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Abstract: Anodic aluminum oxide (AAO) has been widely applied for the surface protection of
electronic component packaging through a pore-sealing process, with the enhanced hardness value
reaching around 400 Vickers hardness (HV). However, the traditional AAO fabrication at 0~10 ◦C
for surface protection takes at least 3–6 h for the reaction or other complicated methods used for the
pore-sealing process, including boiling-water sealing, oil sealing, or salt-compound sealing. With the
increasing development of nanostructured AAO, there is a growing interest in improving hardness
without pore sealing, in order to leverage the characteristics of porous AAO and surface protection
properties simultaneously. Here, we investigate the effect of voltage on hardness under the same
AAO thickness conditions in oxalic acid at room temperature from a normal level of 40 V to a high
level of 100 V and found a positive correlation between surface hardness and voltage. The surface
hardness values of AAO formed at 100 V reach about 423 HV without pore sealing in 30 min. By
employing a hybrid pulse anodization (HPA) method, we are able to prevent the high-voltage burning
effect and complete the anodization process at room temperature. The mechanism behind this can be
explained by the porosity and photoluminescence (PL) intensity of AAO. For the same thickness of
AAO from 40~100 V, increasing the anodizing voltage decreases both the porosity and PL intensity,
indicating a reduction in pores, as well as anion and oxygen vacancy defects, due to rapid AAO
growth. This reduction in defects in the AAO film leads to an increase in hardness, allowing us to
significantly enhance AAO hardness without a pore-sealing process. This offers an effective hardness
enhancement in AAO under economically feasible conditions for the application of hard coatings
and protective films.

Keywords: anodic aluminum oxide; AAO; hybrid pulse anodization; HPA; high hardness; hard
anodization; rapid growth

1. Introduction

Aluminum alloy is one of the most commonly used metals in the industry. To adapt
to different working environments and provide protection for electronic components,
surface treatment of aluminum metal is a crucial problem for development. The anodic
aluminum oxide (AAO) technology is the most well-known method for surface protection
and modification [1–6]. In contrast to the thin oxide film formed naturally on aluminum
metal under ambient conditions with thickness less than ten nanometers, AAO can be
produced at thicknesses ranging from nanometers to tens of micrometers, depending on
controlled parameters in the anodization process [7–10]. AAO technology is currently
utilized for surface protection in various products such as cellphones, computers, aircraft,
and aerospace equipment.

As a ceramic material, AAO is well-known for its outstanding resistance to scratching
and corrosion, and numerous studies focus on surface hardness improvement [11–17]. For
instance, Ateş et al. [13] achieved a hardness of 52–264 HV by controlling different AAO
preparation parameters without a pore-sealing process. However, this value falls below
the recognized hardness (>400 HV) required for 3C products. Additionally, the process
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time is long, ranging from 8 to 16 h, which does not meet the efficiency requirements for
industrial preparation. Modification methods to achieve desired properties often involve
not only controlling anodizing parameters for structural adjustments but also employing
sealing techniques such as boiling-water sealing, oil sealing, or salt-compound sealing. These
sealing methods lead to a reduction in porosity, effectively enhancing surface hardness.
Abdel-Gawad et al. [14] explored sulfuric acid anodizing combined with nickel acetate sealing
for AA2024, AA6061, and AA7075, achieving high hardness (>400 HV). The anodizing process
time in this case was only 30 min, aligning with the industry’s need for efficient preparation.
However, a drawback of nickel acetate sealing is the deposition of nickel and nickel acetate
coloration on the surface, which is a significant disadvantage for many products that rely on
the AAO pore characteristics for coloring. Consequently, this is one of the reasons why nickel
acetate sealing is not currently used in the industry. AAO has established certain standards for
surface protection and impact testing in the casings of 3C products and the aerospace industry.
Traditionally, the preparation of AAO requires pore-sealing processes [11,14], annealing [15],
or the use of highly toxic sulfuric acid [12,16] to achieve the desired specifications for hardness.
Otherwise, it may fall slightly short of requirements [13,17]. These methods are associated
with disadvantages such as time-consuming, complex processes and toxic solutions. In
the current industrial landscape, there is a demand for low-cost, rapid processing and
compatibility with coloring processes. Methods such as oil sealing [18], Ni-P [19] sealing,
or Ni-B [20] sealing, involving extended processing time, are still not a suitable solution.
Therefore, proposing a rapid and simple process that does not affect the color of AAO surface
to enhance hardness is still worthy of further exploration.

On the other hand, a rapid and highly efficient method called hard anodization (HA)
for producing AAO was proposed by Lee et al. in 2006 [21]. The mild anodization (MA) and
HA were compared from AAO produced in oxalic acid solutions using traditional 40 V and
high voltage of 100–150 V. This work reveals that AAO growth rates increased several tens of
times under high voltage HA conditions. This phenomenon is now widely used to improve
the efficiency of AAO production, with many scholars conducting in-depth studies [22–25].
However, the distinction between MA and HA is not merely in the difference in growth
rates: the former exhibits a significant decrease in water content of 0.3–0.4 wt.% in MA,
compared to 0.1 wt.% in HA, and carbon contents of 2.4 wt.% in MA, compared to 1.8 wt.%
in HA [21], along with a more compact structure with fewer impurities. In AAO prepared
using oxalic acid, the carbon element originates from oxalate anions, which is also the
reason for the photoluminescence (PL) effect in AAO. The PL characteristics of AAO
were initially reported by Yamamoto et al. in 1981 [26], with a stronger signal in the PL
spectrum near 470 nm, which is attributed to the contribution of oxalate ions. Meanwhile,
Huang et al. [27] suggested that the PL in AAO membrane originates from oxygen ion
defect states (F center) within the AAO membrane, with emission peaks located at 413 nm
and 430 nm. The PL effect of AAO has been explored in many studies [28–31], among
which Zheng et al. [31] investigated the variation in PL intensity of AAO under different
anodizing voltages. It was found that the PL intensity of AAO significantly decreases at
high voltages of 130 V compared with traditional MA at 40 V [31]. This implies that, under
HA conditions, there may be lower water content and fewer anions entering the AAO pore
walls, resulting in different compositions within the AAO.

Here, we improved the traditional HA process using HPA to enhance the surface
hardness of AAO. Based on the characteristics of HA mentioned above, we proposed
using hybrid pulse anodization (HPA) method [8,32] to conduct anodization at different
voltages to enhance the AAO surface hardness. The HA method helps reduce the ingress of
anions and water content diffusion into the AAO pore walls, which could result in a denser
arrangement of AAO structure, leading to a significant improvement in hardness. The PL
characteristics of oxalate anions and oxygen vacancies are also discussed for the mechanism
of AAO hardness improvement. Additionally, the HPA process can suppress Joule heating,
allowing the AAO reaction temperature to rise to room temperature, thus addressing
the drawback of the traditional HA process, which is limited to low temperatures. By
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utilizing the instantaneous growth of AAO with high current density, surface hardness
is significantly enhanced, achieving high hardness (>400 HV) for protection on AA1050
without pore sealing. This method allows for quick preparation, providing advantages
of low cost, a simple process, and high efficiency. Moreover, the porous characteristic is
preserved, making it suitable for further applications.

2. Materials and Methods

The experimental process flow is drawn in Figure 1. First, the commercial 1050 aluminum
alloy of 1 mm thick was cut into 2.5 × 2.5 cm2 for our experiments. The AA1050 was cleaned
using DI water and electropolished by a solution of perchloric acid:ethanol = 1:1 (v/v)
at 0 ◦C, at 20 V for 1 min, followed by perchloric acid:ethanol = 1:4 (v/v) for 5 min with
the same parameters to reduce the surface roughness of commercial alloy. In terms of the
anodization process, a hybrid pulse anodization (HPA) method [33–35] was employed for
one-step anodization at 25 ± 0.5 ◦C in 0.3 M oxalic acid. The normal-to-high anodization
potentials were set from normal (40 V) to high (100 V), with each sample controlled for
various amounts of time to reach a thickness of 12 ± 0.5 µm, exploring changes in hardness
under the same AAO thickness. The thickness of 12 µm was selected due to the current AAO
thickness for 3C products is approximately 12 ± 1 µm. From the calculated growth rates and
experiments, it was determined that it takes approximately 7200 s, 2520 s, 450 s, and 390 s,
respectively, to achieve the specified thickness at voltages of 40 V, 60 V, 80 V, and 100 V. The
duty ratio during the anodization process is controlled within 20~50% to avoid the burning
effect from excessive Joule heating and preserve the pore structure. Microhardness testing
was conducted using a Vickers hardness (HV) test, and the measurement results were
averaged from 5 random points on each sample. The nanostructure of AAO was observed
by high-resolution field scanning electron microscopy (HRFESEM, JEOL JSM-7000F, Tokyo,
Japan), and the photographs were analyzed by using the commercial software ImageJ (ver.
1.53t) to investigate AAO pore size, porosity, and thickness. The PL spectrum is measured
by a Micro-Raman and Micro-PL spectrometer (Jobin Yvon/Labram HR), with a laser
wavelength of 325 nm.
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Figure 1. The experimental process flow for AAO hardness test.

3. Results and Discussion

Figure 2a–d illustrates the current–time plots for anodization voltages ranging from 40 V
to 100 V. Figure 2a,b depicts the initial 10 min of the reaction at 40 V and 60 V in HPA, showing
that the current trend stabilizes at around 200 s. Figure 2c,d represents the entire process’s
current–time relationship at 80 V and 100 V, respectively. Due to the capacitive characteristics
of AAO, there is a slight reverse discharge effect when no voltage is applied. Therefore, in
this experiment, a small negative voltage is applied to suppress this effect, aiming to reduce
Joule heating in HPA and further preserve pore integrity [35]. In Figure 2a–d, almost zero
current can be observed in the negative voltage period, illustrating the method of maintaining
nanoscale pore integrity under high-voltage conditions at room temperature using HPA.

Figure 3 shows the surface morphology of AAO prepared at (a) 40 V, (b) 60 V, (c) 80 V,
and (d) 100 V. The AAO pore structure is observed to be complete and without signs of
burning due to the unique HPA technique applied in our laboratory. By using a small
negative potential after a large anodization positive potential, a regular period of 0 current
during the anodization process is achieved. This allows AAO to dissipate heat and maintain
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a complete structure during growth. Through image analysis, the average pore diameters
in the SEM images were calculated as 31.1 ± 4.0 nm, 33.1 ± 3.7 nm, 41.2 ± 3.7 nm, and
43.3 ± 3.8 nm, corresponding to anodization voltages at 40–100 V. In Figure 4, the porosities
were investigated by the gray-scale image analysis, with results of 10.2 ± 0.9%, 9.1 ± 0.8%,
7.3 ± 0.6%, and 6.7 ± 0.5%. Although the pore diameter increases with voltage, the porosity
of high-voltage AAO decreases due to the growth of interpore distance. Hence, there are
fewer pores and a lower porosity in AAO prepared under high voltage conditions. This also
indicates a higher proportion of AAO, which is conducive to the enhancement of hardness.
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The cross-section micrographs of AAO thickness from controlling the growth at
the same thickness under different potentials are shown in Figure 5. After multiple
experiments, we finally conducted anodization for 2 h, 42 min, 8 min, and 6 min 30 s at
40 V, 60 V, 80 V, and 100 V, respectively, and achieved thicknesses of 11.9 ± 0.5, 12.2 ± 0.4,
12.1 ± 0.6, and 12.3 ± 0.7 µm. The anodization parameters and pore structure of AAO
are also listed in Table 1 for comparison. Since thickness is the primary factor affecting
AAO hardness, we controlled all thicknesses to be within 12 ± 0.3 µm to avoid the
influence of this parameter. In addition, the growth rate of the 100 V sample reached
1.9 µm/min, faster than traditional mild or hard anodization methods, and also 18 times
the rate for our 40 V sample without burning effect. This is attributed to the regular
cooling mechanism in HPA, allowing the growth rate to surpass traditional limits and
achieve faster AAO growth. However, there is little difference in the growth rates of
AAO prepared at 80 V and 100 V, indicating that there is a substantial increase in growth
rate once the voltage exceeds a certain degree. Additionally, as the voltage increases
from 40 V to 100 V, the porosity of AAO decreases from 10.2% to 6.7%. This contributes
to the increase in interpore distance with higher voltage. Porosity also represents the
air content within the AAO film, so it is expected that high-voltage AAO with lower
porosity will exhibit better hardness performance.

Figure 6 presents the results of hardness testing on AAO samples, where the results
for 40–100 V are (a) 83 HV, (b) 127 HV, (c) 320 HV, and (d) 423 HV. The measurement results
were averaged from five random points on each sample, and we obtained similar results
by repeating the experiment three times. We observed a significant improvement in the
hardness of AAO with an increase in potential, even at the same thickness of 12 ± 0.3 µm.
The hardness at 100 V is approximately five times higher than the traditional parameter at
40 V, with the most noticeable change observed in the experimental data from 60 V to 80 V.
Therefore, elevating the potential in the anodization process not only effectively increases
the growth rate of AAO but also enhances surface hardness. This provides an opportunity
for AAO to achieve high hardness while retaining its porous characteristics, contributing to
the potential for diverse applications.
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The thickness was controlled at 12 ± 0.5 µm.

Table 1. The comparison of AAO parameters and pore morphology.

Voltage (V) Time (s) Pore Diameter
(nm) Porosity (%) Thickness

(µm)

Sample 1 40 7200 31.1 ± 4.0 10.2 ± 0.9 11.9 ± 0.5

Sample 2 60 2520 33.1 ± 3.7 9.1 ± 0.8 12.2 ± 0.4

Sample 3 80 450 41.2 ± 3.7 7.3 ± 0.6 12.1 ± 0.6

Sample 4 100 390 43.3 ± 3.8 6.7 ± 0.5 12.3 ± 0.7
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The increase in AAO hardness with the rise in voltage can be attributed to two reasons:
first, the decrease in porosity from 10.2% to 6.7% with increasing voltage, as listed in
Table 1; secondly, the reduction in water and carbon contents with voltage, corresponding
to the photoluminescence (PL) spectrum. The structure factor to influence surface hardness
is the porosity of AAO. While the pore diameter of AAO increases with voltage, the
interpore distance also increases, leading to a slight decrease in porosity. Relevant data
can be observed from SEM images and summarized in Table 1, where the porosity of AAO
at 100 V is 6.7%, a 3.5% decrease compared to AAO at 40 V. This reduction in porosity
decreases the air content, contributing to a minor increase in the surface hardness of AAO.
However, the traditional DCA preparation method cannot achieve such rapid growth
without a burning effect under high-voltage and room-temperature conditions. Therefore,
employing HPA technology to increase the instantaneous growth rate of AAO is an effective
way to enhance the hardness of AAO without a pore-sealing process.

The other important factor is the number of defects in AAO films under different
conditions. In 2006, Lee et al. [21] proposed that the water content of MA is 0.3–0.4 wt.% in
AAO, which is higher than the value of 0.1 wt.% in HA. Furthermore, it was also observed
that the carbon content in MA is 2.4 wt.%, which is higher than the 1.8 wt.% in HA, and
the reduction of these impurities significantly contributes to the increase in AAO hardness.
In the anodization process with oxalic acid, carbon contents primarily originate from
the oxalate ions in the solution. Therefore, observing the PL spectrum of AAO directly
provides insights into the number of impurities. Figure 7 shows the PL spectra of AAO
prepared at different voltages, with the PL intensities of 40 V (black), 60 V (red), 80 V
(green), and 100 V (blue) arranged from high to low intensity. The PL spectra were collected
and analyzed using a 325 nm laser with an integration time of 10 s. This demonstrates
that AAO prepared at lower voltages exhibits stronger PL spectra. The PL characteristics
of AAO were initially reported by Yamamoto et al. in 1981 [26], with a stronger signal
in the PL spectrum near 470 nm, which is contributed by the oxalate ions in the AAO
pore walls. In addition, Huang et al. [27] suggested that the PL in the AAO membrane
originates from oxygen vacancies (F center) within the AAO membrane, and the emission
peaks are located at 413 nm and 430 nm. Therefore, the PL properties of AAO prepared in
oxalic acid involve these three peaks, resulting in a PL peak falling between 413–470 nm,
consistent with our results for 40 V–60 V. However, at higher voltages, AAO exhibits
an inconsistent PL spectrum. In 2007, Zheng et al. [31] reported a reduction in PL intensity
as the anodization potential increases, with the peak shifting beyond 500 nm at 130 V.
Their findings align closely with our PL measurements from high-voltage anodization
of 80–100 V. The difference arises from their use of a low-temperature process and the
addition of ethanol in the electrolyte to reduce Joule heating. In contrast, we utilized HPA
for anodization at room temperature, allowing us to achieve even faster growth rates at 80 V
and 100 V compared to their 130 V process. The decrease in PL intensity for high-voltage
AAO can be well-explained by the concurrent improvement in surface hardness. Since PL
of AAO originates from both oxalate ions and oxygen defects, these impurities in the AAO
membrane can result in a decrease in its hardness. In the case of preparing AAO at high
voltages, the rapid self-organization leads to a reduction in defects within the AAO pore
wall, further enhancing the surface hardness with denser structure. The AAO hardness and
PL peak intensities at 413 nm and 470 nm are listed in Table 2 for comparison. In Table 2,
there is a negative correlation between AAO hardness and PL intensity. The PL intensities
of 100 V AAO at 413 nm and 470 nm are 5629 and 4685, respectively, while the traditional
mild anodized 40 V AAO exhibits significantly (8 times) higher intensities of 49,519 and
37,919. This indicates that defects such as anions and oxygen vacancies in AAO are much
higher in MA conditions and indeed lead to a decrease in hardness. On the other hand,
the hardness variation from 60 V to 80 V is most pronounced, increasing from 127 HV to
320 HV. This phenomenon is also reflected in the differences in PL intensity. The intensities
of 60 V AAO at 413 nm and 470 nm are 37,365 and 32,389, respectively, while 80 V AAO
has intensities of only 8315 and 8434, resulting in a difference by a factor of four. This
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also suggests that, when the voltage of AAO exceeds a certain degree, hardness suddenly
increases, aligning with the abrupt increase in growth rate. The AAO prepared at 100 V
exhibits the lowest PL intensity, with values of only 5629 at 413 nm and 4285 at 470 nm,
indicating the highest hardness with the lowest impurities of anions and oxygen vacancies.
Therefore, high-voltage anodization can effectively reduce impurities in AAO, while rapid
self-organization and a dense structure are crucial to enhance surface hardness.
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Figure 7. The PL spectrum from AAO fabricated at 40 V (black), 60 V (red), 80 V (green), and
100 V (blue) under the same thickness. It was collected and analyzed using a 325 nm laser with
an integration time of 10 s.

Table 2. The comparison of AAO surface hardness and PL intensity at 413 nm and 470 nm.

Voltage (V) Hardness (HV) PL Intensity at 413 nm PL Intensity at 470 nm

Sample 1 40 83 49,519 37,919

Sample 2 60 127 37,365 32,389

Sample 3 80 320 8315 8434

Sample 4 100 423 5629 4685

4. Conclusions

We successfully improved the surface hardness of AAO using a simple, cost-effective
method: one-step anodization. Through an HPA approach to suppress Joule heating, the
anodization voltage of AAO was increased to 80–100 V while preserving the complete pore
structure of AAO without a burning effect. The growth rate is able to reach 1.9 µm/min
at an anodization voltage of 100 V, which is a significant improvement compared to the
0.1 µm/min growth rate at 40 V. AAO produced under high-voltage parameters exhibited
a denser structure due to rapid self-organization, resulting in fewer defects in water content,
oxalate anions, and oxygen vacancies. Among samples with the same thickness (40 V–100 V)
of about 12 µm, it was observed that the hardness of AAO at 100 V reached 423 HV,
approximately 5 times higher than the traditional value of 83 HV at 40 V. The factors
for the hardness enhancement of AAO at high voltage of 100 V are attributed to the
decreased porosity and the reduction in defects such as water content, oxalate anions
(carbon content), and oxygen vacancies in the AAO membrane. First, the reduction in
porosity, as observed in SEM images, is linked to the increased voltage. The lower porosity
indicates a decrease in the proportion of air within the AAO membrane, thereby increasing
the overall structural strength. This contributes to the increased hardness of AAO produced
under HA conditions. Second, the intensity observed in the PL spectrum decreases with
increasing voltage, indicating a rapid reduction in anions and oxygen vacancies during
high-voltage anodization. Moreover, the water content is also reduced by HA conditions.
The decrease in defects in the AAO membrane leads to an increase of surface hardness.
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