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Abstract: Since its invention in the 1960s, one of the most significant evolutions of metal-oxide semi-
conductor field effect transistors (MOSFETs) would be the 3D version that makes the semiconducting
channel vertically wrapped by conformal gate electrodes, also recognized as FinFET. During recent
decades, the width of fin (Wfin) and the neighboring gate oxide width (tox) in FinFETs has shrunk
from about 150 nm to a few nanometers. However, both widths seem to have been leveling off
in recent years, owing to the limitation of lithography precision. Here, we show that by adapting
the Penn model and Maxwell–Garnett mixing formula for a dielectric constant (κ) calculation for
nanolaminate structures, FinFETs with two- and three-stage κ-graded stacked combinations of gate
dielectrics with SiO2, Si3N4, Al2O3, HfO2, La2O3, and TiO2 perform better against the same structures
with their single-layer dielectrics counterparts. Based on this, FinFETs simulated with κ-graded gate
oxides achieved an off-state drain current (IOFF) reduced down to 6.45 × 10−15 A for the Al2O3: TiO2

combination and a gate leakage current (IG) reaching down to 2.04 × 10−11 A for the Al2O3: HfO2:
La2O3 combination. While our findings push the individual dielectric laminates to the sub 1 nm
limit, the effects of dielectric permittivity matching and κ-grading for gate oxides remain to have the
potential to shed light on the next generation of nanoelectronics for higher integration and lower
power consumption opportunities.

Keywords: graded dielectric permittivity gate oxides; κ-graded stacked gate oxides; dielectric permit-
tivity matching; grading profile; effective dielectric constant (κEFF); Penn Model; Maxwell–Garnett
mixing formula; SILVACO ATLAS; Fin-Field Effect Transistors (FinFET)

1. Introduction

Silicon oxide has been used as a gate dielectric material on thin film transistors for
over 40 years, but as dimensions shrink, alternatives with higher dielectric constants are
necessary to reduce leakage currents. While high-κ dielectrics have been investigated
for their thermal stability and compatibility with Si, FinFET technology, with 3D double-
gate and triple-gate transistors, has further advanced, leading to smaller, more efficient
transistors with reduced power consumption [1–5].

The continuous downscaling of MOS devices is indispensable for increasing the tran-
sistor density and performance, leading to efficient chip functionality at higher speeds.
However, this scaling poses challenges such as severe short channel effects (SCEs), in-
creased fabrication costs, and difficulties in device processing [6–8]. Multi-gate MOS device
structures like FinFETs, which use multiple gate electrodes and an ultrathin body, have
been developed to address these challenges, showing an excellent device performance at
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scaled parameters. The use of metal gates has become attractive due to their chemical
stability with high-κ gate dielectrics and the ability to maintain higher threshold voltages
while acquiring high gate stack stability [9–14].

Research on stacked gate dielectrics on thin film transistors first appeared in 1994 by
Kuo when SiNx laminates with different dielectric deposition conditions were experimented
and compared with single SiNx as the gate dielectric [15]. This paper analyzed how TFT
mobility, VTH, SS, ION, and IOFF was affected due to different gas flow concentrations in
the PECVD process to develop the SiNx layer. Regarding gate dielectrics consisting of two-
or three-stage known dielectrics working on FinFETs, fabrications on top of Si-channel
FinFETs were presented in papers by Dosev [16] in 2003 and by Jankovic [17] in 2012.
Kauerauf [18] in 2005 tried to minimize the gate leakage current by using SiO2 and various
high-κ dielectrics like ZrO2 and HfO2 together in the same stack. In 2019, Das et al. [19]
proposed a dual-material-gate, dual-stacked-gate dielectrics and gate-source-overlapped
Germanium FinFET with a low leakage IG current, high ID current, and high drain current
ratio ION/IOFF. Gangwani et al. [20] analyzed the temperature performance of a stacked
SiO2: HfO2-gated FinFET, which showed an enhanced output performance and reduced
short channel effects compared to the conventional FinFET in 2022.

In a patent by Gardner [21] in 2000, a three-layer graded dielectric film was formed
on an upper surface of the semiconductor substrate. A second dielectric film of SiNx
was deposited on the first dielectric film and a third dielectric film of oxide of one of the
elements Be, Mg, Ca, Ti, Zr, or Ta was then deposited on the surface of the second dielectric
film. All dielectric films were then annealed along with the semiconductor substrate by
immersing into an inert ambient maintained at a temperature in the range of approximately
600–1100 ◦C. This work was the main cornerstone and first sign of commercialization of
the graded dielectric research upon thin film transistors and was followed by a patent by
Kang [22] applied by Samsung in 2011 on the employing of a graded metal oxide layer
for planar transistors and another patent by Gealy [23] applied by Micron Technology on
graded dielectric structures in 2017.

Simulation wise, on heterogated structures, SILVACO ATLAS and many other simulation
tools are employed with many standard recombination and continuity models like Shockley–
Read–Hall, Schrödinger, and Auger, which are used widespread for 2D/3D simulations
of normal or hetero-gated single-, double-, or triple-gated FinFETs in [24–26]. Bousari [27]
demonstrated, in simulations with this tool, that hetero-gated dielectric structures of SiO2,
Si3N4, Al2O3, and HfO2 enable a significant performance increase on dual- and triple-gate
FinFETs. Vijaya [28], again via the same tool, exercised single-layer SiO2, Si3N4, HfO2, and
TiO2 gate oxides upon 32 nm silicon-on-insulator (SOI) FinFET, where HfO2 and TiO2 usage
significantly enhanced the device ION and transconductance. Saha [29], in 2023, performed
the optimization and analysis of a triple-fin Heterostructure-on-Insulator (HOI) with a dual-
stacked gate oxide combination using SiO2, Si3N4, Al2O3, HfO2, and ZrO2 dielectrics at a
10 nm FinFET. Vimala [30] performed simulations using gate metal engineering with Co, W,
and Al together on a trigate FinFET. Nagy et al. [31] explored nanowire FET architectures
through a simulation in a VENDES finite element toolbox that integrated Schrödinger
equation-based quantum corrected methods. Garduño [32] modeled gate leakage currents
for many FinFET structures and the implementation was performed in Verilog-A.

Even though these studies demonstrated multi-material stacked gate oxides’ potential
to function as better gate insulators, the process of the selection of the material and the
related thickness engineering have appeared rather ad hoc, arbitrary, or merely by past
research experience, which overlooked measuring or to calculating the resultant dielectric
permittivity, κEFF, of the stacked gate oxide structure.

According to Giustino, Peng, and Wang [33–36], dielectric permittivity matching
reduces strain especially at insulator interfaces aiding in minimizing interface stress. Even
if metals hypothetically have bulk dielectric permittivity of near infinity, they tend to have
dielectric permittivity values closer to ceramics and oxides when their thicknesses are
limited to a few nanometers [37–41].
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The permittivity matching TFT designs appeared [42–44] when the SiO2 and SiNx gate
insulators were discovered to be behaving well when neighboring the Si channel [44], and
designers frequently used the Equivalent Oxide Thickness (EOT) convention [41,45–47] for
the determination of the thickness of hi-κ gate oxide to replace the SiO2 or SiNx. But EOT
also had its disadvantages, like its invalidity for non-planar devices due to the impact of
device geometry on capacitance behavior [48] and a gate-leakage current increase when
the gate oxide layer is scaled down below 2 nm [49].

With κ-grading (also called as “epsilon grading” (ε-grading), so that dielectric permit-
tivity changes through device depth is interchangeably designated as “ε” or “κ” in different
references), our aim is to match the dielectric permittivity of stages; i.e., the Si channel is
followed by a dielectric material with the lowest bulk dielectric constant κb, followed by a
material with a higher κb, then followed by a material with a higher κb again, until the gate
is reached. κ-grading together with an effective dielectric constant (κEFF) calculation of the
staged/graded gate oxide structure is proposed for the better effectivity of gate oxide. We
highlight three steps in the incorporation of this technique as follows:

1. κ-grading is employed for stacked gate oxide. This is detailed in Section 3.1.1.
2. Even when a single material gate dielectric is used, the Penn model [50,51] can be

utilized for the calculation of effective dielectric constants of the gate oxide layer,
κEFF, as the bulk dielectric constant usage will be misleading for gate oxides with
thicknesses of a few nanometers. This is detailed in Section 3.1.2.

3. With each addition of a new laminate material, the overall effective dielectric constant
of the gate oxide layer, κEFF, can be recalculated using the Maxwell–Garnett [52]
mixing formula, so that a fair mechanism is established to compare the performance
of FinFETs with respect to this κEFF as the independent variable. The mentioned
calculations are given in Section 3.1.3.

Our research work offers the most comprehensive simulation work in the investigation
of stacked gate oxides on FinFETs with 41 different gate oxide combinations, all with a
3 nm total thickness, adding two-stage or three-stage κ-grading features and taking an
effective dielectric constant (κEFF) calculation into account. In this paper, we present the
simulation results obtained using SILVACO ATLAS for a 3D silicon on insulator (SOI)
n-FinFET structure with κ-graded stacked gate oxides.

This manuscript is divided into several sections: In Section 2, the FinFET device struc-
ture, its geometry and gate dielectric combinations, and their designations are introduced.
In Section 3, details of the κ-grading, effective dielectric constant κEFF calculation, mathe-
matical methods for FinFET modeling, simulation tool usage, and choice of performance
metrics are presented. Our simulation results are exhibited and discussed with some
analysis and insights that we derived in Sections 4–6. Finally, fabrication considerations
and the conclusions are reported in Sections 7 and 8.

2. Device Structure
2.1. FinFET Geometric Model

The 3D Technology Computer-Aided Design (TCAD) structure for a FinFET with
a gate oxide with graded dielectric permittivity is shown in Figure 1. Using SILVACO
ATLAS for device simulation and with a gate oxide thickness (tox) of 3 nm, the buried
oxide (BOX) material is kept as HfO2 and never changed through all simulations. An
equal doping concentration (Nd) of 5 × 1019 cm−3 is the used source–drain channel region.
Other FinFET properties are shown in Table 1. We call this FinFET type “FinFET with
κ-graded gate oxide” or “gκ-FinFET” throughout the paper. The device structure is of an
n-type FinFET, comprising three gates, one on top and two at the sides of the fin-shaped
channel, not isolated, but behaving as a single inversed U-shaped gate. Metal with a work
function (ϕw) of 5 eV is applied at the gate, common for n+-doped Si channel junctionless
architectures [7,27,28]. Ni or CrAu alloy is suitable for this work function value, common
for junctionless n-TFTs.
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Figure 1. (a) gκ-FinFET geometric model with 3-stage κ-graded gate oxide with thickness tox, (b) inset
of the cross-section, with geometry parameters in Table 1.

Table 1. Simulated gκ-FinFET properties.

Property Value Note/Abbreviation

Channel (Fin) Length 14 nm Lfin
Gate thickness 1 nm Tg

Channel (Fin) Width 2 nm Wfin
Gate Length 14 nm Lg

Fin Width 2 nm Wfin
Fin Height 5 nm Hfin

Channel Concentration 5 × 1019 cm−3 Nd
Gate work function 5 eV ϕw

Gate metal CrAu alloy -
FinFET Length 34 nm LFET
FinFET Width 10 nm WFET

Total Gate Oxide thickness 3 nm tox
Buried Oxide (BOX) Thickness 3 nm tBOX

BOX material HfO2 kept as is in all simulations
Bulk Si Thickness 10 nm tBULK

2.2. Gate Dielectrics

Six base dielectric materials, SiO2, Si3N4, Al2O3, HfO2, La2O3, and TiO2, bulk dielectric
constants of which are shown in Table 2, are selected as single-layer gate dielectrics of
a 3 nm thickness (tox) for a 14 nm channel length (LFET) gκ-FinFET structure. These six
materials are used one-by-one for first six simulations to form the control group.

Then 15 different two-stage and 20 different three-stage κ-graded material combina-
tions composed of these six base dielectrics, as designated in Table 3, are devised between
the Si channel and the gate. The AHT case consists of Al2O3: HfO2: TiO2 gate oxides, as
shown in Figure 1.

Table 2. Bulk dielectric constant of gate oxide materials [53].

Dielectric Material κb

SiO2 3.9
Si3N4 7.4
Al2O3 9
HfO2 25
La2O3 30
TiO2 95
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Table 3. gκ-FinFET reference designators for single and compound gate oxides of 41 simulations.

Gate Oxide Type
Dielectric
Material

Combination

FinFET
Reference
Designator

Single-material
gate oxide

SiO2 S1
Si3N4 S2
Al2O3 A
HfO2 H
La2O3 L
TiO2 T

Dual-material κ-graded
gate oxide

SiO2: Si3N4 S1S2
SiO2: Al2O3 S1A
SiO2: HfO2 S1H
SiO2: La2O3 S1L
SiO2: TiO2 S1T

Si3N4: Al2O3 S2A
Si3N4: HfO2 S2H
Si3N4: La2O3 S2L
Si3N4: TiO2 S2T

Al2O3: HfO2 AH
Al2O3: La2O3 AL
Al2O3: TiO2 AT
HfO2: La2O3 HL
HfO2: TiO2 HT
La2O3: TiO2 LT

Triple-material
κ-graded gate oxide

SiO2: Si3N4: Al2O3 S1S2A
SiO2: Si3N4: HfO2 S1S2H
SiO2: Si3N4: La2O3 S1S2L
SiO2: Si3N4: TiO2 S1S2T

SiO2: Al2O3: HfO2 S1AH
SiO2: Al2O3: La2O3 S1AL
SiO2: Al2O3: TiO2 S1AT
SiO2: HfO2: La2O3 S1HL
SiO2: HfO2: TiO2 S1HT
SiO2: La2O3: TiO2 S1LT

Si3N4: Al2O3: HfO2 S2AH
Si3N4: Al2O3: La2O3 S2AL
Si3N4: Al2O3: TiO2 S2AT
Si3N4: HfO2: La2O3 S2HL
Si3N4: HfO2: TiO2 S2HT
Si3N4: La2O3: TiO2 S2LT

Al2O3: HfO2: La2O3 AHL
Al2O3: HfO2: TiO2 AHT
Al2O3: La2O3: TiO2 ALT
HfO2: La2O3: TiO2 HLT

In Table 3, we introduce reference designators in the last column for gκ-FinFET
equipped with each gate oxide material for the easy reading of the figures incorporated
in the results. The designator consists of two to four alphanumeric characters, including
the first character of each gate oxide it consists of. Since SiO2 and Si3N4 have the same
first character, gκ-FinFETs with their respective gate oxides were designated as S1 and S2,
respectively. All the parameters for gκ-FinFET were kept the same at each simulation, only
the gate oxide layer material combination was changed, making a total of 41 simulations.
The performances of the FinFETs with these gate oxide combinations, will be shown in
subsequent pages and can be followed with these designations which appear in boldface
throughout the paper and the individual stage thicknesses read from Table 4. For example,
FinFET with a gate oxide of a single layer of SiO2 is designated as S1, the same with a single
layer of Si3N4 as S2; for the Al2O3: TiO2 gate oxide combination, the FinFET is designated
as AT, and for a Si3N4: La2O3: TiO2 combination, the same is designated as S2LT.
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Table 4. Effective dielectric constants κEFF of stacked nano-laminated gate oxides.

gκ-FinFET
Reference
Designator

Gate Oxide Material Thickness in nm

Total SiO2 Si3N4 Al2O3 HfO2 La2O3 TiO2 κEFF

S1 3 3 - - - - - 3.35
S2 3 - 3 - - - - 6.18
A 3 - - 3 - - - 7.48
H 3 - - - 3 - - 20.43
L 3 - - - - 3 - 24.48
T 3 - - - - - 3 77.09

S1S2 3 1.5 1.5 - - - - 3.48
S1A 3 1.5 - 1.5 - - - 3.86
S1H 3 1.5 - - 1.5 - - 7.48
S1L 3 1.5 - - - 1.5 - 8.59
S1T 3 1.5 - - - - 1.5 22.92
S2A 3 - 1.5 1.5 - - - 4.95
S2H 3 - 1.5 - 1.5 - - 8.73
S2L 3 - 1.5 - - 1.5 - 9.86
S2T 3 - 1.5 - - - 1.5 24.26
AH 3 - - 1.5 1.5 - - 14.19
AL 3 - - 1.5 - 1.5 - 10.43
AT 3 - - 1.5 - - 1.5 24.87
HL 3 - - - 1.5 1.5 - 15.53
HT 3 - - - 1.5 - 1.5 30.76
LT 3 - - - - 1.5 1.5 32.53

S1S2A 3 1 1 1 - - - 3.07
S1S2H 3 1 1 - 1 - - 4.66
S1S2L 3 1 1 - - 1 - 5.13
S1S2T 3 1 1 - - - 1 11.19
S1AH 3 1 - 1 1 - - 4.86
S1AL 3 1 - 1 - 1 - 5.34
S1AT 3 1 - 1 - - 1 12.00
S1HL 3 1 - - 1 1 - 7.24
S1HT 3 1 - - 1 - 1 13.42
S1LT 3 1 - - - 1 1 14.02
S2AH 3 - 1 1 1 - - 5.82
S2AL 3 - 1 1 - 1 - 6.31
S2AT 3 - 1 1 - - 1 12.42
S2HL 3 - 1 - 1 1 - 7.86
S2HT 3 - 1 - 1 - 1 14.10
S2LT 3 - 1 - - 1 1 14.71
AHL 3 - - 1 1 1 - 8.14
AHT 3 - - 1 1 - 1 14.39
ALT 3 - - 1 - 1 1 15.02
HLT 3 - - - 1 1 1 17.73

3. Methods

Our methods, mathematical derivations and modeling, choice of performance metrics,
and usage of these figures of merit (FoM) for evaluation are presented herein with following
main steps:

# κ-grading and calculation of effective κ of the gate oxide.
# Mathematical modeling in ATLAS Software v5.34.0.R.
# Choice of performance metrics for performance evaluation.
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3.1. κ-Grading and Calculation of Effective κ for Gate Oxides
3.1.1. κ-Grading

Regarding κ-grading, we mean that, among selected dielectric materials to be used for
stacking, Si channel deposition should be followed by dielectric material with lowest bulk
dielectric constant κb, followed by material with higher κb, then followed by a material
with higher κb again, until gate is reached like in Figure 2. We mainly target dielectric
permittivity matching of gate oxide at both ends of Si channel side and metal side. Thus,
as permittivity matching at both ends of the gate oxide is considered, we implement
this concept herein by κ-grading, keeping permittivity of neighboring materials as close
as possible.
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3.1.2. Penn Model: Calculation of κ for Each Nanolaminate

Suppose κbA, κbB are bulk dielectric constants for materials A and B and κA, κB are
calculated dielectric constants of their respective nanolaminates with f , the volumetric
filling factor for material A, and 1 − f is the volumetric filling factor for material B, in a
two-phase dielectric system of Figure 3.
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A theoretical foundation was first given by Penn’s 1962 paper [50]. For Si, it has been
shown that for thicknesses greater than 200 Å (20 nm), bulk κbA can be considered to be
unchanged and equivalent to κA, and if tA is less than 200 Å, one needs to consider using
the wave number dependence equation for changing dielectric function. For practical
purposes, this equation evolved into a modified model [54] by Tsu in 1997, and then into a
generalized one [51] by Sharma in 2006, for calculation of size-dependent energy gap and
dielectric permittivity of nanolaminated dielectric structures under quantum confinement
effects, where κA becomes less than κbA. A patent by Gealy [23] in 2012 incorporated similar
equations to calculate the dielectric constant of thin nanolaminate, as stated in Equation (1).
Our FinFET under consideration requires 1 nm, 1.5 nm, and 3 nm gate oxide nanolaminates;
we chose to use Sharma’s generalized Penn model. Calculation of effective κ, hereinafter
κEFF, of this dielectric system in case of any narrowed individual thickness tA or tB below
200 Å is presented in two steps:
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First, nanolaminate dielectric constant κA due to thickness tA of nanometer order is to
be calculated by Equation (1):

κA = 1 +
κbA − 1

1 +
(

κ∞A
K f AtA

) (1)

where κbA is the bulk dielectric constant, κ∞A is the high-frequency dielectric constant, K f A
is Fermi wave vector, and tA is the planar thickness of the nano-scaled dielectric material A.
Equation (1) can be numerically generalized and further fitted to Equation (2) as in [51],
forming the generalized Penn Model which we utilize for our calculations of κA for desired
thickness tA:

κA = 1 +
κbA − 1

1 + 1.7tA
−1.8 (2)

When we calculate the resultant κA of material due to its nanolaminate thickness tA,
we observe significant loss in dielectric effect. This numerical approximation is depicted
in Figure 4 for TiO2 material, showing that in orders of few nanometers, κA reduction is
significant. At 3 nm thickness, κA becomes 77, at 1.5 nm it is 52.6, and at 1 nm it is 35.8
when compared to its bulk value of 95.
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3.1.3. Maxwell–Garnett Model: Calculation of κ for Whole Gate Oxide

Dielectric constant κEFF of system of nanolaminates due to thickness tox = tA + tB and
with volumetric filling factor is calculated by Maxwell–Garnett mixing formula.

κEFF, AB = κB
κA + 2κB + 2 fA(κA − κB)

κA + 2κB − 2 fA(κA − κB)
(3)

Niklasson et al. [55] used, in 1981, the Maxwell–Garnett and Bruggeman effective
medium theories to derive average dielectric permeability of heterogeneous materials and
estimated dielectric properties of a composite material composed of Cobalt and Alumina.
Petrovsky [56] laid foundations of multi-material “effective dielectric constant” calculation
with profound detail in 2012 mainly by Bruggeman equations with respect to volumetric
filling factor f . Markel [52] in 2016 issued a framework tutorial, surveying existing methods
and restating the Maxwell–Garnett mixing formula for calculation of κEFF for two-stage
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dielectrics. This formula gives the effective permittivity in terms of the permittivity and
volume fractions of the individual constituents of the complex medium and is shown in
Equation (3).

To extend this formula for a three-phase system, we denote the dielectric constants of
the three materials as κA, κB, and κC and their respective volumetric filling factors as fA,
fB, and fC where fA + fB + fC = 1, and we need to simply derive the same equation that
considers all three materials. Thus, we can now:

i. Calculate the effective dielectric constant κAB for materials A and B using the Maxwell–
Garnett mixing formula.

ii. Consider κAB as single-material AB’s dielectric constant and apply the Maxwell–
Garnett formula again, with input variables κAB and κC, to find the overall effective
dielectric constant κEFF, with fAB + fC = 1, where fAB = fA + fB, and finally, our
equation becomes Equation (4) for a complex medium of three phases, A, B, and C.

κEFF, AB = κB
κAB + 2κC + 2 fAB(κAB − κC)

κAB + 2κC − 2 fAB(κAB − κC)
(4)

Therefore, using Equations (3) and (4), we calculated the κEFF of two-stage and three-
stage dielectric materials denoted in last column of Table 4.

3.2. Mathematical Models in ATLAS

This section lays out modeling methods we utilize in ATLAS, Non-Equilibrium Green’s
Function, Hot Electron/Hole Injection Model and Direct Quantum Tunneling Model,
equations of which are employed within simulations.

3.2.1. Quantum Transport: Non-Equilibrium Green’s Function (NEGF) Approach

This fully quantum method treats such effects as source-to-drain tunneling, ballistic
transport, and quantum confinement on equal footing. This situation is common to double
gate and trigate transistors, FinFETs, and nanowire FETs.

By specifying the NEGF_MS and SCHRODINGER options on the MODELS statement,
we can launch a NEGF solver to model ballistic quantum transport in such devices as double
gate or surround gate MOSFET. An effective-mass Hamiltonian Ho of a two-dimensional
device is given by:

Ho = −h2

2

[
∂

∂x

(
1

mv
x(x, y)

∂

∂x

)
+

∂

∂y

(
1

mv
y(x, y)

∂

∂y

)]
(5)

when discretized in real space using a finite volume method. A corresponding expression
in cylindrical coordinates is:

Ho = −h2

2

[
1
r

∂

∂r

(
1

mv
r (r, z)

r
∂

∂r

)
− 1

mv
r (r, z)

m2

r2 +
∂

∂z

(
1

mv
z(r, z)

∂

∂z

)]
(6)

Rather than solving a 2D or 3D problem, which may take vast amounts of computa-
tional time, a Mode Space (MS) approach is used. A Schrodinger equation is first solved in
each slice of the device to find eigenenergies and eigenfunctions. Then, a transport equation
of electrons moving in the sub-bands is solved. As only a few lowest eigen sub-bands
are occupied and the upper sub-bands can be safely neglected, the size of the problem
is reduced. In the devices where the cross-section does not change, the sub-bands are
not quantum-mechanically coupled to each other, and the transport equations become
essentially 1D for each sub-band. Therefore, we can further divide the method into Coupled
(CMS) or Uncoupled Mode Space (UMS) approaches. ATLAS tool automatically decides
on the minimum number of sub-bands required and the method to be used. It is possible,
however, to set the number of sub-bands by using the EIGEN parameter on the MOD-
ELS statement. To enforce either CMS or UMS approaches, we can use NEGF_CMS or
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NEGF_UMS instead of NEGF_MS on the MODELS statement. The transformation of a real
space Hamiltonian Ho to a mode space is done by taking a matrix element between mth

and nth wave functions of kth and lth slices:

HMS
mnkl =

〈
Ψk

m(y)
∣∣∣Ho

∣∣∣Ψl
n(y)

〉
(7)

Skipping some middle steps of derivation from [57], 2-dimensional carrier density
and corresponding current density functions are laid as follows:

Carrier density function:

n(xi, yi) = − i
hLz

∑
k2σ

∑
mn

∫
G<

mnii(E)Ψi
m
(
yj
)
Ψ∗i

n
(
yj
) dE

2π
(8)

x-component of current density:

Jx(xi, yi) = − 2e
hLz∆x

∑
k2σ

∑
mn

∫
Re
(
ti+1jjjG<

mnii+1(E)
)
Ψi

m
(
yj
)
Ψ∗i+1

n
(
yj
) dE

2π
(9)

y-component of current density:

Jy(xi, yi) = − 2e
hLz∆y

∑
k2σ

∑
mn

∫
Re
(
tiijj+1 + G<

mnii(E)
)
Ψi

m
(
yj
)
Ψ∗i

n
(
yj+1

) dE
2π

(10)

Total current density:

J =
(

J2
x + J2

y

)1/2

(11)

Here, G< is the Green’s function as a matrix, whose diagonal elements are carrier
densities as function of energy. tijkl is an off-diagonal element of real space Hamiltonian Ho,
which couples nodes (xi,yk) and (xj,yl). In our overall model, this current density J is to be
integrated through the model geometry to yield the total current that will add up with the
currents calculated by other models stated in next two sections.

3.2.2. Lucky-Electron Hot Carrier Injection Model

The Lucky-Electron Model (LEM), proposed in 1984 by Tam, Ko, and Hu, focuses on
channel hot-electron injection in MOSFETs [58]. This model was later challenged by the
Energy-Driven Model (EDM) introduced in 2005, which emphasized the role of available
energy over peak lateral electric field in predicting hot carrier effects in MOS devices. Fur-
thermore, recent research has concentrated on electron–electron scattering-induced channel
hot-electron injection in nanoscale n-MOSFETs with high-κ/metal gate stacks, highlight-
ing the significance of trapping mechanisms in high-κ dielectric devices. Additionally,
investigations on partially depleted SOI NMOSFETs revealed the impact of hot-electron
injection on the back-gate threshold voltage and interface trap density, influencing the
device’s direct-current characteristics and radiation hardness performance [59].

In the Lucky-Electron Hot Carrier Injection Model, it is proposed that an electron is
emitted into the oxide by first gaining enough energy from the electric field in the channel to
surmount the insulator/semiconductor barrier. Once the required energy to surmount the
barrier has been obtained, the electrons are redirected towards the insulator/semiconductor
interface by some form of phonon scattering. When these conditions are met, the carrier
travelling towards the interface will then have an additional probability that it will not
suffer any additional collision through which energy could be lost.

The model implemented into ATLAS is a modified version of the model proposed
by Tam [58] and is activated by the parameters of HEI and HHI, for electron and hole
injection, respectively, on the MODELS statement. The gate electrode–insulator interface
is subdivided into several discrete segments which are defined by the mesh. For each
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segment, the lucky electron model is used to calculate the injected current into that segment.
The total gate current is then the sum of all the discrete values.

If we consider a discrete point on the gate’s electrode–insulator boundary, we can
write a mathematical formula for the current injected from the semiconductor. The formula
calculates the injected gate current contribution from every node point within the semi-
conductor according to the injection current formula, stated as 2-dimensional integral of
probability of hot electrons and holes, convolved with electron and current densities:

Iinj =
x

Pn(x, y)
∣∣∣∣ →Jn(x, y)

∣∣∣∣dxdy +
x

PP(x, y)
∣∣∣∣ →JP(x, y)

∣∣∣∣dxdy (12)

3.2.3. Direct Quantum Tunneling Model

For deep submicron devices, the thickness of the insulating layers can be very small.
For example, gate oxide thicknesses in MOS devices can be as low as several nanometers. In
this case, the main assumptions of the Fowler–Nordheim approximation [60] are generally
invalid and we need a more accurate expression for tunneling current. ATLAS used is
based on a formula, which was introduced by Price and Radcliffe [61] and developed by
later authors. It formulates the Schrödinger equation in the effective mass approximation
and solves it to calculate the transmission probability, T(E), of an electron or hole through
the potential barrier formed by the oxide layer. The incident (perpendicular) energy of the
charge carrier, E, is a parameter. It is assumed that the tunneling process is elastic. After
considering carrier statistics and integrating over lateral energy, the formula

J =
qkT

2π2h3
√

mymz

∫
T(E)ln

{
1 + e(EFr−E)/kT

1 + e(EFl−E)/kT

}
dE (13)

is obtained, which gives the current density J (A/m2) though the barrier. The effective
masses my and mz are the effective masses in the lateral direction in the semiconductor.
For example, for a direct bandgap material, where the Γ valley is isotropic, both my and
mz are the same as the density of states’ effective mass. The logarithmic term includes the
carrier statistics and EFl and EFr are the quasi-Fermi levels on either side of the barrier. The
range of integration is determined according to the band edge shape at any given contact
bias [17].

3.2.4. Employing the Computational Models in ATLAS

We model our gκ-FinFET using SILVACO ATLAS Deckbuild software tool. The family
of such tools were used in vast amounts of research to design and simulate the MOSFET
devices. ATLAS is actually a text-based language and takes an input file to be run to
simulate the TFT devices. After building mesh and device geometry definitions, basic
procedure for selecting mathematical models is adding the double line statement starting
with keywords “MODELS” and “INTERFACE” to the ATLAS file, given in statement (14):

MODELS QTUNN.EL QTUNN.HO HEI HHI SCHRODINGER NEGF_MS SP.FAST SP.GEOM = 2DYZ
INTERFACE TUNNEL

(14)

By adding these within ATLAS file, researchers can employ direct quantum tunneling
model (QTUNN.EL, QTUNN.HO) for both holes and electrons, hot-electron/hot-hole
injection (HEI, HHI) model, non-equilibrium green function (NEGF_MS) model, and
Schrodinger model [57] (SCHRODINGER), together with interface trap effect considerations
simultaneously, to model complete current densities required for drain and gate leakage on
any transistor with defined geometry, also defined in the ATLAS input (*.in) file. SP.FAST
activates a fast product–space approach in a 2D Schrödinger solver. SP.GEOM = 2DYZ sets
a dimensionality and direction of a Schrödinger solver. Value 2DYZ is default for mesh
structure in ATLAS 3D.



Micromachines 2024, 15, 726 12 of 26

3.3. Choice of Performance Metrics

Our performance metrics were selected, like in the paper by Nagy [31], for benchmark-
ing of FinFETs, with DIBL added as the most researched short-channel effect, as follows:

i. IG, on-state gate leakage current, in Amperes, leaks from gate metal through dielectric
into the channel, when VGS = 1 V. In our case, we favor to minimize.

ii. ION, on-state drain current, in Amperes, when VDS = VDD (= 1.25 V in our case) and
VGS = VDD. We favor to maximize.

iii. IOFF, off-state drain current, in Amperes, when VDS = VDD and VG = −1.5 V. We favor
to minimize.

iv. ION/IOFF ratio, unitless, accepted and powerful measure of TFT design quality. We
favor to maximize.

v. VTH, threshold voltage, in Volts, the minimum VGS voltage that drain current ID

slightly exceeds a limit current (1 × 10−7 A in our case) significant for the design. We
favor to minimize.

vi. SS, Subthreshold Slope, in mV/decade, change in the gate voltage required a decrease
in the drain current ID by one decade, SS = ∆VGS/∆log (ID). We favor to minimize.

vii. DIBL, Drain-Induced Barrier Lowering, in mV/V, represents the drain voltage VDS
influence on the threshold voltage VTH, defined as DIBL = |∆VTH|/|∆VDS|. We
favor to minimize.

as these are the primary FoMs for evaluation of thin film transistors’ performance, as
also restated by Nowbahari [62] in his comprehensive review on junctionless transistors.

4. Results

We herein exhibit the performance of simulations carried out in ATLAS with the
model given in Figure 1, of gκ-FinFET with gate oxide combinations tabulated in Table 4,
in Figures 5–13 and Tables 5–12.

4.1. Drain Current Performance

First, our drain current modeling is verified by the results given in papers with FinFET
fabrication examples [12,13,31,63]. Figure 5 shows the drain current ID for all of single, two-
stage and three-stage graded gate oxides for the gκ-FinFET device we examined, depicting
the single and compounded performances of the SiO2, Si3N4, Al2O3, HfO2, La2O3, and
TiO2 gate dielectrics. S1AL (SiO2: A2O3: La2O3) has the highest ION with 20.8 µA at
(VG = 1.25 V) performance. AT (Al2O3: TiO2 combination) has the lowest IOFF current
of 6.45 × 10−15 A. The IOFF current significantly changed with the changing dielectric
combination; it varied between 4.73 × 10−11 A and 6.45 × 10−15 A, more than four orders
of magnitude, just because of modifying the gate oxide layer.

If a single layer was used, this range would be in between 2.14 × 10−12 A (for SiO2)
and 8.18 × 10−14 A (for HfO2). The ION current would not be varying a great deal with
changing gate oxides. However, gκ-FinFET S2T (Si3N4: TiO2 gate oxide) has the highest
ION current of 2.08 × 10−5 A, better than any other single gate oxides including FinFET
H. For ION/IOFF, S2T also performed the best at 2.4 × 109, one order higher than that of
FinFET H.

As depicted in Figure 9, the best IOFF performance gate oxides are AT, S2T, AHT, S2LT,
and ALT, and from Figure 10, the best ION performance gate oxides are S1AL, S1S2A, S1L,
S1S2H, S1AH, and S1H. We can observe that no single-material gate oxide has performed
better than the two-stage or three-stage gate oxides in the drain current performances.
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Figure 5. (a) Drain Current ID for gκ-FinFETs with single, two-stage, and three-stage κ-graded gate
oxides, (b) IOFF zoomed for VG between −1.6 and −1.4 V, (c) IOFF further zoomed for VG between
−1.6 and −1.4 V, best six gκ-FinFETs, (d) ION zoomed for VG between 1.2 and 1.3 V. See Tables 7, 8
and 12 for summarized results of this figure.

4.2. Leakage Current Performance

First, we observed that our gate leakage current model is verified as Rudenko [64],
Garduno [32], Khan [65], and Golosov [66] have similar trends for IG: starting from a
negative VG, IG first decreases significantly around 6–14 orders of magnitude, depending
on the gate oxide, takes a minimum at some VG value, and then it increases steeply again.

Figure 6 shows the IG leakage current characteristics [57] for the traditional single-
material gate dielectrics together with the two-stage and three-stage κ-graded dielectrics,
with the lowest gate leakage current of 2.04 × 10−11 A (20.4 pA) at VG = 1.0 V for our
specific FinFET under study. The leakage current curves generally show a similar trend
and all tend to make local minimums at VG = 1 V, with the exception of that of TiO2 which
has a local minimum around VG = 0.75 V and a leakage current of 4.0 × 10−12 A (4 fA).
Despite this low leakage current, TiO2 does not behave well, especially regarding its DIBL,
ION, IOFF, and ION/IOFF performance; thus, the sole usage of TiO2 as a gate dielectric cannot
be advised.
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4.3. DIBL, SS, ION, IOFF, ION/IOFF, and VTH Performance

Figure 7 presents the Drain-Induced Barrier Lowering (DIBL) of FinFETs against their
effective dielectric constants of gate oxides within. As DIBL is the short-channel effect
where the drain voltage can influence the threshold voltage of the transistor, a lower DIBL
value does generally better because it means the device has better control over the threshold
voltage and is less susceptible to variations due to changes in the drain voltage.

The DIBL plot suggests that as the effective dielectric constant increases, the DIBL effect
decreases steeply and significantly from κEFF ≈ 3.35 until κEFF ≈ 35, and then increases back
until κEFF ≈ 77, point T (designates FinFET with TiO2 as gate oxide). The DIBL performance
of S2T with 41.9 mV/V is 37.4% lower than that of H. S2T, S2LT, AHT, AT, and S2HT,
which are the five best-performing gκ-FinFETs in DIBL performance.
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Table 5. DIBL of best 5 gκ-FinFETs versus the nearest performing single-layer configuration (S1).

S2T S2LT AHT AT ALT S1

DIBL (mV/V) 41.91 44.17 44.52 44.7 46.09 51.04

κEFF 24.26 14.71 14.39 24.87 15.02 3.35

Figure 8 presents the Subthreshold Slope (SS) of gκ-FinFETs against their effective
dielectric constants of gate oxides within. A lower SS means less change in the gate voltage
is required to increase the drain current by a factor of ten. This is generally desirable
as it indicates that the transistor can switch states more quickly and with less power
consumption. Essentially, a lower subthreshold slope results in more efficient transistors
that can operate effectively at lower voltages, which is especially beneficial in low-power
and high-speed applications.

The SS plot suggests that as the effective dielectric constant increases, the SS effect
decreases steeply and significantly from κEFF ≈ 3.35 until κEFF ≈ 25, just like DIBL’s regime,
then increases almost linearly back until κEFF ≈ 77, point T (designates gκ-FinFET with
TiO2 as the gate oxide). AHT, S1HT, HT, S2HT, ALT, HLT, and HT are the best-performing
FinFETs in SS performance. The SS performance of AHT with 152.0 mV/dec is 10.5% lower
than that of H.
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Table 6. Five best-performing gκ-FinFETs with lowest SS versus nearest-performing single-dielectric
FinFET L.

AHT S1HT HT S2HT ALT L

SS (mV/dec) 152.0 152.41 156.39 156.93 158.57 164.17

κEFF 14.39 13.42 30.76 14.10 15.02 24.48

Figure 9 plots the IOFF of gκ-FinFETs against the effective dielectric constant of gate
oxides within. One of the primary advantages of a lower IOFF is the decrease in power
consumption, especially important in battery-powered devices like smartphones and
laptops. When transistors leak less current in their off state, the overall power efficiency
of the device improves, leading to a longer battery life and less heat generation. Also,
with lower IOFF values, it is possible to pack more transistors into a given area without
significant overheating or power drain issues. This is critical for the ongoing trend of
miniaturization in semiconductor technology.

The IOFF plot suggests that as the effective dielectric constant increases, the IOFF
effect decreases steeply and significantly from κEFF ≈ 3.35 until κEFF ≈ 26 (that of AT),
and then increases again until κEFF ≈ 77. AT, S2T, AHT, S2LT, ALT, and S2HT are
the best-performing gκ-FinFETs in IOFF performance. The IOFF performance of AT with
6.45 × 10−15 A is 92% lower than that of H.
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Table 7. Five best-performing gκ-FinFETs with lowest IOFF versus nearest-performing single dielectric
FinFET H.

AT S2T AHT S2LT ALT H

IOFF (A) 6.45 × 10−15 7.13 × 10−15 7.75 × 10−15 8.34 × 10−15 9.15 × 10−15 8.18 × 10−14

κEFF 24.87 24.26 14.39 14.71 15.02 20.43

Figure 10 plots the ION of gκ-FinFETs against their effective dielectric constants of gate
oxides within. A higher ION implies that the transistor can deliver more current rapidly,
which generally translates to faster switching speeds. With a higher ION, a transistor can
drive larger currents through a circuit, which is essential for applications. The ION plot
suggests that as the effective dielectric constant increases, the ION effect decreases steeply
and significantly from κEFF ≈ 3.35 until κEFF ≈ 26 (that of AT), and then increases again until
κEFF ≈ 77, point T. S1AL, S1S2L, S1L, S1S2H, S1AH, and S1AH are the best-performing
gκ-FinFETs in ION performance. The ION performance of S1AL is 2.4 × 108, which is 35%
higher than that of H.
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Table 8. Five best-performing gκ-FinFETs with highest ION versus nearest-performing single dielectric
FinFET S1.

S1AL S1S2L S1L S1S2H S1AH S1

ION (A) 2.081 × 10−5 2.000 × 10−5 1.998 × 10−5 1.928 × 10−5 1.927 × 10−5 1.846 × 10−5

κEFF 5.34 5.13 8.59 4.66 4.86 3.35

Figure 11 plots the IG of gκ-FinFETs against their effective dielectric constants of gate
oxides within. The IG plot suggests that as the effective dielectric constant increases, the
ION effect decreases steeply and significantly from κEFF ≈ 3.35 until κEFF ≈ 22 (that of S1T),
and then increases again until κEFF ≈ 77.

A lower IG means the device has a better performance and less heating. A lower
leakage current is preferable, especially for memory devices such as EEPROMs where a
high IG can contribute to charge loss and memory degradation over time [67–69]. With this
fact in mind, AHL, S1, S2LT, AHT, S2HT, and S1S2H appear to be the best performers
with respect to IG. Despite S1, all others are FinFETs with three-stage gate oxides, meaning
κ-grading works properly in all cases.

We observe that no single-material gate oxide has performed better than the two-stage
or three-stage gate oxides in leakage current performances. We find that the use of κ-graded
stacked gate oxide dielectrics has the potential to generate lower gate-to-channel leakage
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currents, as stacked gate oxide AHL achieved a 76% lower IG than the FinFET with a single
HfO2 dielectric.

The performance of κ-graded gate oxides in terms of IG appears to be better than
that of single-material dielectrics, suggesting that κ-grading in gate oxides may provide a
significant advantage in reducing IG. Also, they do not tend to exhibit any deficiency in
device reliability, within the scope of this study.
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Figure 11. (a) IG of gκ-FinFETs with single, two-stage, and three-stage κ-graded gate oxides, (b) IG
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Table 9. Five best-performing gκ-FinFETs with lowest IG versus nearest-performing single dielectric
FinFET H.

AHL S1 S2LT AHT S2HT H

IG (A) 2.04 × 10−11 2.29 × 10−11 2.65 × 10−11 3.59 × 10−11 3.76 × 10−11 8.53 × 10−11

κEFF 8.14 3.35 14.71 14.39 14.10 20.43

Figure 12 plots the ION/IOFF of the gκ-FinFETs against their effective dielectric con-
stants of gate oxides within. A higher ION/IOFF is mostly desirable in any transistor
application and it indicates a distinct and clear differentiation between the “on” and “off”
states of the transistor. With a higher ratio, the transistor leaks significantly less current
in the “off” state compared to the current it conducts in the on state. As transistors are
miniaturized further, maintaining a high ION/IOFF ratio becomes increasingly important
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to ensure that the devices operate reliably without interference from leakage currents. It
enables the continued scaling down of semiconductor devices following Moore’s Law,
without performance degradation.

Our ION/IOFF plot suggests that as the effective dielectric constant increases, the IOFF
effect increases steeply and significantly from κEFF ≈ 3.35 until κEFF ≈ 24.26 (point S2T),
and then decreases again until κEFF ≈ 77. S2T, AHT, S2LT, AT, ALT, and S2HT are the
best-performing gκ-FinFETs in ION/IOFF performance. The ION/IOFF performance of S2T
is 2.4 × 109, which is 11.73 times higher than that of FinFET H. We observe that no single-
material gate oxide has performed better than the two-stage or three-stage gate oxides in
ION/IOFF performance.
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Table 10. Five best-performing gκ-FinFETs with lowest ION/IOFF versus nearest-performing single
dielectric FinFET H.

S2T AHT S2LT AT ALT H

ION/IOFF 2.40 × 109 2.02 × 109 1.93 × 109 1.89 × 109 1.72 × 109 1.88 × 108

κEFF 24.26 14.39 14.71 24.87 15.02 20.43

Figure 13 plots the VTH of the gκ-FinFETs against their effective dielectric constants
of gate oxides within. Devices with a lower VTH can operate effectively at lower voltages.
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This is particularly advantageous in low-power applications such as mobile devices and
wearable technology, where preserving battery life is crucial. A lower threshold voltage
generally allows transistors to switch on and off more quickly. This can improve the overall
speed of a processor and faster switching is beneficial for high-performance computing
and digital circuits where rapid state changes are necessary.

The VTH plot suggests that as the effective dielectric constant increases, the VTH
increases steeply and significantly from κEFF ≈ 3.35 until κEFF ≈ 26 (that of AT), and
then decreases until κEFF ≈ 77. S2A, A, S2, S1AH, S1S2H, S1S2L, and S1AL are the
best-performing gκ-FinFETs in the VTH performance. The VTH performance of S2A with
0.4731 V is 3.76% lower than that of A, 10.5% lower than that of S2, and 42% lower than
that of H. This shows how graded oxide is better than any other single dielectric, including
S2 and A individually, as shown in Table 6.
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Table 11. Five best-performing gκ-FinFETs with lowest VTH versus nearest-performing single dielec-
tric FinFET A.

S2A A S2 S1AH S1S2H S1S2L

VTH (V) 0.4731 0.4916 0.5286 0.5641 0.5683 0.5773

κEFF 4.95 7.48 6.18 4.86 4.66 5.13
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Table 12. FoM champions of gκ-FinFETs with two- and three-stage graded gate oxides compared
with FinFET with single-layer HfO2 of tox 3 nm. Boldface indicates best value among all 41 gκ-FinFET
configurations.

FoM S2A S2T AT S1AL AHL AHT H

SS (mV/dec) 381.8 164.2 159.5 299.4 188.0 152.0 169.8
DIBL

(mV/V) 286.9 41.9 44.7 169 72.1 44.52 66.9

ION (µA) 18.5 1.71 12 20.8 16.3 15.6 15.4
IOFF (A) 4.73 × 10−11 7.13 × 10−15 6.45 × 10−15 4.58 × 10−12 1.28 × 10−13 7.75 × 10−15 8.18 × 10−14

ION/IOFF
(×106) 3.91 240 189 4.54 127 220 188

VTH (V) 0.4731 0.8285 0.8369 0.5808 0.7899 0.8394 0.8153
IG @ VG=1V

(nA) 0.137 −3.16 −0.305 −0.9 0.0204 0.0359 0.085

κEFF 4.95 24.26 24.87 5.34 8.14 14.39 20.42

5. Discussion

As seen in Figure 10, the minimum IOFF happens in gκ-FinFETs AT, S2T, AHT, S2LT,
ALT, and S2HT. We observe that they have TiO2 in common. We may safely conclude
that TiO2 matched perfectly with the metal side, better than others, and Al2O3 and Si3N4
matched (not so perfectly, but better than SiO2, HfO2, and La2O3) with the Si channel side
when the FinFET was in depletion mode.

As seen in Figure 11, the maximum ION happens in gκ-FinFETs S1AL, S1S2L, S1L,
S1S2H, S1AH, and S1H, and they all have SiO2 in common. We may also conclude that
SiO2 matched perfectly with the Si channel side, better than the others and, La2O3 and
HfO2 matched (not so perfectly, but better than Si3N4, Al2O3, and TiO2) with the metal side
when the gκ-FinFET was in inversion mode.

All these observations and optimal values for all FoMs (Table 4) happen between κEFF
values of 4.95-24.87. Observing Figure 5 to 13, according to our findings, for the n+ Si
family gκ-FinFETs, seeking dielectrics of κEFF higher than 25 might not be so efficient as
favorable FoM values all appear in the mentioned range of κEFF.

Therefore, it would be logical to infer, depending on the modes of the operation or
the FoM we favor. In order to achieve this in a highly effective gate oxide layer, dielectric
permittivity matching should be considered at both the neighboring Si channel side and
neighboring gate metal side simultaneously.

This is the reason why we actually employed κ-graded stacked gate oxides, as their
least dielectric permittivity side would match that of the Si channel side and the highest
dielectric permittivity side of the same would match that of metal side, yielding lesser
interface problems to widen the limits for a better gate oxide and transistor performance,
while we restate the facts presented in the works of Giustino, Peng, and Wang [33–36]. We
added below our insights which may lead to brief rules for designs in the future.

6. Analysis and Insights

Scanning throughout the 41 simulation results, we freely present our insights as
follows:

• No obvious linear or quadratic relationship exists between composite gate oxide κEFF
and any of the FoMs examined; thus, a curve fitting was not possible.

• According to Table 7, the best IOFF performances have a TiO2 laminate in common, as
the last stage of the κ-graded structure. To minimize the IOFF, the dielectric permittivity
of the gate metal and the neighboring gate oxide laminate should be kept as close
as possible.

• According to Table 8, the best ION performances have a SiO2 laminate in common as the
first stage of the κ-graded structure. To maximize the ION, the dielectric permittivity
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of channel material and neighboring gate oxide laminate should be kept as close
as possible.

• According to Table 11, the lowest values of VTH appeared in the lowest values of κEFF.
• According to Table 12, the best DIBL performance appeared in the S2T (Si3N4: TiO2)

gate oxide combination. To minimize the DIBL and maximize the ION/IOFF, both
the permittivity difference of the channel material and the neighboring gate oxide
laminate, as well as the permittivity difference of the gate material and the neighboring
gate oxide laminate should be kept small. In this case, the S2T gate oxide dielectric
showed the perfect permittivity-matching behavior in between the neighboring Si and
neighboring CrAu alloy.

• According to Table 12, at least one two-stage or three-stage κ-graded dielectric combi-
nation exists which will behave much better than all of the single-stage counterparts
with respect to all our FoMs.

7. Fabrication Considerations

The deposition processes of the mentioned graded dielectric stack shown in Figure 1
should be achieved using the Atomic Layer Deposition (ALD) method so that thin films of
the dielectric stack are obtained in an ALD reactor. ALD, a very slow process, will provide
the deposition of thin film oxides with the thickness in order of a few angstroms, excellently
uniform, accurate, and a pin-hole free [70,71]. Finally, the metal layer should be deposited
by using magnetron sputtering or thermal evaporation onto the gate oxide layer [72].

8. Conclusions

We showed by simulations that it is possible that κ-graded stacked gate oxides could
increase ION and reduce IOFF and IG currents, DIBL, SS, and VTH. A numerical analysis
was conducted to show the viability of the usage of κ-graded dielectric structures against
conventional single-layer high-κ dielectrics on a 14 nm FinFET geometry. The impact on
the key electrical performance parameters is analyzed using SILVACO ATLAS as the device
simulation tool. Within 41 different two- and three-stage κ-graded stacked gate oxide
combinations, some FinFET structures with κ-graded gate oxides (gκ-FinFET) promise a
lower gate leakage current IG of up to 76%, lower drain-induced barrier lowering (DIBL)
of up to 37.4%, a lower subthreshold slope (SS) of up to 10.5%, a lower drain-off current,
IOFF, of up to 92%, a higher drain-on current, ION, of up to 35%, a higher ION/IOFF ratio
of up to 11.7 times, and a lower threshold voltage, VTH, of up to 42%, with respect to the
FinFET of the same dimensions with a single-layer HfO2 gate dielectric. It became apparent
that adverse interface effects will be minimized when smoother dielectric permittivity
transitions are achieved by nanofabrication from the FinFET’s channel, up to its gate metal.
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