P.; Imburgia, A.; Ala, G. Partial Discharge Detection Using a Spherical Electromagnetic Sensor. Sensors 2019, 19, 1014. [Google Scholar] [CrossRef]
- Jaber, A.; Altayef, E.; Samad, B.A. Partial discharge Source Calibration of Radiated Partial Discharge Signals. In Proceedings of the 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28–29 April 2022. [Google Scholar] [CrossRef]
- Wang, W.S.; Wang, Y.E.; Shu, Z.; Wang, X.X.; Lu, M.S.; Jiang, G.L.; Ji, J.S.; Li, H.Q.; Lai, K.X.; Zheng, Y.J. Coil Antenna Sensor-Based Measurement Method to Online Detect Partial Discharge in Distributed Power Networks. IEEE Trans. Instrum. Meas. 2024, 73, 8. [Google Scholar] [CrossRef]
- Huang, Q.A.; Dong, L.; Wang, L.F. LC Passive Wireless Sensors Toward a Wireless Sensing Platform: Status, Prospects, and Challenges. J. Microelectromech. Syst. 2016, 25, 822–841. [Google Scholar] [CrossRef]
- Hallil, H.; Dejous, C.; Hage-Ali, S.; Elmazria, O.; Rossignol, J.; Stuerga, D.; Talbi, A.; Mazzamurro, A.; Joubert, P.Y.; Lefeuvre, E. Passive Resonant Sensors: Trends and Future Prospects. IEEE Sens. J. 2021, 21, 12618–12632. [Google Scholar] [CrossRef]
- Sancho, J.I.; Almandoz, I.; Barandiaran, M.; Diaz, J.; Mendizabal, J. Scalable Wireless Wearing Monitoring System for Harsh Industrial Environment. IEEE Trans. Ind. Electron. 2022, 69, 1011–1020. [Google Scholar] [CrossRef]
- Tenbohlen, S.; Beura, C.P.; Sikorski, W.; Sánchez, R.A.; de Castro, B.A.; Beltle, M.; Fehlmann, P.; Judd, M.; Werner, F.; Siegel, M. Frequency Range of UHF PD Measurements in Power Transformers. Energies 2023, 16, 1395. [Google Scholar] [CrossRef]
- Dong, L.; Deng, W.J.; Wang, L.F.; Huang, Q.A. Multi-Parameters Detection Implemented by LC Sensors With Branching Inductors. IEEE Sens. J. 2019, 19, 304–310. [Google Scholar] [CrossRef]
- Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science 2007, 317, 83–86. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
D | Diameter of main inductor | 75 mm |
d | Diameter of main inductor | 32 mm |
N | Turns of main inductor | 3 |
nA | Turns of brunch inductor A | 1 |
nB | Turns of brunch inductor B | 3 |
w | Diameter of copper wire | 0.5 mm |
s | Spacing of copper wire | 0.06 mm |
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
0.117 μH | 1 pF | 0.1 pF | |||
0.234 μH | 1.1 pF | 0.1 pF | |||
1.056 μH | 0.1 pF | 0.1 pF | |||
0.067 μH | 0.5 pF | 0.1 pF | |||
0.565 μH | 1 pF | 1 pF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Tian, B.; Guo, S.; Huang, Q.; Wang, L.; Dong, L. Passive Wireless Partial Discharge Sensors with Multiple Resonances. Micromachines 2024, 15, 656. https://doi.org/10.3390/mi15050656
Xu Z, Tian B, Guo S, Huang Q, Wang L, Dong L. Passive Wireless Partial Discharge Sensors with Multiple Resonances. Micromachines. 2024; 15(5):656. https://doi.org/10.3390/mi15050656
Chicago/Turabian StyleXu, Zhenheng, Bing Tian, Shiqi Guo, Qingan Huang, Lifeng Wang, and Lei Dong. 2024. "Passive Wireless Partial Discharge Sensors with Multiple Resonances" Micromachines 15, no. 5: 656. https://doi.org/10.3390/mi15050656
APA StyleXu, Z., Tian, B., Guo, S., Huang, Q., Wang, L., & Dong, L. (2024). Passive Wireless Partial Discharge Sensors with Multiple Resonances. Micromachines, 15(5), 656. https://doi.org/10.3390/mi15050656