Magnetic Microrobots for In Vivo Cargo Delivery: A Review
Abstract
:1. Introduction
2. Magnetic Actuation Method
2.1. Actuation Principle
2.2. Actuation Platform
3. Structural Design
3.1. Helical Design
3.2. Spherical Design
3.3. Deformable Design
4. Cargo Loading Methods
4.1. Physical Mixing
4.2. Physical Adsorption
4.3. Covalent Bonding
4.4. Cell Loading
5. Cargo Release Methods
5.1. Slow-Release
5.2. Activate Release
6. Tracking
6.1. Optical Tracking
6.2. Ultrasonic Imaging
6.3. Magnetic Assist Tracking
6.4. Radioisotope Imaging
6.5. Tracking of Cargo Distribution and Diffusion
7. Navigation Algorithm
7.1. Dynamics Model-Based Navigation
7.2. Machine Learning-Based Navigation
7.3. Multi-Level Adjustment Navigation
8. Degradation and Retrieval
9. Challenges and Opportunities
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alapan, Y.; Bozuyuk, U.; Erkoc, P.; Karacakol, A.C.; Sitti, M. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci. Robot. 2020, 5, eaba5726. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Yang, L.; Li, J.; Hu, Y.; Qian, D.; Fan, S.; Hu, K.; Cai, Z.; Wu, H.; Wang, D.; et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Adv. Mater. 2019, 31, 1808226. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, J.; Kim, J.Y.; Choi, H. Recent progress in magnetically actuated microrobots for targeted delivery of therapeutic agents. Adv. Healthc. Mater. 2021, 10, 2001596. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.H.; Wu, B.; Das, S. Multistimuli-responsive microrobots: A comprehensive review. Front. Robot. AI 2022, 9, 1027415. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Tang, S.; Gao, W. Micro-and nanorobots for biomedical applications in the brain. Nat. Rev. Bioeng. 2023, 1, 308–310. [Google Scholar] [CrossRef]
- Liu, X.; Jing, Y.; Xu, C.; Wang, X.; Xie, X.; Zhu, Y.; Dai, L.; Wang, H.; Wang, L.; Yu, S. Medical Imaging Technology for Micro/Nanorobots. Nanomaterials 2023, 13, 2872. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Wang, X.; Chang, K.; Shen, W.; Yu, G.; Du, J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J. Nanobiotechnol. 2022, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ren, Y.; Barbot, A.; Seichepine, F.; Lo, B.; Ma, Z.C.; Yang, G.Z. Fabrication and optical manipulation of micro-robots for biomedical applications. Matter 2022, 5, 3135–3160. [Google Scholar] [CrossRef]
- Zhang, D.; Barbot, A.; Lo, B.; Yang, G.Z. Distributed force control for microrobot manipulation via planar multi-spot optical tweezer. Adv. Opt. Mater. 2020, 8, 2000543. [Google Scholar] [CrossRef]
- Schrage, M.; Medany, M.; Ahmed, D. Ultrasound microrobots with reinforcement learning. Adv. Mater. Technol. 2023, 8, 2201702. [Google Scholar] [CrossRef]
- Bira, N.; Dhagat, P.; Davidson, J.R. A review of magnetic elastomers and their role in soft robotics. Front. Robot. AI 2020, 7, 588391. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Zhong, L.; Liu, Y.; Rong, W. Transporting microobjects using a magnetic microrobot at water surfaces. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 108–112. [Google Scholar]
- Chesnitskiy, A.V.; Gayduk, A.E.; Seleznev, V.A.; Prinz, V.Y. Bio-Inspired Micro-and Nanorobotics Driven by Magnetic Field. Materials 2022, 15, 7781. [Google Scholar] [CrossRef]
- Silva, A.K.A.; Silva, E.L.; Egito, E.S.T.; Carriço, A.S. Safety concerns related to magnetic field exposure. Radiat. Environ. Biophys. 2006, 45, 245–252. [Google Scholar] [CrossRef]
- Tukmachev, D.; Lunov, O.; Zablotskii, V.; Dejneka, A.; Babic, M.; Syková, E.; Kubinová, Š. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale 2015, 7, 3954–3958. [Google Scholar] [CrossRef]
- Abbes, M.; Belharet, K.; Mekki, H.; Poisson, G. Permanent magnets based actuator for microrobots navigation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 7062–7067. [Google Scholar]
- Nadour, H.; Bozorg Grayeli, A.; Poisson, G.; Belharet, K. CochleRob: Parallel-Serial Robot to Position a Magnetic Actuator around a Patient’s Head for Intracochlear Microrobot Navigation. Sensors 2023, 23, 2973. [Google Scholar] [CrossRef]
- Kummer, M.P.; Abbott, J.J.; Kratochvil, B.E.; Borer, R.; Sengul, A.; Nelson, B.J. OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 2010, 26, 1006–1017. [Google Scholar] [CrossRef]
- Yesin, K.B.; Vollmers, K.; Nelson, B.J. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot. Res. 2006, 25, 527–536. [Google Scholar] [CrossRef]
- Choi, H.; Choi, J.; Jang, G.; Park, J.o.; Park, S. Two-dimensional actuation of a microrobot with a stationary two-pair coil system. Smart Mater. Struct. 2009, 18, 055007. [Google Scholar] [CrossRef]
- Tehrani, M.D.; Kim, M.O.; Yoon, J. A novel electromagnetic actuation system for magnetic nanoparticle guidance in blood vessels. IEEE Trans. Magn. 2014, 50, 1–12. [Google Scholar] [CrossRef]
- Choi, H.; Cha, K.; Choi, J.; Jeong, S.; Jeon, S.; Jang, G.; Park, J.O.; Park, S. EMA system with gradient and uniform saddle coils for 3D locomotion of microrobot. Sens. Actuators A Phys. 2010, 163, 410–417. [Google Scholar] [CrossRef]
- Belharet, K.; Folio, D.; Ferreira, A. Three-dimensional controlled motion of a microrobot using magnetic gradients. Adv. Robot. 2011, 25, 1069–1083. [Google Scholar] [CrossRef]
- Yu, J.; Jin, D.; Chan, K.F.; Wang, Q.; Yuan, K.; Zhang, L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 2019, 10, 5631. [Google Scholar] [CrossRef]
- Kim, S.H.; Hashi, S.; Ishiyama, K. Methodology of dynamic actuation for flexible magnetic actuator and biomimetic robotics application. IEEE Trans. Magn. 2010, 46, 1366–1369. [Google Scholar] [CrossRef]
- Gwisai, T.; Mirkhani, N.; Christiansen, M.G.; Nguyen, T.T.; Ling, V.; Schuerle, S. Magnetic torque–driven living microrobots for increased tumor infiltration. Sci. Robot. 2022, 7, eabo0665. [Google Scholar] [CrossRef]
- Alcântara, C.C.; Kim, S.; Lee, S.; Jang, B.; Thakolkaran, P.; Kim, J.Y.; Choi, H.; Nelson, B.J.; Pané, S. 3D fabrication of fully iron magnetic microrobots. Small 2019, 15, 1805006. [Google Scholar] [CrossRef]
- Rikken, R.S.; Nolte, R.J.; Maan, J.C.; van Hest, J.C.; Wilson, D.A.; Christianen, P.C. Manipulation of micro-and nanostructure motion with magnetic fields. Soft Matter 2014, 10, 1295–1308. [Google Scholar] [CrossRef]
- Abbott, J.J.; Ergeneman, O.; Kummer, M.P.; Hirt, A.M.; Nelson, B.J. Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Trans. Robot. 2007, 23, 1247–1252. [Google Scholar] [CrossRef]
- Abbott, J.J.; Peyer, K.E.; Lagomarsino, M.C.; Zhang, L.; Dong, L.; Kaliakatsos, I.K.; Nelson, B.J. How should microrobots swim? Int. J. Robot. Res. 2009, 28, 1434–1447. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Dong, L.; Zhao, J. A review of microrobot’s system: Towards system integration for autonomous actuation in vivo. Micromachines 2021, 12, 1249. [Google Scholar] [CrossRef]
- Salehi, A.; Hosseinpour, S.; Tabatabaei, N.; Soltani Firouz, M.; Yu, T. Intelligent Navigation of a Magnetic Microrobot with Model-Free Deep Reinforcement Learning in a Real-World Environment. Micromachines 2024, 15, 112. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hahn, P.; Iacovelli, J.; Wong, R.; King, C.; Bhisitkul, R.; Massaro-Giordano, M.; Dunaief, J.L. Iron homeostasis and toxicity in retinal degeneration. Prog. Retin. Eye Res. 2007, 26, 649–673. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Chen, L.G.; Huang, H.B.; Li, X.P.; Zhang, L.L. An overview of magnetic micro-robot systems for biomedical applications. Microsyst. Technol. 2016, 22, 2371–2387. [Google Scholar] [CrossRef]
- Avaneesh, R. Actuation, Control and Localization of Untethered Magnetic Robots. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2022. [Google Scholar]
- Griffiths, D.J. Introduction to Electrodynamics; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Sakar, M.; Schürle, S.; Erni, S.; Ullrich, F.; Pokki, J.; Frutiger, D.; Ergeneman, O.; Kratochvil, B.; Nelson, B. Non-contact, 3d magnetic biomanipulation for in vivo and in vitro applications. In Proceedings of the 2012 International Symposium on Optomechatronic Technologies (ISOT 2012), Paris, France, 29–31 October 2012; pp. 1–2. [Google Scholar]
- Ullrich, F.; Schuerle, S.; Pieters, R.; Dishy, A.; Michels, S.; Nelson, B.J. Automated capsulorhexis based on a hybrid magnetic-mechanical actuation system. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 4387–4392. [Google Scholar]
- Lee, S.; Kim, S.; Kim, S.; Kim, J.Y.; Moon, C.; Nelson, B.J.; Choi, H. A Capsule-Type Microrobot with Pick-and-Drop Motion for Targeted Drug and Cell Delivery. Adv. Healthc. Mater. 2018, 7, 1700985. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.Y.; Kim, J.; Hoshiar, A.K.; Park, J.; Lee, S.; Kim, J.; Pané, S.; Nelson, B.J.; Choi, H. A needle-type microrobot for targeted drug delivery by affixing to a microtissue. Adv. Healthc. Mater. 2020, 9, 1901697. [Google Scholar] [CrossRef]
- Jeong, J.; Jang, D.; Kim, D.; Lee, D.; Chung, S.K. Acoustic bubble-based drug manipulation: Carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot. Sens. Actuators A Phys. 2020, 306, 111973. [Google Scholar] [CrossRef]
- Gong, D.; Celi, N.; Zhang, D.; Cai, J. Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl. Mater. Interfaces 2022, 14, 6320–6330. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M.; Habib, M. Electromagnetic actuation for a micro/nano robot in a three-dimensional environment. Micromachines 2022, 13, 2028. [Google Scholar] [CrossRef]
- Salmanipour, S.; Diller, E. Eight-degrees-of-freedom remote actuation of small magnetic mechanisms. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3608–3613. [Google Scholar]
- Wang, Q.; Yang, L.; Zhang, L. Micromanipulation using reconfigurable self-assembled magnetic droplets with needle guidance. IEEE Trans. Autom. Sci. Eng. 2021, 19, 759–771. [Google Scholar] [CrossRef]
- Jeong, J.; Jang, D.; Chung, S.K. Target drug delivery technology (carrying, releasing, penetrating) using acoustic bubbles embedded in an electromagnetically driven microrobot. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 59–61. [Google Scholar]
- Erni, S.; Schürle, S.; Fakhraee, A.; Kratochvil, B.E.; Nelson, B.J. Comparison, optimization, and limitations of magnetic manipulation systems. J. Micro-Bio Robot. 2013, 8, 107–120. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D.I.; Kwon, S.H.; Park, S. Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. ACS Appl. Mater. Interfaces 2021, 13, 19633–19647. [Google Scholar] [CrossRef]
- Kim, D.I.; Lee, H.; Kwon, S.H.; Sung, Y.J.; Song, W.K.; Park, S. Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval. Adv. Healthc. Mater. 2020, 9, 2000118. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, B.; Dormer, K.; Rutel, I.B. A two-magnet system to push therapeutic nanoparticles. AIP Conf. Proc. 2010, 1311, 77. [Google Scholar]
- Purcell, E.M. Life at low Reynolds number. Am. J. Phys. 1977, 45, 3–11. [Google Scholar] [CrossRef]
- Fusco, S.; Huang, H.W.; Peyer, K.E.; Peters, C.; Häberli, M.; Ulbers, A.; Spyrogianni, A.; Pellicer, E.; Sort, J.; Pratsinis, S.E.; et al. Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 2015, 7, 6803–6811. [Google Scholar] [CrossRef]
- Peyer, K.E.; Zhang, L.; Nelson, B.J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, C.; Pané, S.; Nelson, B.J. Dynamic modeling of magnetic helical microrobots. IEEE Robot. Autom. Lett. 2021, 7, 1682–1688. [Google Scholar] [CrossRef]
- Samsami, K.; Mirbagheri, S.A.; Meshkati, F.; Fu, H.C. Stability of soft magnetic helical microrobots. Fluids 2020, 5, 19. [Google Scholar] [CrossRef]
- Lee, H.; Park, S. Magnetically Actuated Helical Microrobot with Magnetic Nanoparticle Retrieval and Sequential Dual-Drug Release Abilities. ACS Appl. Mater. Interfaces 2023, 15, 27471–27485. [Google Scholar] [CrossRef]
- Qiu, F.; Mhanna, R.; Zhang, L.; Ding, Y.; Fujita, S.; Nelson, B.J. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sens. Actuators B Chem. 2014, 196, 676–681. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Yang, X.; Yang, L.; Shen, Y.; Shang, W. Multi-functionalized micro-helical capsule robots with superior loading and releasing capabilities. J. Mater. Chem. B 2021, 9, 1441–1451. [Google Scholar] [CrossRef]
- Gervasoni, S.; Terzopoulou, A.; Franco, C.; Veciana, A.; Pedrini, N.; Burri, J.T.; de Marco, C.; Siringil, E.C.; Chen, X.Z.; Nelson, B.J.; et al. CANDYBOTS: A new generation of 3D-printed sugar-based transient small-scale robots. Adv. Mater. 2020, 32, 2005652. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.y.; Pane, S.; Nelson, B.J.; Choi, H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv. Healthc. Mater. 2021, 10, 2001096. [Google Scholar] [CrossRef] [PubMed]
- Katsamba, P.; Lauga, E. Micro-tug-of-war: A selective control mechanism for magnetic swimmers. Phys. Rev. Appl. 2016, 5, 064019. [Google Scholar] [CrossRef]
- Giltinan, J.; Katsamba, P.; Wang, W.; Lauga, E.; Sitti, M. Selectively controlled magnetic microrobots with opposing helices. Appl. Phys. Lett. 2020, 116. [Google Scholar] [CrossRef]
- Wei, T.; Liu, J.; Li, D.; Chen, S.; Zhang, Y.; Li, J.; Fan, L.; Guan, Z.; Lo, C.M.; Wang, L.; et al. Development of Magnet-Driven and Image-Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Small 2020, 16, 1906908. [Google Scholar] [CrossRef] [PubMed]
- Go, G.; Han, J.; Zhen, J.; Zheng, S.; Yoo, A.; Jeon, M.J.; Park, J.O.; Park, S. A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. Adv. Healthc. Mater. 2017, 6, 1601378. [Google Scholar] [CrossRef]
- Xin, C.; Jin, D.; Hu, Y.; Yang, L.; Li, R.; Wang, L.; Ren, Z.; Wang, D.; Ji, S.; Hu, K.; et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 2021, 15, 18048–18059. [Google Scholar] [CrossRef] [PubMed]
- Darmawan, B.A.; Lee, S.B.; Go, G.; Nguyen, K.T.; Lee, H.S.; Nan, M.; Hong, A.; Kim, C.S.; Li, H.; Bang, D.; et al. Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release. Sens. Actuators B Chem. 2020, 324, 128752. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Go, G.; Jin, Z.; Darmawan, B.A.; Yoo, A.; Kim, S.; Nan, M.; Lee, S.B.; Kang, B.; Kim, C.S.; et al. A Magnetically Guided Self-Rolled Microrobot for Targeted Drug Delivery, Real-Time X-ray Imaging, and Microrobot Retrieval. Adv. Healthc. Mater. 2021, 10, 2001681. [Google Scholar] [CrossRef]
- Folio, D.; Ferreira, A. Modeling and Estimation of Self-Phoretic Magnetic Janus Microrobot With Uncontrollable Inputs. IEEE Trans. Control Syst. Technol. 2022, 30, 2681–2688. [Google Scholar] [CrossRef]
- Arcese, L.; Fruchard, M.; Ferreira, A. Adaptive controller and observer for a magnetic microrobot. IEEE Trans. Robot. 2013, 29, 1060–1067. [Google Scholar] [CrossRef]
- Xie, H.; Sun, M.; Fan, X.; Lin, Z.; Chen, W.; Wang, L.; Dong, L.; He, Q. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci. Robot. 2019, 4, eaav8006. [Google Scholar] [CrossRef]
- Lu, K.; Zhou, C.; Li, Z.; Liu, Y.; Wang, F.; Xuan, L.; Wang, X. Multi-level magnetic microrobot delivery strategy within a hierarchical vascularized organ-on-a-chip. Lab Chip 2024, 24, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Rezende, R.A.; Pereira, F.D.; Kasyanov, V.; Ovsianikov, A.; Torgensen, J.; Gruber, P.; Stampfl, J.; Brakke, K.; Nogueira, J.A.; Mironov, V.; et al. Design, physical prototyping and initial characterisation of ‘lockyballs’ This paper reports the fabrication of interlockable microscale scaffolds using two photon polymerization (2PP) and proposes a “lockyball” approach for tissue self-assembly for biofabrication. Virtual Phys. Prototyp. 2012, 7, 287–301. [Google Scholar]
- Danilevicius, P.; Rezende, R.A.; Pereira, F.D.; Selimis, A.; Kasyanov, V.; Noritomi, P.Y.; da Silva, J.V.; Chatzinikolaidou, M.; Farsari, M.; Mironov, V. Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement. Biointerphases 2015, 10, 021011. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Luo, T.; Wang, R.; Liu, C.; Chen, S.; Li, D.; Yue, J.; Cheng, S.H.; Sun, D. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 2018, 3, eaat8829. [Google Scholar] [CrossRef] [PubMed]
- Go, G.; Jeong, S.G.; Yoo, A.; Han, J.; Kang, B.; Kim, S.; Nguyen, K.T.; Jin, Z.; Kim, C.S.; Seo, Y.R.; et al. Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 2020, 5, eaay6626. [Google Scholar] [CrossRef] [PubMed]
- Kirillova, A.; Ionov, L. Shape-changing polymers for biomedical applications. J. Mater. Chem. B 2019, 7, 1597–1624. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, T.; Liu, R.; Zhang, Z.; Liu, J. Selective and Independent Control of Microrobots in a Magnetic Field: A Review. Engineering 2023, 24, 21–38. [Google Scholar] [CrossRef]
- Chen, W.; Wen, Y.; Fan, X.; Sun, M.; Tian, C.; Yang, M.; Xie, H. Magnetically actuated intelligent hydrogel-based child-parent microrobots for targeted drug delivery. J. Mater. Chem. B 2021, 9, 1030–1039. [Google Scholar] [CrossRef]
- Ye, M.; Zhou, Y.; Zhao, H.; Wang, X. Magnetic Microrobots with Folate Targeting for Drug Delivery. Cyborg Bionic Syst. 2023, 4, 0019. [Google Scholar] [CrossRef] [PubMed]
- Beladi-Mousavi, S.M.; Khezri, B.; Krejcova, L.; Heger, Z.; Sofer, Z.; Fisher, A.C.; Pumera, M. Recoverable bismuth-based microrobots: Capture, transport, and on-demand release of heavy metals and an anticancer drug in confined spaces. ACS Appl. Mater. Interfaces 2019, 11, 13359–13369. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, Y. Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int. J. Biol. Macromol. 2022, 203, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, H.; Tian, C.; Jia, J.; Xie, H. Multiscale Magnetic Hydrogel Robot with a Core–Shell Structure for Active Targeted Delivery. ACS Appl. Polym. Mater. 2022, 4, 8645–8655. [Google Scholar] [CrossRef]
- Lee, H.; Choi, H.; Lee, M.; Park, S. Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus. Biomed. Microdevices 2018, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Stuart, C.H.; Horita, D.A.; Thomas, M.J.; Salsbury, F.R., Jr.; Lively, M.O.; Gmeiner, W.H. Site-specific DNA–Doxorubicin conjugates display enhanced cytotoxicity to breast cancer cells. Bioconjug. Chem. 2014, 25, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Oz, Y.; Barras, A.; Sanyal, R.; Boukherroub, R.; Szunerits, S.; Sanyal, A. Functionalization of reduced graphene oxide via thiol–maleimide “click” chemistry: Facile fabrication of targeted drug delivery vehicles. ACS Appl. Mater. Interfaces 2017, 9, 34194–34203. [Google Scholar] [CrossRef] [PubMed]
- Villa, K.; Krejčová, L.; Novotnỳ, F.; Heger, Z.; Sofer, Z.; Pumera, M. Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv. Funct. Mater. 2018, 28, 1804343. [Google Scholar] [CrossRef]
- Mallick, S.; Abouomar, R.; Rivas, D.; Sokolich, M.; Kirmizitas, F.C.; Dutta, A.; Das, S. Doxorubicin-Loaded Microrobots for Targeted Drug Delivery and Anticancer Therapy. Adv. Healthc. Mater. 2023, 12, 2300939. [Google Scholar] [CrossRef]
- Song, X.; Chen, Z.; Zhang, X.; Xiong, J.; Jiang, T.; Wang, Z.; Geng, X.; Cheang, U.K. Magnetic tri-bead microrobot assisted near-infrared triggered combined photothermal and chemotherapy of cancer cells. Sci. Rep. 2021, 11, 7907. [Google Scholar] [CrossRef]
- Akolpoglu, M.B.; Alapan, Y.; Dogan, N.O.; Baltaci, S.F.; Yasa, O.; Aybar Tural, G.; Sitti, M. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. Sci. Adv. 2022, 8, eabo6163. [Google Scholar] [CrossRef]
- Gyak, K.W.; Jeon, S.; Ha, L.; Kim, S.; Kim, J.y.; Lee, K.S.; Choi, H.; Kim, D.P. Magnetically Actuated SiCN-Based Ceramic Microrobot for Guided Cell Delivery. Adv. Healthc. Mater. 2019, 8, 1900739. [Google Scholar] [CrossRef]
- Noh, S.; Jeon, S.; Kim, E.; Oh, U.; Park, D.; Park, S.H.; Kim, S.W.; Pané, S.; Nelson, B.J.; Kim, J.Y.; et al. A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small 2022, 18, 2107888. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Kim, S.; Ha, S.; Lee, S.; Kim, E.; Kim, S.Y.; Park, S.H.; Jeon, J.H.; Kim, S.W.; Moon, C.; et al. Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 2019, 4, eaav4317. [Google Scholar] [CrossRef]
- Li, Y.; Dong, D.; Qu, Y.; Li, J.; Chen, S.; Zhao, H.; Zhang, Q.; Jiao, Y.; Fan, L.; Sun, D. A Multidrug Delivery Microrobot for the Synergistic Treatment of Cancer. Small 2023, 19, 2301889. [Google Scholar] [CrossRef]
- Chen, W.; Sun, M.; Fan, X.; Xie, H. Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release. Appl. Mater. Today 2020, 19, 100583. [Google Scholar] [CrossRef]
- Heister, E.; Neves, V.; Tîlmaciu, C.; Lipert, K.; Beltrán, V.S.; Coley, H.M.; Silva, S.R.P.; McFadden, J. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 2009, 47, 2152–2160. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Development of ultrasound treated polyvinyl alcohol/tea polyphenol composite films and their physicochemical properties. Ultrason. Sonochem. 2019, 51, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, L.; Chen, B.; Ou, J.; Wang, F.; Gao, J.; Jiang, J.; Ye, Y.; Wang, S.; Tong, F.; et al. Magnetically powered helical hydrogel motor for macrophage delivery. Appl. Mater. Today 2021, 25, 101197. [Google Scholar] [CrossRef]
- Tu, L.; Liao, Z.; Luo, Z.; Wu, Y.L.; Herrmann, A.; Huo, S. Ultrasound-controlled drug release and drug activation for cancer therapy. Exploration 2021, 1, 20210023. [Google Scholar] [CrossRef]
- Suslick, K.S. Ultrasound: Its Chemical, Physical, and Biological Effects; Vch Publishers: New York, NY, USA, 1988. [Google Scholar]
- Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cai, J.; Sun, L.; Zhang, S.; Gong, D.; Li, X.; Yue, S.; Feng, L.; Zhang, D. Facile fabrication of magnetic microrobots based on spirulina templates for targeted delivery and synergistic chemo-photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11, 4745–4756. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, L.; Liu, F.; Qi, X.; Ge, Y.; Shen, S. Azo-functionalized Fe3O4 nanoparticles: A near-infrared light triggered drug delivery system for combined therapy of cancer with low toxicity. J. Mater. Chem. B 2016, 4, 3660–3669. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, K.M.; Chatzipirpiridis, G.; Becsek, B.; Lühmann, T.; Ergeneman, O.; Nelson, B.J.; Pané, S. Functional polypyrrole coatings for wirelessly controlled magnetic microrobots. In Proceedings of the 2013 IEEE Point-of-Care Healthcare Technologies (PHT), Bangalore, India, 16–18 January 2013; pp. 22–25. [Google Scholar]
- Li, M.; Wu, J.; Lin, D.; Yang, J.; Jiao, N.; Wang, Y.; Liu, L. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy. Acta Biomater. 2022, 154, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Gleich, B.; Schmale, I.; Nielsen, T.; Rahmer, J. Miniature magneto-mechanical resonators for wireless tracking and sensing. Science 2023, 380, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chan, K.F.; Yuan, K.; Wang, Q.; Xia, X.; Yang, L.; Ko, H.; Wang, Y.X.J.; Sung, J.J.Y.; Chiu, P.W.Y.; et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 2021, 6, eabd2813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lo, F.P.W.; Zheng, J.Q.; Bai, W.; Yang, G.Z.; Lo, B. Data-driven microscopic pose and depth estimation for optical microrobot manipulation. ACS Photonics 2020, 7, 3003–3014. [Google Scholar] [CrossRef]
- Turan, M.; Pilavci, Y.Y.; Ganiyusufoglu, I.; Araujo, H.; Konukoglu, E.; Sitti, M. Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots. Mach. Vis. Appl. 2018, 29, 345–359. [Google Scholar] [CrossRef]
- Luo, X.; Xie, L.; Zeng, H.Q.; Wang, X.; Li, S. Monocular endoscope 6-DoF tracking with constrained evolutionary stochastic filtering. Med. Image Anal. 2023, 89, 102928. [Google Scholar] [CrossRef]
- Hong, A.; Zeydan, B.; Charreyron, S.; Ergeneman, O.; Pané, S.; Toy, M.F.; Petruska, A.J.; Nelson, B.J. Real-Time Holographic Tracking and Control of Microrobots. IEEE Robot. Autom. Lett. 2017, 2, 143–148. [Google Scholar] [CrossRef]
- Lv, J.; Hu, Y.; Zhao, H.; Ye, M.; Ding, N.; Zhong, J.; Wang, X. High-resolution and high-speed 3D tracking of microrobots using a fluorescent light field microscope. Quant. Imaging Med. Surg. 2023, 13, 1426. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Feng, J.; Zhang, X.; Sun, J.; Fan, C.; Ge, Z. Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv. Drug Deliv. Rev. 2021, 173, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Shen, J.; Ohulchanskyy, T.Y.; Patel, N.J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R.K.; Ågren, H.; Prasad, P.N.; et al. (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 2012, 6, 8280–8287. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.; Bardhan, N.M.; Qi, J.; Gu, L.; Eze, N.A.; Lin, C.W.; Kataria, S.; Hammond, P.T.; Belcher, A.M. Deep-tissue optical imaging of near cellular-sized features. Sci. Rep. 2019, 9, 3873. [Google Scholar] [CrossRef] [PubMed]
- Derfus, A.M.; Chan, W.C.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, Y.; Zhang, L. Recent progress on micro-and nano-robots: Towards in vivo tracking and localization. Quant. Imaging Med. Surg. 2018, 8, 461. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Dong, D.; Lam, W.; Xing, L.; Wei, T.; Sun, D. Automated in vivo navigation of magnetic-driven microrobots using OCT imaging feedback. IEEE Trans. Biomed. Eng. 2019, 67, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Psomadakis, C.E.; Marghoob, N.; Bleicher, B.; Markowitz, O. Optical coherence tomography. Clin. Dermatol. 2021, 39, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Yu, H.; Zheng, J.; Zhao, X.; Guo, H.; Qiu, Y.; Wang, X.; Liu, L.; Li, W.J. A chemotactic microrobot with integrated iridescent surface for optical-tracking. Chem. Eng. J. 2023, 472, 144222. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L. Ultrasound imaging and tracking of micro/nanorobots: From individual to collectives. IEEE Open J. Nanotechnol. 2020, 1, 6–17. [Google Scholar] [CrossRef]
- Pane, S.; Iacovacci, V.; Sinibaldi, E.; Menciassi, A. Real-time imaging and tracking of microrobots in tissues using ultrasound phase analysis. Appl. Phys. Lett. 2021, 118, 014102. [Google Scholar] [CrossRef]
- Tiryaki, M.E.; Demir, S.O.; Sitti, M. Deep learning-based 3D magnetic microrobot tracking using 2D MR images. IEEE Robot. Autom. Lett. 2022, 7, 6982–6989. [Google Scholar] [CrossRef]
- Vergne, C.; Inácio, J.; Quirin, T.; Sargent, D.; Madec, M.; Pascal, J. Tracking of a magnetically navigated millirobot with a magnetic field camera. IEEE Sens. J. 2023, 24, 7336–7344. [Google Scholar] [CrossRef]
- Nguyen, P.B.; Kang, B.; Bappy, D.; Choi, E.; Park, S.; Ko, S.Y.; Park, J.O.; Kim, C.S. Real-time microrobot posture recognition via biplane X-ray imaging system for external electromagnetic actuation. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Rawson, S.D.; Maksimcuka, J.; Withers, P.J.; Cartmell, S.H. X-ray computed tomography in life sciences. BMC Biol. 2020, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Guan, Z.; Dai, X.; Shen, Y.; Wei, Q.; Ren, L.; Jiang, J.; Xiao, Z.; Jiang, Y.; Liu, D.; et al. Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nat. Commun. 2021, 12, 4310. [Google Scholar] [CrossRef] [PubMed]
- Heo, M.B.; Lim, Y.T. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials 2014, 35, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, J.; Kahkoska, A.R.; Gu, Z. Photoacoustic drug delivery. Sensors 2017, 17, 1400. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Xiong, W.; Sun, S.; Zhang, P.; Zhu, J.J. Recent advances in drug release monitoring. Nanophotonics 2019, 8, 391–413. [Google Scholar] [CrossRef]
- Kumar, S.; Richards-Kortum, R. Optical molecular imaging agents for cancer diagnostics and therapeutics. Nanomedicine 2006, 1, 23–30. [Google Scholar] [CrossRef]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef] [PubMed]
- Klasson, A.; Ahrén, M.; Hellqvist, E.; Söderlind, F.; Rosén, A.; Käll, P.; Uvdal, K.; Engström, M. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 2008, 3, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, J.D.; Vijayaragavan, V.; Bhakoo, K.K.; Tan, T.T.Y. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 2012, 48, 10322. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R.; Elizondo, G.; Wittenberg, J.; Rabito, C.A.; Bengele, H.H.; Josephson, L. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 1990, 175, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Kararsiz, G.; Duygu, Y.C.; Wang, Z.; Rogowski, L.W.; Park, S.J.; Kim, M.J. Navigation and Control of Motion Modes with Soft Microrobots for Drug Delivery at Low Reynolds Numbers. Micromachines 2023, 14, 1209. [Google Scholar] [CrossRef] [PubMed]
- Parvareh, A.; Ibrahimi, F.; Nasseri, M.A. Nonlinear swimming magnetically driven microrobot influenced by a pulsatile blood flow through adaptive backstepping control having weight estimation. Int. J. Dyn. Control 2023, 1–12. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.; Zhang, L. Autonomous navigation of magnetic microrobots in a large workspace using mobile-coil system. IEEE/ASME Trans. Mechatron. 2021, 26, 3163–3174. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Fan, Q. Adaptive learning and sliding mode control for a magnetic microrobot precision tracking with uncertainties. IEEE Robot. Autom. Lett. 2023, 8, 7767–7774. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Ahmed, A.; Noh, S.; Gharamaleki, N.L.; Kim, S.; Chowdhury, A.M.B.; Kim, J.Y.; Pané, S.; Nelson, B.J.; Choi, H. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. Nat. Mach. Intell. 2024, 6, 92–105. [Google Scholar] [CrossRef]
- Behrens, M.R.; Ruder, W.C. Smart magnetic microrobots learn to swim with deep reinforcement learning. Adv. Intell. Syst. 2022, 4, 2200023. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Jia, H.R.; Jiang, Y.W.; Guo, Y.; Duan, Q.Y.; Xu, K.F.; Shan, B.H.; Liu, X.; Chen, X.; Wu, F.G. A red blood cell-derived bionic microrobot capable of hierarchically adapting to five critical stages in systemic drug delivery. Exploration 2023, 4, 20230105. [Google Scholar] [CrossRef]
- Wang, J.; Jiao, N.; Tung, S.; Liu, L. Automatic path tracking and target manipulation of a magnetic microrobot. Micromachines 2016, 7, 212. [Google Scholar] [CrossRef] [PubMed]
- Sitti, M.; Ceylan, H.; Hu, W.; Giltinan, J.; Turan, M.; Yim, S.; Diller, E. Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 2015, 103, 205–224. [Google Scholar] [CrossRef]
- Park, J.; Jin, C.; Lee, S.; Kim, J.Y.; Choi, H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 2019, 8, 1900213. [Google Scholar] [CrossRef]
- Kim, D.I.; Lee, H.; Kwon, S.H.; Choi, H.; Park, S. Magnetic nano-particles retrievable biodegradable hydrogel microrobot. Sens. Actuators B Chem. 2019, 289, 65–77. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J.; Xu, J.; Xu, T.; Tang, T.; Bian, L.; Wang, Y.X.J.; et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155. [Google Scholar] [CrossRef]
- Gong, D.; Cai, J.; Celi, N.; Feng, L.; Jiang, Y.; Zhang, D. Bio-inspired magnetic helical microswimmers made of nickel-plated Spirulina with enhanced propulsion velocity. J. Magn. Magn. Mater. 2018, 468, 148–154. [Google Scholar] [CrossRef]
- Sun, M.; Fan, X.; Meng, X.; Song, J.; Chen, W.; Sun, L.; Xie, H. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale 2019, 11, 18382–18392. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Park, S.H.; Kim, E.; Kim, J.Y.; Kim, S.W.; Choi, H. A Magnetically Powered Stem Cell-Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Adv. Healthc. Mater. 2021, 10, 2100801. [Google Scholar] [CrossRef]
- Terzopoulou, A.; Wang, X.; Chen, X.Z.; Palacios-Corella, M.; Pujante, C.; Herrero-Martín, J.; Qin, X.H.; Sort, J.; deMello, A.J.; Nelson, B.J.; et al. Biodegradable metal–organic framework-based microrobots (MOFBOTs). Adv. Healthc. Mater. 2020, 9, 2001031. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.Z.; Alcântara, C.C.; Sevim, S.; Hoop, M.; Terzopoulou, A.; De Marco, C.; Hu, C.; de Mello, A.J.; Falcaro, P.; et al. MOFBOTS: Metal–organic-framework-based biomedical microrobots. Adv. Mater. 2019, 31, 1901592. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Huang, Z.; Liu, X.; Qian, J.; Xu, J.; Yang, X.; Sun, A.; Ge, J. Iron-induced myocardial injury: An alarming side effect of superparamagnetic iron oxide nanoparticles. J. Cell. Mol. Med. 2015, 19, 2032. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Qin, C.; Wang, X.L.; Yang, G.S.; Shao, K.Z.; Lan, Y.Q.; Su, Z.M.; Huang, P.; Wang, C.G.; Wang, E.B. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 2012, 41, 6906–6909. [Google Scholar] [CrossRef] [PubMed]
- Jebellat, I.; Jebellat, E.; Amiri-Margavi, A.; Vahidi-Moghaddam, A.; Pishkenari, H.N. A reinforcement learning approach to find optimal propulsion strategy for microrobots swimming at low reynolds number. Robot. Auton. Syst. 2024, 175, 104659. [Google Scholar] [CrossRef]
- Dhatt-Gauthier, K.; Livitz, D.; Wu, Y.; Bishop, K.J. Accelerating the Design of Self-Guided Microrobots in Time-Varying Magnetic Fields. JACS Au 2023, 3, 611–627. [Google Scholar] [CrossRef]
Work(s) | Loading Method | Main Materials | Fabrication Method | Loading Rate ↑ | Loading Time ↓ | Release Rate ↓ | Release Method |
---|---|---|---|---|---|---|---|
Ye et al. [79] | Physical Mixing | GelMA + e@ZIF-8 with ABF-MOF(FA)-DOX | Photopolymerization | - | 2.5 h | 96 h | Acidic environment release |
Chen et al. [78] | Physical Mixing | Calcium alginate hydrogel | Extrusion droplet method | - | - | 200 min | Intestinal slow release |
Fusco et al. [52] | Physical Mixing | NIPAAM + Graphene Oxide | Photopolymerization | - | - | 40%/4 h | NIR response |
Kim et al. [49] | Physical Mixing | PEGDA + PLGA-DOX + MNPs | Photopolymerization | - | - | 6 min | AMFs heats response |
Darmawan et al. [66] | Physical Adsorption | E-dent 400 photoresist + MNPs | Photopolymerization | 0.45 µg/MMR | Overnight | ≥40%/10 s | HIFU acoustic drive |
Lee et al. [83] | Physical Adsorption | NIPAM + MNPs | Photopolymerization | - | - | 80.8%/6 h | NIR |
Beladi-Mousavi et al. [80] | Physical Adsorption | Bi, Ni, Pt | Electrodeposition | 145% of geometric surface area | 725 min | Minutes in neutral pH | Electroreduction |
Chen et al. [82] | Physical Adsorption | Chitosan particles + MNPs | Electrodeposition | 65.2% for CUR, 41.6% for DOX | - | DOX 60.1%/24 h; CUR 36.2%/24 h | Slow release |
Gong et al. [42] | Physical Adsorption | Ch. + MNPs | Biological template | 95% with 80 µg/mL DOX | - | 15%/180 min | Acidic slow release |
li et al. [104] | Physical Adsorption | Diatom + MNPs | Biological template | 29.1% | - | 60%/8 h | Acidic slow release |
Villa et al. [86] | Covalent Bonding | Platinum + MNPs | Pt sputtering | 36.4% ± 4.3% | 24 h | - | - |
Lee et al. [48] | Covalent Bonding | PEGDA + MNPs | Two-photon polymerization printing | - | - | 87%/40 min | - |
Malilick et al. [87] | Covalent Bonding | EDC + NHS + Paramagnetic beads | - | 10 µeq/g | - | - | Protease activity release |
Song et al. [88] | Covalent Bonding | Azo compound + NH2-Fe3O4 beads | - | 5.3 µg/mg | - | 50%/10 h | NIR response |
Akolpoglu et al. [89] | Covalent Bonding | E. coli MG1655 + MNPs | Biological template | 86.1% | - | 50%/5 h | NIR response |
Tracking Method | Imaging Depth | Limitations | Benefits | Reference |
---|---|---|---|---|
Endoscopic camera imaging | - | No penetration, Limited field of view | Low cost, High spatial resolution, High temporal resolution | [106,107,108,109,110,119] |
Fluorescent imaging | <10 mm | Generally low penetration, Hard for integration, Potentially harmful | Low cost, High spatial resolution, High Temporal Resolution | [106,111,112,115,116] |
OCT imaging | <2 mm | Low penetration | Extreme High spatial resolution, Safe, High temporal resolution | [6,117,118] |
MRI | >1000 mm | High cost, Low temporal resolution, Sensitive to magnetic interference, | Strong penetration, High spatial resolution | [6,116,122] |
Magnetic field camera | <30 mm | Low temporal resolution, Sensitive to magnetic interference. | Low cost, High spatial resolution | [123] |
Ultrasonic Imaging | <100 mm | Limited spatial resolution, Limited robot’s size | Low cost, High temporal resolution, Safe | [116,120,121] |
PET and SPECT Imaging | >1000 mm | Low temporal resolution, Potentially harmful, Low spatial resolution | Strong penetration | [6,116,125] |
X-ray Imaging | >1000 mm | Low temporal resolution, Potentially harmful | Relative strong penetration | [124,125] |
Category | Author(s) | Navigation Method | Relative Error | Robot’s Length | Speed |
---|---|---|---|---|---|
Multi-level Adjustment Navigation | Wang et al. [142]. | Expert control algorithm | 15.3–48.3% robot length | 600 m | 5 mm/s |
Lu et al. [71]. | Multi-level magnetic control | 57–88% robot length | 25–35 m | 194.7 ± 27.5 m/s | |
Machine Learning Based Navigation | Liu et al. [138]. | Adaptive neural network integrated with a sliding mode control | 11.1–33.3% robot length | 2–3 mm * | above 20 m/s * |
Abbasi et al. [139]. | Reinforcement learning coupled with a gradual training strategy | 50% robot length | 800 m | above 1.5 mm/s | |
Salehi et al. [32]. | Model-free deep reinforcement learning | - | 1.5 mm | 11.9 mm/s * | |
Dynamics Model Based Navigation | Yang et al. [137]. | Double-loop motion controller | 98% robot length | 900 m | 6.2 mm/s |
Parvareh et al. [136]. | Adaptive backstepping methods | 10% robot length * | 500 m | less than 40 mm/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Cong, Q.; Zhang, D. Magnetic Microrobots for In Vivo Cargo Delivery: A Review. Micromachines 2024, 15, 664. https://doi.org/10.3390/mi15050664
Lin J, Cong Q, Zhang D. Magnetic Microrobots for In Vivo Cargo Delivery: A Review. Micromachines. 2024; 15(5):664. https://doi.org/10.3390/mi15050664
Chicago/Turabian StyleLin, Jialin, Qingzheng Cong, and Dandan Zhang. 2024. "Magnetic Microrobots for In Vivo Cargo Delivery: A Review" Micromachines 15, no. 5: 664. https://doi.org/10.3390/mi15050664
APA StyleLin, J., Cong, Q., & Zhang, D. (2024). Magnetic Microrobots for In Vivo Cargo Delivery: A Review. Micromachines, 15(5), 664. https://doi.org/10.3390/mi15050664