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Abstract: Thin transparent oxide layers are typically patterned for use in electronic products including
semiconductors, displays, and solar cells for applications such as transparent electrodes, insulating
films, and encapsulation films. Conventional patterning methods have traditionally been used in
photolithography and lift-off processes. Photolithography employs the wet development process,
which has disadvantages such as potential undercut effects, swelling, chemical contamination, and
high process costs. On the other hand, laser ablation, which has the advantages of high accuracy,
high speed, a noncontact nature, and selective processing, can be used to pattern thin films. However,
absorption in transparent oxide films is usually low. In this study, experiments were conducted
to determine the ablation characteristics of mask layers. The factors affecting ablation, including
beam radii, fluences, overlap ratios, and coating thicknesses, were examined; and the parameters
characteristic of residue-free ablation, namely the ablation threshold, minimum fluence, and minimum
ablation linewidth, were also examined. The experimental results revealed that the beam radius was
an important parameter in determining the resolutions of transparent films and substrates.

Keywords: laser ablation; lift-off; laser direct patterning; transparent oxide film

1. Introduction

Transparent oxide thin films are widely used in applications such as semiconductors,
displays, organic light-emitting devices, and solar cells. There are various processes for the
patterning of the transparent oxide thin films [1,2]. The most widely used manufacturing
process in the patterning of transparent oxide thin films is the conventional photolithog-
raphy process [3,4]. In a conventional photolithography process, the target material is
typically deposited on a substrate in vacuum by chemical vapor deposition, physical vapor
deposition, or atomic layer deposition. A photoresist layer is then spin-coated onto the
deposited layer. The residual solvent in the photoresist layer is removed by drying or
baking, and the film is exposed to light through a patterned mask. The exposed areas
undergo chemical changes in the polymers contained in the resist. Depending on the
tone of the photoresist, the exposed and unexposed areas are selectively washed during
the development step. This results in a patterned layer of photoresist on the transparent
oxide film. An etching process is subsequently implemented, removing the target material
that is not protected by the photoresist layer. Finally, the patterning of the transparent
oxide film is completed after the removal of remaining photoresist. The lift-off patterning
method is often employed when etching damages the device structures or the removal
of target material through etching is difficult. In the lift-off patterning method, the tar-
get material is deposited after the photoresist is patterned [5–7]. By doing so, the target
materials in the undesired portion will be deposited on the photoresist layer. After that,
the photoresist layer is removed along with the target material on the layer. As a result,
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the target material only remains in the patterned portion [8,9]. Patterning processes with
conventional photolithography and lift-off methods are not easy to implement and have
the disadvantages of being complicated and having undercut effects, swelling, high process
costs, and chemical contamination [10–12]. Recently, laser-based patterning methods such
as laser digital patterning [13,14] and direct laser writing [15–18] have been extensively
studied. In laser digital patterning, patterning is achieved with a procedure of nanoparticle
ink dispersing, selective laser irradiation, and washing [19]. The laser-irradiated parts are
selectively retained in the washing process due to enhanced adhesion. In the direct laser
writing patterning method, the laser beam directly ablates the transparent oxide film [20].
In this study, we propose a novel laser-based patterning method which combines the lift-off
and laser ablation processes, and which is simple, cheap, and environmentally friendly as
compared to pre-existing patterning methods.

Figure 1 shows a schematic of the proposed laser lift-off patterning method. In the first
step of this patterning method, a mask layer is patterned on the substrate through printing.
The oxide layer is then coated onto the substrate and the patterned mask layer. Finally, laser
is irradiated to ablate the mask layer. The laser ablation of the mask layer also removes the
transparent oxide film, which results in a patterned transparent oxide film. In this method, the
target of laser ablation is the mask layer and not the transparent oxide film. Thus, visible lasers
with lower absorptivity on transparent oxide films can be used for the patterning process, as
opposed to the laser direct writing method, which generally requires ultraviolet or infrared
lasers, which are relatively expensive and difficult to handle. Moreover, thermal damage
or mispatterning of the transparent oxide film due to the laser beam can be avoided if the
laser and mask layer are selected to have a higher absorptivity in spectral ranges where the
transparent oxide film has a lower absorptivity. This proposed method is simple, cheap, and
environmentally friendly because it involves a relatively smaller number of processing steps,
uses a cheap visible nanosecond pulsed laser, and does not use environmentally hazardous
chemical etchants.
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Figure 1. Schematic of the proposed patterning method.

In this article, we have characterized the laser ablation of the mask layer in this newly
proposed laser lift-off patterning mechanism using a visible 532 nm laser (F2w-120, Yucop-
tics, Bohemia, NY, USA) with 16 ns pulse duration. The ablation effect was investigated
in terms of beam radius, laser beam spot overlap ratio, and coating thickness. We used
the D2-law to determine the relationship between the ablation linewidth and laser fluence.
An optical microscope was used to determine the optimal ablation linewidth and fluence
range for residue-free ablation. The relationship between the threshold fluence and the
optical properties was investigated using an ultraviolet-visible (UV-Vis) spectrophotometer
(Lambda 650, PerkinElmer, Waltham, MA, USA).

2. Experiment

Figure 2 shows an experimental laser system employing a neodymium-doped yttrium
aluminum garnet (Nd:YAG) nanosecond pulsed laser with a pulse width of 16 ns and a
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repetition rate of 30 kHz at a wavelength of 532 nm. A Gaussian laser beam irradiated the
sample surface through an infinity-corrected objective lens focused on the sample surface,
and the sample was attached to a moving stage. A dichroic mirror was used to transport
part of the light reflected from the sample to a charge-coupled device (CCD) camera. A
zoom lens was attached to the CCD camera for magnification, and a filter was attached to
the zoom lens to block any unwanted exposure. The CCD camera and a moving stage were
used to focus the laser beam on the sample surface. The sample was installed through tilting
and moving adjustments. The focused 1/e2 beam radius was approximately 2.2 µm. We
used industrial black polymer ink (AlphaChem Co., Ltd., Hwaseong, Republic of Korea) for
printing. The ink comprised carbon black, acrylic copolymer, nonionic surfactant, glycerin,
triethylene glycol, and deionized water. Its surface tension and viscosity at 23~34 ◦C
were 5.23 dyne/cm and 5.23 cP, respectively. The dimensions of the substrate (Eagle XG,
Samsung-Corning, Asan, Republic of Korea) were 24 × 24 × 5 mm3 (width × length ×
thickness). Ultrasonic washing was performed for 10 min in acetone and isopropyl alcohol
solutions to remove impurities and organic substances from the substrate. The substrate
was then dried at 110 ◦C for 20 min in an oven to remove any residue. After this, the
inks were spin-coated onto the dried substrate at 500, 1000, 2000, and 4000 revolutions per
minute to obtain coating thicknesses of 410, 220, 170, and 120 nm, respectively. The average
coating thicknesses were measured at three points using an Alpha-Step IQ instrument
(Kla-Tencor, Milpitas, CA, USA). Finally, the samples were dried at 110 ◦C for 15 min on a
hot plate to remove any residue.
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Figure 3 depicts the overlap between previous and subsequent laser beams. The red
circle represents the previous laser beam, the purple circle represents the subsequent laser
beam, and the dashed area represents the overlap area. The overlap ratio can be defined
based on the laser beam spot size and the moving-stage transport speed as follows [11]:

Rov =
d − x

d
× 100(%), x =

v
f

, (1)

where d, v, and f denote the laser beam spot size, scanning speed, and laser pulse repetition
rate, respectively. Laser beam spot size d can be defined as the twice the value of 1/e2 laser
beam radius w. The maximum speed of the motorized moving stage speed used in this
study was 200 mm/s, limiting the minimum overlap ratio. The minimum overlap ratios
were 66 and 83% for laser beam spot sizes of 10 and 20 µm, respectively. The absorbed
fluence F can be expressed as:

F = α
P

A f
, (2)
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where α, P, and A are the absorbance, laser power, and laser beam area, respectively. The
peak fluences were 0.42, 0.84, 1.7, 3.4, and 6.8 J/cm2. The absorbed fluence for each case
was obtained using Equation (2). The transmittance and reflectance of each sample were
measured using the UV-Vis spectrophotometer.
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Figure 3. Depiction of the laser overlap ratio.

3. Results and Discussion

Figure 4 shows the optical microscopic images of a laser-patterned sample with a
thickness of 410 nm. Laser beams with radii of 10 and 20 µm were applied under various
fluences and overlap ratios. The images showed that the ablation linewidth increased as
the fluence increased. Residues were found in the center of the ablated line for fluence
below 1.7 J/cm2. Regarding beams of identical radii, the residues decreased as the overlap
ratios increased.

Figure 5 shows the squared ablation linewidth for each case. The ablation linewidths
were squared so that the D2-law could be applied. Liu proposed the D2-law to determine the
laser ablation threshold energy of laser beams with Gaussian intensity distribution [21,22];
this law can be expressed as follows:

D2 = 2ω2 ln
(

F0

Fth

)
, (3)

where D, ω, F0, and Fth denote the ablation diameter, beam radius, peak fluence, and
ablation threshold, respectively. The ablation threshold fluence was determined by extrapo-
lating the linear fitting line of the D2-law versus ln(F0) to D = 0. Generally, high coefficient
of determination (R2) values exceeding 0.90 indicate the good fitting of the D2-law. The
lowest R2 value was 0.975 for an overlap ratio of 83% and a beam radius of 20 µm. Note
that the case with a laser beam having a radius of 20 µm and fluence of 6.8 J/cm2 was
not used for D2-law fitting. The ablation threshold values obtained from the application
of D2-law are listed in Table 1. The overlap ratio did not noticeably affect the ablation
threshold fluence. The fitting curves for cases with different overlap ratios but otherwise
identical conditions almost coincided with each other. This indicated that the overlap ratio
of the laser beam diameter in the scanning direction did not have a significant influence
on the ablation linewidth, which was measured in the direction perpendicular to laser
scanning. With decreases in the coating thickness, the ablation linewidth increased, and
residue-free ablation occurred at lower fluences.
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Figure 5. Ablation linewidth of D2-law logarithmic fit with various parameters and coating thick-
nesses of (a) 120, (b) 170, (c) 220, and (d) 410 nm.

Table 1. The ablation threshold values of the featured cases.

Beam Spot Radius
[µm]

Thickness
[nm]

Overlap Ratio
[%]

Ablation Threshold Fluence
[mJ/cm2]

10

410
83% 104.7

66% 104.9

220
83% 57.2

66% 57.4

170
83% 36.1

66% 35.1

120
83% 27.8

66% 29.2

20

410
93% 103.2

83% 106.2

220
93% 106.9

83% 111.7

170
93% 80.7

83% 80.6

120
93% 77.4

83% 78.7
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As shown in Figure 6, there was a significantly incompletely ablated region at the
edge, which led to a decrease in the actual linewidth corresponding to the ablation. The
increase in the ablation edge was confirmed from Figure 4, where the ablation edge under
the laser beam radius of 20 µm and laser fluence of 6.8 J/cm2 is much wider than those
under the other experimental conditions. The linewidth measured from the outer boundary
of the ablation edge was around 60 µm, which was larger than the ablation linewidth in the
cases with laser beam radii of 20 µm and lower fluences.
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Figure 7 shows the ablation edge width for the cases shown in Figure 6. The ablation
edge widths for coating thicknesses of 170, 220, and 410 nm were similar. The influence of
the overlap ratio on the ablation edge width was insignificant. The ablation edge width
in the case with a coating thickness of 120 nm was noticeably narrower than those in the
cases with other coating thicknesses. The influence of the overlap ratio on the ablation
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edge was significant; the ablation edge shrank to zero in the case with an overlap ratio of
93%. These observations suggested that the rear part of the laser beam with a fluence of
6.8 J/cm2 was unsuccessful in the ablation of the black polymer inks; however, additional
laser irradiation could alleviate this problem. The failure of the laser beam spot radius of
20 µm under the ablation with a 60 µm linewidth was attributed to the linewidth being
three times larger than the 20 µm radius of the 1/e2 laser beam. Additionally, the rear side
of the 60 µm linewidth was 1.5 times wider than that of this 1/e2 laser beam, which was
attributed to the rear side being potentially irradiated by a local laser fluence that was
only 1% of the peak fluence. Nevertheless, further studies are required to determine the
cause of these unprecedented ablation edges. The absorbance of the target material is an
important parameter for laser and target material interactions. A part of the laser energy is
reflected at the surface or transmitted through the target material, whereas the remainder
is absorbed by the target material. The reflectance, transmittance, and absorbance differ
with the material, thickness, and laser wavelength. We measured the transmittance and
reflectance using a UV-Vis spectrophotometer and obtained the absorbance as follows:

α = 1 − τ − ρ (4)

where τ and ρ are the transmittance and reflectance, respectively.
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Figure 7. Width of ablation edges according to coating thicknesses with a laser beam radius of 20 µm
and a fluence of 6.8 J/cm2.

Figure 8 shows the measured transmittance and reflectance values with respect to
coating thickness, with Figure 8a showing that the transmittance decreased with the
increasing coating thickness and increased with the increasing wavelength. Specifically,
the transmittance of the coating thickness of 120 nm varied from 27% at a wavelength of
300 nm to 65% at a wavelength of 800 nm. In contrast, the transmittance of the coating
thickness of 800 nm varied from 1.5% at a wavelength of 300 nm to 14% at a wavelength of
800 nm. Figure 8b shows that unlike transmittance, reflectance (generally within 6–8%) was
relatively independent of coating thickness and wavelength. However, the transmittances
at coating thicknesses of 120 and 170 nm deviated from this range beyond wavelengths
of 400 and 600 nm, respectively. However, the reflectance value was lower than 11%, and
the deviations were negligible compared with those of the transmittance. With increasing
coating thickness, the reflectance did not vary significantly, and the transmittance decreased,
while the absorbance increased.
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Figure 8. (a) Transmittance and (b) reflectance obtained using UV-Vis spectrophotometer according
to different coating thicknesses.

Table 2 presents the transmittance, reflectance, and absorbance values at 532 nm for
coating thicknesses of 120, 170, 220, and 410 nm. The transmittance values were 53.7, 41.7,
24.7, and 6.1%, and the reflectance values were 8.0, 6.4, 6.9, and 6.6%, respectively. The
absorbances were 38.3, 51.9, 68.4, and 87.3% for coating thicknesses of 120, 170, 220, and
410 nm, respectively.

Table 2. Transmittance, reflectance, and calculated absorbance at 532 nm.

Wavelength at 532 nm Black Polymer Ink

Thickness [nm] Transmittance [%] Reflectance [%] Absorbance [%]

410 6.1 6.6 87.3

220 24.7 6.9 68.4

170 41.7 6.4 51.9

120 53.7 8.0 38.3
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Figure 9 shows the threshold fluence values obtained through D2-law for the laser
spot size of 10 µm and overlap ratio for different coating thickness. For coating thicknesses
of 120, 170, 210, and 440 nm, respectively, the threshold fluence values corresponding to the
irradiated fluence values were 27.8, 36.1, 57.2, and 104.7 mJ/cm2, and those corresponding
to the absorbed fluence values were 10.6, 18.7, 39.1, and 91.4 mJ/cm2, respectively. The
threshold fluence varied significantly depending on the coating thickness, with more
energy needed to ablate materials with larger coating thicknesses. As shown in Figure 9,
the differences between the threshold fluence values based on the irradiated fluence and
absorbed fluence values did not vary significantly; the differences were 17.2, 18.6, 16.1,
and 13.3 mJ/cm2 for coating thicknesses of 120, 170, 210, and 410 nm, respectively. The
difference showed a decreasing trend with the coating thickness, with only minor variations.
Although layers with larger coating thicknesses had higher absorbances, the amount of
unused energy did not decrease significantly with increasing coating thicknesses because
the threshold fluences also increased.
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Figure 9. Ablation thresholds based on irradiated and absorbed fluences at different coating thicknesses.

Figure 10 shows the minimum fluence for residue-free ablation. This minimum fluence
was determined conservatively as the lowest fluence value with observed residue-free
ablation. Generally, a higher fluence was required for residue-free ablation in cases with
larger coating thicknesses and lower overlap ratios. Similar trends were observed in cases
with beam radii of 10 and 20 µm. The increase in minimum residue-free ablation with
the increase in coating thickness was evident from the increased amount of the target
material, analogous to the case of the ablation threshold. The influence of the overlap ratios
on the minimum residue-free fluence was evident from the translation of the increased
overlap ratios to increased irradiated energy per unit area. Noticeably, the cases with the
same overlap ratio of 83% and laser beam radii of 10 and 20 µm had similar minimum
residue-free fluence values, indicating that the overlap ratio was an important parameter
in determining the minimum residue-free fluence.
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Figure 10. Minimum observed residue-free fluence for different coating thicknesses with overlap 
ratios of 66 and 83% and laser beam radii of (a) 10 and (b) 20 µm. 
Figure 10. Minimum observed residue-free fluence for different coating thicknesses with overlap
ratios of 66 and 83% and laser beam radii of (a) 10 and (b) 20 µm.

Figure 11 shows the ablation linewidth at the minimum fluence for residue-free
ablation. Despite the dependence of fluence on coating thickness, the ablation linewidth at
the minimum residue-free fluence was relatively independent of this thickness because the
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threshold fluence increased with increasing coating thickness. Considering that a larger
coating thickness did not reduce the amount of unused energy, as shown in Figure 9, the
amount of coating could be reduced. In contrast, cases with lower overlap ratios showed a
wider ablation linewidth at the minimum residue-free fluence, which could be attributed
to the higher fluence required for residue-free ablation. This indicated that although the
ablation linewidth and threshold fluence were relatively independent of the overlap ratio,
a higher overlap ratio resulted in a better resolution. However, the influence of the overlap
ratio on the ablation linewidth at the minimum residue-free fluence was marginal. If the
absorbance of the transparent oxide film at visible wavelengths is considered negligible,
the overlap ratio would not result in substantial differences in the resolution of laser lift-
off patterning. Comparing Figure 11a,b, the laser beam radius was the most influential
parameter on the ablation linewidth at the minimum residue-free fluence. The ablation
linewidth at the minimum residue-free fluence ranged from 25 to 30 and from 40 to 50 µm
when the laser beam radii were 10 and 20 µm, respectively.

Figure 12 shows the ablation linewidths at the minimum residue-free fluence for beam
radii of 10, 20, 50 and 100 µm and high overlap ratios of 83, 83, 93, and 96%, respectively.
The laser beam radii were controlled by adjusting the distance between the sample and
the objective lens. Clearly, the laser beam radius deeply affected the ablation linewidth
at the minimum residue-free fluence. The average values of the ablation linewidth at the
minimum residue-free fluence were 27.7, 52.4, 83.1, and 126 µm for laser beam radii of
10, 20, 50, and 100 µm, respectively. The error in the ablation linewidth at the minimum
residue-free fluence increased with the laser beam radius. However, because ablation
lines slightly wider than the actual printed line did not damage the transparent oxide film
and substrate, errors in the ablation of the relatively wider printed lines were less critical.
This is an advantage of this method, which utilizes wider ablation lines, over direct laser-
patterning methods that use picosecond and femtosecond pulsed lasers [12,17]. The highly
increased pulse duration of a nanosecond-pulsed laser results in a much lower intensity
and reduces the risk of the transparent oxide film and substrate being damaged. The
simplicity of a laser lift-off process that uses nanosecond-pulsed lasers supports its wider
accessibility, especially considering that this patterning technique does not use chemical
etchants or photomasks.
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4. Conclusions

We successfully demonstrated laser lift-off patterning using a commercial black poly-
mer ink and a 532 nm nanosecond pulsed laser. Compared to other patterning methods
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such as photolithography, conventional lift-off patterning, and direct lift-off patterning, this
patterning process is much simpler and involves the use of easily accessible equipment.
The ablation aspects were investigated for different coating thicknesses in terms of the
overlap ratio and beam radius. The D2-law was used to obtain the ablation threshold from
the ablation linewidths. These linewidths were predicted well by this law, according to
the ablation threshold, fluence, and beam radius. The minimum fluence for residue-free
ablation and the corresponding ablation linewidths were also investigated. The coating
thickness affected the threshold fluence and minimum fluence for residue-free ablation.
Since both quantities were dependent on the coating thickness, the ablation linewidth at
the minimum fluence for residue-free ablation was relatively independent of the coating
thickness. The amount of unused energy remained similar regardless of the size of the
coating thickness. Additionally, the coating thickness did not affect the laser lift-off process.
The overlap ratio did not influence the ablation linewidth or threshold fluence, instead
influencing the minimum fluence for residue-free ablation and the corresponding abla-
tion linewidth; the influence of the overlap ratio was marginal compared to that of the
laser beam radius. Since the transparent oxide film was not damaged by the operating
laser conditions, the laser operating process could be controlled by simply adjusting the
radius of the laser beam. In summary, we have introduced a simple patterning method
for transparent oxide layers that offers wider accessibility. The introduced laser lift-off
patterning method can be applied to other materials using lasers with wavelengths that are
transparent to the materials and opaque to commercial polymer inks of other colors.
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