An Improved Method to Compute the Mutual Capacitance between Interdigital Transducers in Radio Frequency Surface Acoustic Wave Filters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Capacitance Matrix of Finger Electrodes
2.2. Relative Effective Permittivity
2.3. Mutual Capacitance of DMS Filters
3. Results and Discussion
3.1. Simulation of One Pair of IDTs
3.2. Design of a TC-SAW Duplexer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Zhang, S.; Zhang, L.; Zhou, H.; Zheng, P.; Yao, H.; Li, Z.; Huang, K.; Wu, T.; Ou, X. Exploring Low-Loss Surface Acoustic Wave Devices on Heterogeneous Substrates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 2579–2584. [Google Scholar] [CrossRef] [PubMed]
- Hagelauer, A.; Fattinger, G.; Ruppel, C.C.W.; Ueda, M.; Hashimoto, K.-Y.; Tag, A. Microwave acoustic wave devices: Recent advances on architectures, modeling, materials, and packaging. IEEE Trans. Microw. Theory Tech. 2018, 66, 4548–4562. [Google Scholar] [CrossRef]
- Nakamura, H.; Komatsu, T.; Nakanishi, H.; Tsurunari, T.; Fujiwara, J. Reduction of transverse leakage for SAW resonators on LiTaO3 substrate. In Proceedings of the IEEE International Ultrasonics Symposium 2012, Dublin, Ireland, 7–10 October 2012; pp. 1248–1251. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.-M.; Shi, B.; Bao, J.-F.; Hashimoto, K.-Y. COM-based modeling of saw scattering at reflector outer edges in IHP SAW resonator. In Proceedings of the IEEE International Ultrasonics Symposium 2022, Venice, Italy, 10–13 October 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Hartmann, C.S.; Bell, D.T.; Rosenfeld, R.C. Impulse model design of acoustic surface-wave filters. IEEE Trans. Microw. Theory Tech. 1973, 21, 162–175. [Google Scholar] [CrossRef]
- Hoang, T.; Beghi, M.G. SAW parameters analysis and equivalent circuit of SAW device. Acoust. Waves-Microdevices Helioseismology 2011, 443–483. [Google Scholar] [CrossRef]
- Plessky, V.; Koskela, J. Coupling-of-modes analysis of SAW devices. Int. J. High Speed Electron. Syst. 2000, 10, 867–947. [Google Scholar] [CrossRef]
- Kanouni, F.; Amara, S.; Assali, A.; Arab, F.; Qin, Z. A P-matrix-based model for the frequency analysis of IDT/AlScN/Sapphire SAW-delay line. Sens. Actuators A Phys. 2020, 307, 111980. [Google Scholar] [CrossRef]
- Soluch, W. Scattering matrix approach to one-port SAW resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Finger, N.; Kovacs, G.; Schoberl, J.; Zaglmayr, S.; Langer, U.; Lerch, R. Finite-element simulation of wave propagation in periodic piezoelectric SAW structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Chamaly, S.; Fong, H.Y.; Perois, X.; Mayer, M. Very low amplitude ripple SAW filter for infrastructure systems using 41° YX lithium niobate: Full FEM/BEM design approach. In Proceedings of the IEEE International Ultrasonics Symposium 2009, Rome, Italy, 20–23 September 2009; pp. 819–822. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, W.; Smith, P.M. General Green’s functions for SAW device analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1999, 46, 1242–1253. [Google Scholar] [CrossRef]
- Fu, Q.; Luo, W.; Wang, Y.; Wang, J.; Zhou, D. Simulation of wireless passive SAW sensors based on FEM/BEM model. In Proceedings of the IEEE Ultrasonics Symposium 2008, Beijing, China, 2–5 November 2008; pp. 1861–1864. [Google Scholar] [CrossRef]
- Benes, E.; Groschl, M.; Seifert, F.; Pohl, A. Comparison between BAW and SAW sensor principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 1314–1330. [Google Scholar] [CrossRef]
- Xu, H.; Fu, S.; Shen, J.; Lu, Z.; Su, R.; Wang, R.; Song, C.; Zeng, F.; Wang, W.; Pan, F. Large-range spurious mode elimination for wideband SAW filters on LiNbO3/SiO2/Si Platform by LiNbO3 cut angle modulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3117–3125. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Q.; Zhao, X.; Zhi, S.; Qiu, L.; Fu, S.; Wang, W. A general FEM model for analysis of third-order nonlinearity in rf surface acoustic wave devices based on perturbation theory. Micromachines 2022, 13, 1116. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bao, J.; Huang, Y.; Zhang, B.; Omori, T.; Hashimoto, K.-Y. Use of hierarchical cascading technique for FEM analysis of transverse-mode behaviors in surface acoustic-wave devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1920–1926. [Google Scholar] [CrossRef] [PubMed]
- Solal, M.; Chen, L.; Gratier, J. Measurement and FEM/BEM simulation of transverse effects in SAW resonators on lithium tantalate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Laude, V.; Reinhardt, A.; Wilm, M.; Khelif, A.; Ballandras, S. Fast FEM/BEM simulation of SAW devices via asymptotic waveform evaluation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.-Y.; Koseki, Y.; Yamaguchi, M. Boundary Element Method Analysis of Interdigital Transducers Having Arbitrary Metallisation Ratio. Jpn. J. Appl. Phys. 1991, 30, 162. [Google Scholar] [CrossRef]
- Kochanov, E.S. Parasitic capacitances in printed wiring of radio equipment. Telecommun. Radio Eng. 1967, 22, 129–132. [Google Scholar]
- Gevorgian, S.S.; Martinsson, T.; Linner, P.L.J.; Kollberg, E.L. CAD models for multilayered substrate interdigital capacitors. IEEE Trans. Microw. Theory Tech. 1996, 44, 896–904. [Google Scholar] [CrossRef]
- Igreja, R.; Dias, C.J. Extension to the analytical model of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A Phys. 2011, 172, 392–399. [Google Scholar] [CrossRef]
- Ghione, G.; Goano, M. Revisiting the partial-capacitance approach to the analysis of coplanar transmission lines on multilayered substrates. IEEE Trans. Microw. Theory Tech. 2003, 51, 2007–2014. [Google Scholar] [CrossRef]
- Crampagne, R.; Ahmadpanah, M.; Guiraud, J.L. A simple method for determining the Green’s function for a large class of MIC lines having multilayered dielectric structures. IEEE Trans. Microw. Theory Tech. 1978, 26, 82–87. [Google Scholar] [CrossRef]
- Hashimoto, K.-Y. Surface Acoustic Wave Devices in Telecommunications; Springer: Berlin/Heidelberg, Germany, 2000; Volume 116. [Google Scholar]
- Liu, B.; Zeng, Y. Uncertainty-aware frequency estimation algorithm for passive wireless resonant SAW sensor measurement. Sens. Actuators A Phys. 2016, 237, 136–146. [Google Scholar] [CrossRef]
- Salzenstein, P.; Wu, T.Y. Uncertainty Estimation for the Brillouin Frequency Shift Measurement Using a Scanning Tandem Fabry—Pérot Interferometer. Micromachines 2023, 14, 1429. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, A.; Waldherr, A.; Kirschner, H.P.; Wagner, K. High selectivity SAW duplexer for W-CDMA Band VIII. In Proceedings of the IEEE Ultrasonics Symposium 2008, Beijing, China, 2–5 November 2008; pp. 590–593. [Google Scholar] [CrossRef]
- Inoue, S.; Tsutsumi, J.; Matsuda, T.; Ueda, M.; Ikata, O.; Satoh, Y. Ultra-Steep Cut-Off Double Mode SAW Filter and Its Application to a PCS Duplexer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1882–1887. [Google Scholar] [CrossRef]
- Inoue, S.; Tsutsumi, J.; Iwamoto, Y.; Matsuda, T.; Miura, M.; Satoh, Y.; Ueda, M.; Ikata, O. 1.9 GHz range ultra-low-loss and steep cut-off double mode SAW filter for the Rx band in the PCS antenna duplexer. In Proceedings of the IEEE Symposium on Ultrasonics 2003, Honolulu, HI, USA, 5–8 October 2003; Volume 381, pp. 389–392. [Google Scholar] [CrossRef]
- Changzhou ChemSemi Co., Ltd. Available online: http://www.chemsemi.com/html/Technology/ (accessed on 1 April 2024).
- Kawachi, O.; Mitobe, S.; Tajima, M.; Inoue, S.; Hashimoto, K.-Y. Low-Loss and Wide-Band Double-Mode Surface Acoustic Wave Filters Using Pitch-Modulated Interdigital Transducers and Reflectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 2159–2164. [Google Scholar] [CrossRef]
K | x-Axis Coordinate of Sampling Points |
---|---|
0 | |
2 | |
4 | |
⋯ | ⋯ |
Simulation Parameters | Value |
---|---|
Number of fingers (M) | 10 |
Duty factors (DF) | 0.3/0.5/0.7 |
Pitch | 2 μm |
Aperture (W) | 16 × pitch |
) | 1.2 μm |
Order of Chebyshev polynomials (K) | 2 |
Method | FEM | Conformal Mapping | Capacitance Added by the Improved Method in This Paper |
---|---|---|---|
Effect | Accuracy of SAW models can be achieved | ||
Pros and cons | 1. High accuracy 2. Extremely slow speed | 1. Moderate accuracy 2. Complex models | 1. Precise and ultra-fast computation 2. Contribute to filter optimization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Yang, X.; Luo, P.; Liu, Y. An Improved Method to Compute the Mutual Capacitance between Interdigital Transducers in Radio Frequency Surface Acoustic Wave Filters. Micromachines 2024, 15, 661. https://doi.org/10.3390/mi15050661
Zou Y, Yang X, Luo P, Liu Y. An Improved Method to Compute the Mutual Capacitance between Interdigital Transducers in Radio Frequency Surface Acoustic Wave Filters. Micromachines. 2024; 15(5):661. https://doi.org/10.3390/mi15050661
Chicago/Turabian StyleZou, Yali, Xinyu Yang, Ping Luo, and Yuhao Liu. 2024. "An Improved Method to Compute the Mutual Capacitance between Interdigital Transducers in Radio Frequency Surface Acoustic Wave Filters" Micromachines 15, no. 5: 661. https://doi.org/10.3390/mi15050661
APA StyleZou, Y., Yang, X., Luo, P., & Liu, Y. (2024). An Improved Method to Compute the Mutual Capacitance between Interdigital Transducers in Radio Frequency Surface Acoustic Wave Filters. Micromachines, 15(5), 661. https://doi.org/10.3390/mi15050661