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Abstract: As one of the most significant research topics in robotics, microrobots hold great promise
in biomedicine for applications such as targeted diagnosis, targeted drug delivery, and minimally
invasive treatment. This paper proposes an enhanced YOLOv5 (You Only Look Once version 5)
microrobot detection and tracking system (MDTS), incorporating a visual tracking algorithm to
elevate the precision of small-target detection and tracking. The improved YOLOv5 network structure
is used to take magnetic bodies with sizes of 3 mm and 1 mm and a magnetic microrobot with a
length of 2 mm as the pretraining targets, and the training weight model is used to obtain the position
information and motion information of the microrobot in real time. The experimental results show
that the accuracy of the improved network model for magnetic bodies with a size of 3 mm is 95.81%,
representing an increase of 2.1%; for magnetic bodies with a size of 1 mm, the accuracy is 91.03%,
representing an increase of 1.33%; and for microrobots with a length of 2 mm, the accuracy is 91.7%,
representing an increase of 1.5%. The combination of the improved YOLOv5 network model and the
vision algorithm can effectively realize the real-time detection and tracking of magnetically controlled
microrobots. Finally, 2D and 3D detection and tracking experiments relating to microrobots are
designed to verify the robustness and effectiveness of the system, which provides strong support for
the operation and control of microrobots in an in vivo environment.

Keywords: microrobots; deep learning; target detection; real-time imaging

1. Introduction

In the frontier of science in the 21st century, microrobots have undoubtedly emerged as
one of the most prominent and captivating research fields [1]. In recent years, microrobots
have shown great advantages in the field of biomedical applications. With the develop-
ment of microrobots, various aspects such as their driving methods [2–6], recognition and
tracking [7,8], biosafety [9], targeted drug delivery methods [10–12], and multi-functional
integration [13,14] have attracted widespread attention. For example, a magnetically driven
rotary ablation catheter robot [15] was employed to remove calcified deposits from arterial
stenosis and occlusion. A cylindrical microrobot [6] driven by a permanent magnet array
was designed to continuously penetrate through and navigate around the soft tissue. A
wireless modular capsule robot [14] was utilized to accomplish the tasks of reorganiza-
tion, navigation, and separation within the gastric environment, effectively addressing the
size-related challenges encountered by multifunctional capsule robots.

While the application of microrobots in the medical domain has progressed steadily,
practical implementation remains a considerable challenge, with numerous outstanding
issues. These challenges include the difficulty of driver or power installation due to the
reduced size of microrobots, material safety concerns, real-time position and environment
observation limitations, and other related issues. Among these challenges, the recognition
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and tracking of microrobots have gradually garnered attention from many researchers.
Given the micro–nano scale of microrobots and the inherent complexity of their operating
environments, substantial global research efforts have been dedicated to addressing the
issues of positioning and tracking. In order to achieve stable tracking in pulsating fluid,
Li [4] designed a tracking strategy both within and perpendicular to the image plane. A
strategy based on iterative statistics was proposed to obtain the position and attitude of
the robot from ultrasonic images. From the perspective of imaging, Bappy [7] proposed a
method of using haze removal image enhancement as a pre-processing method and a multi-
level threshold as a post-processing method to realize the automatic reconstruction of a 3D
vascular model. Nguyen [8] proposed a real-time position and spatial orientation tracking
method for millimeter intravascular microrobots based on principal component analysis
and X-ray reconstruction. In addition, due to the high imaging contrast of biological tissue,
magnetic resonance imaging [16] is widely used in the real-time tracking and driving of
microrobots. In recent years, deep learning technology [17] has become quite mature in
the computer field, and deep learning has been widely used in computer vision-related
tasks, such as target detection [18,19], semantic segmentation [20], target classification [21],
and so on. Although deep learning technology has been widely explored and applied in
other fields, such research on microrobots is relatively scarce. Consequently, researchers
have initiated investigations into leveraging deep learning technology within the field
of microrobots. Currently, this technology is still in a relatively early stage and requires
further in-depth research and development. Meitin Sitti [22] exemplified the application
of deep learning technology in an endoscopic capsule robot, proposing a localization
method grounded in endoscope camera information and multi-sensor fusion. Karim Botros’
team [23] proposed a chain-like magnetic microsphere robot target detection and tracking
system based on ultrasound imaging. This method uses CNN neural networks in deep
learning technology to estimate the position of the microrobot in real time. Experiments
show that the system can perform the high-precision real-time detection and tracking of
spherical microrobots with a diameter of about 500 µm in dynamic environments. The
results show that the system can detect up to 95% of spherical microrobots. ETH Zurich [24]
proposed a machine learning-based magnetic control microrobot position control method
that achieves position control through the gradient field generated by electromagnetic coils.

In this paper, combined with deep learning technology, a detection and tracking
method of a magnetically controlled microrobot based on the YOLOv5 target detection
algorithm is proposed, aiming to achieve the real-time recognition and tracking of a mag-
netically controlled microrobot in vascular environments (Figure 1). The microrobot is
driven by electromagnetic means. During its movement, real-time footage collected by
the camera is input into the microrobot detection and tracking system. The combination
of the improved YOLOv5 target detection algorithm and visual algorithms enables the
real-time detection and tracking of the magnetically controlled microrobot. In addition,
based on the parameters of the human hepatic vein, we designed two-dimensional and
three-dimensional epoxy resin vascular models for microrobot intravascular tracking exper-
iments. Through the experimental validation, we confirm the effectiveness of the proposed
approach, providing valuable insights for subsequent animal or clinical trials.



Micromachines 2024, 15, 756 3 of 16Micromachines 2024, 15, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. The detection and tracking schematic diagram of the magnetically controlled micro-med-
ical robot based on deep learning. (a) A schematic diagram of the electromagnetic drive (EMA) sys-
tem that drives the magnetically controlled microrobot to generate motion in the region of interest 
(ROI). (b) This is used to realize the schematic diagram of the microrobot target detection and mo-
tion tracking (MDTS) system. (c) The microrobot moves to the target position in the external orbit 
driven by the EMA system and uses MDTS to detect and track the trajectory of the microrobot. (d) 
Using the improved YOLOv5 target detection algorithm based on deep learning to realize the de-
tection of the microrobot. 
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Figure 1. The detection and tracking schematic diagram of the magnetically controlled micro-medical
robot based on deep learning. (a) A schematic diagram of the electromagnetic drive (EMA) system that
drives the magnetically controlled microrobot to generate motion in the region of interest (ROI). (b) This
is used to realize the schematic diagram of the microrobot target detection and motion tracking (MDTS)
system. (c) The microrobot moves to the target position in the external orbit driven by the EMA system
and uses MDTS to detect and track the trajectory of the microrobot. (d) Using the improved YOLOv5
target detection algorithm based on deep learning to realize the detection of the microrobot.

2. Materials and Methods
2.1. Target Tracking Algorithm
2.1.1. Monocular Vision Algorithm

The monocular vision algorithm employed in this study calculated the world coordinates
of the target based on its pixel coordinates. It utilized image information captured by the
camera, matched the size information of the microrobot with the image information obtained
through the camera, and finally obtained the length of each pixel unit. This allowed for the
calculation of the microrobot’s real-time position and velocity. Compared with the traditional
binocular or trinocular system, monocular vision offers advantages such as system simplicity,
low construction cost, and ease of use and maintenance. Figure S2 depicts the imaging
principle of a monocular camera. The calculation formula for monocular imaging is given by
Equation (1):

f = (p · D)/w (1)

where f is the focal length of the camera (mm), p is the pixel size of the magnetic body in
the imaging plane, D is the actual distance from the camera’s optical center to the magnetic
body, and w is the actual size of the magnetically controlled microrobot. By placing the
camera at the vertical bottom of the experimental platform, we can obtain a real-time image
of the region of interest. Figure 2b depicts the camera imaging experimental platform.
Figure 2c,d depict the transformation of the imaging system of the microrobot from a
pixel coordinate system to a world coordinate system. The pixel coordinates and world
coordinates of microrobots are represented as follows:

h =

[
xi
yi

]
(2)

H =

[
xw
yw

]
(3)

where xi and yi represent the current coordinate information of the microrobot in the
pixel coordinate system and xw and yw represent the current coordinate information of
the microrobot in the world coordinate system. Through the pixel coordinate point of the
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current frame of the microrobot and the pixel coordinate point of the previous frame, the
pixel distance of each frame of the microrobot can be calculated as follows:

lp =
√
(xi − xi−1)

2 + (yi − yi−1)
2 (4)

where lp represents the pixel distance of each frame of motion and xi−1 and yi−1 represent
the pixel coordinate information of the last frame of the target. By accumulating the pixel
distance of each frame of the microrobot, the pixel distance of the whole motion stage of
the microrobot is obtained and calculated as follows:

Lp =
n
∑

i=0
lp (5)

where Lp represents the pixel distance of the microrobot in the whole motion stage. We used
the improved YOLOv5 to train the magnetic robot, and the weight model was employed to
identify and track the magnetic microrobot. Through the identified target detection box,
we obtained the pixel coordinate information of the target:

PLT = P2 =

[
X2 = P2[0]
Y2 = P2[1]

]
(6)

PRB = P1 =

[
X1 = P1[0]
Y1 = P1[1]

]
(7)

where PLT and PRT represent the pixel coordinate points of the upper left corner and the
lower right corner corresponding to the detected microrobot detection box, respectively.
Through the information of these two coordinate points, the pixel size of the target can be
calculated. The formula is as follows:

∆p = Y2 − Y1 = P2[1]− P1[1] (8)

The target is in the pixel coordinate system: the component along the x direction and
the y direction, and the component along the U direction and the V direction in the world
coordinate system. The calculation formula is as follows:

pixel :
{

x = |h| · cos θ = xi
y = |h| · sin θ = yi

(9)

world :
{

U = |H| · cos θ = xw
V = |H| · sin θ = yw

(10)

where θ is expressed as the angle between the target and the positive direction of x (0–90◦).
Through the above formula, the coordinates of the target in the world coordinate system
can be calculated as follows: xw = |H|·xi

|h| = xi ·w
P2[1]−P1[1]

yw = |H|·yi
|h| = yi ·w

P2[1]−P1[1]

(11)

2.1.2. Binocular Stereo Vision Algorithm

Although monocular vision has the advantages of a simple system and low construc-
tion cost, it cannot obtain the three-dimensional (3D) world coordinates of points through a
single camera because the coordinates obtained by monocular cameras lack dimensional
information, namely depth information. Given the complex and irregular 3D environment
within the human body, microrobots need to move and reach designated target points
in such an irregular 3D environment. This requires obtaining depth information of 3D
points in the in vitro mobility performance test, which was achieved by incorporating
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another camera to form binocular stereo vision. The depth information of the 3D point
was calculated based on their imaging coordinates in the two cameras, thereby obtaining
the 3D coordinate information of the target point. For specific principles and operation
procedures, please refer to the Supplementary Information (S1).

Micromachines 2024, 15, x FOR PEER REVIEW 4 of 17 
 

 

where xi and yi represent the current coordinate information of the microrobot in the pixel 
coordinate system and xw and yw represent the current coordinate information of the mi-
crorobot in the world coordinate system. Through the pixel coordinate point of the current 
frame of the microrobot and the pixel coordinate point of the previous frame, the pixel 
distance of each frame of the microrobot can be calculated as follows: 

( ) ( )2 2
1 1p i i i il x x y y− −= − + −  (4) 

where lp represents the pixel distance of each frame of motion and xi−1 and yi−1 represent 
the pixel coordinate information of the last frame of the target. By accumulating the pixel 
distance of each frame of the microrobot, the pixel distance of the whole motion stage of 
the microrobot is obtained and calculated as follows: 

 
Figure 2. The imaging principle of magnetically controlled microrobots based on a binocular vision 
algorithm. (a) Customized microrobot motion trajectory. (b) Magnetically controlled binocular im-
aging and tracking experimental device. (c) A real plane diagram of the monocular target tracking 
algorithm. (d) An imaging plane diagram of the monocular target tracking algorithm. (e) The geo-
metric model of camera imaging and the spatial distribution map of the four coordinate systems 
established. (f) The polar geometry of two corresponding camera images. 

0

n

p p
i

L l
=

=  (5) 

where Lp represents the pixel distance of the microrobot in the whole motion stage. We 
used the improved YOLOv5 to train the magnetic robot, and the weight model was em-
ployed to identify and track the magnetic microrobot. Through the identified target de-
tection box, we obtained the pixel coordinate information of the target: 

Figure 2. The imaging principle of magnetically controlled microrobots based on a binocular vision
algorithm. (a) Customized microrobot motion trajectory. (b) Magnetically controlled binocular
imaging and tracking experimental device. (c) A real plane diagram of the monocular target tracking
algorithm. (d) An imaging plane diagram of the monocular target tracking algorithm. (e) The
geometric model of camera imaging and the spatial distribution map of the four coordinate systems
established. (f) The polar geometry of two corresponding camera images.

To convert the 2D coordinates obtained from the camera imaging into 3D coordinates,
we performed a conversion between different coordinate systems. This mainly involved the
conversion between the pixel coordinate system, the image coordinate system, the camera
coordinate system, and the world coordinate system, as shown in Figure 2e.

The principle of binocular stereo vision is based on the parallax principle, a method
for obtaining 3D geometric information of objects from multiple images. In the machine
vision system, binocular vision generally involves two cameras capturing two digital
images of the surrounding scenery from different angles at the same time. Based on the
parallax principle, it is possible to calculate the 3D geometric information of the object,
reconstructing the 3D shape and position of the surrounding scenery. Figure S4 shows a
heads-up binocular stereo imaging schematic diagram. The projection points P0 (x0, y0) and
P1 (x1, y1) of the 3D target to be detected in the space were captured by the left and right
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cameras simultaneously. To facilitate calculation, a 2D model of binocular stereo vision was
established, and according to the principle of triangulation, it can be deduced as follows:

X = B·(x0−u0)
x0−x1

Y = B·(y0−v0)
x0−x1

Z = B· f
x0−x1

(12)

The parallax disparity = x0 − x1, and B is the distance between the optical centers C0
and C1 of the two cameras, also known as the baseline length (mm).

During the two-dimensional real-time detection and tracking experiment of the micro-
robot, the bottom camera was used to collect real-time motion videos of the micro-robot.
During the three-dimensional tracking experiment, the calibrated bottom camera was used
to collect real-time images of the bottom of the microrobot, and the side camera was used to
collect real-time images of the side of the microrobot. The right image shows the real-time
detection and tracking of the microrobot.

2.2. Detection Model of Microrobot
2.2.1. Improved YOLOv5 Network Model

During the detection experiment, it was observed that the original YOLOv5 model
faced challenges in detecting the magnetic microrobot due to the imaging size range being
between 10 and 40 pixels. This led to issues such as missed detections, false detections, and
low detection accuracy. To enhance the original model’s ability to detect small-size targets
and improve the detection efficiency, this paper proposed an improved YOLOv5 network
model, as shown in Figure 3.

The background information of the dataset collected in this experiment was monotonous.
The microrobot to be detected was only millimeters in size (1–2 mm in length) and thus
blended with the environment, making it difficult to distinguish the magnetic body and
increasing the difficulty of extracting feature information. The classical image convolution
compression (convolutional neural network) operation is often used in the backbone part,
which further loses a large amount of feature information, leading to a decrease in target
detection accuracy or even the failure of target recognition. Therefore, this paper embedded the
Swin Transformer [25] module into the backbone network C3 module, forming a new C3STR
module. With the help of the Swin Transformer module, the feature extraction capability for
small targets was enhanced, and the loss of feature information was reduced. Figure S1b
shows the improved C3STR module.

The Swin Transformer module consists of two multilayer perceptrons (MLPs), a
window attention module (window multi-head self-attention, W-MSA), a sliding-window
multi-attention module (shifted window multi-head self-attention, SW-MSA), and four
normalized layers, as shown in Figure S1a. Compared with the traditional convolution
model, the Swin Transformer adopts a hierarchical and parallel method to process the
feature information of the images. It performs compression and convolutional feature
extraction on images simultaneously. The average processing speed improved from 1.5 s
before the enhancement to 0.45 s after the improvement, reducing the model’s computation
time and improving the efficiency of feature extraction in the backbone network.

In the final feature fusion section, we introduced an ODConv module [26]. The classic
Conv is stacked from multiple convolutional layers and predefined feature connection
layers, with spatial dimensions having invariance, limiting the receptive field of the convo-
lutional layers. Compared to traditional Conv, ODConv incorporates a multi-dimensional
attention mechanism.
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Figure 3. A schematic diagram of the imaging and tracking principle of the YOLOv5 magnetically
controlled microrobot based on deep learning. (a) The improvement of the YOLOv5 network
framework and the training diagram of the magnetically controlled microrobot model. (b) Loading
the trained robot weight model file into the tracking phase to realize the detection and tracking of the
experimental microrobot. (c) The real-time detection and tracking process of the microrobot.

The distinctive feature is that this multi-dimensional attention mechanism uses a
parallel strategy, learning across four dimensions of kernel space: the spatial dimension,
the input channel dimension, the output channel dimension, and the convolutional kernel
space dimension. This enriches the extraction of feature information from the upper and
lower images, enhancing the entire network’s feature extraction capability. Additionally,
the ODConv module introduces an adaptive adjustment module to adaptively adjust
the weights of the convolution kernel. This allows the model to automatically adjust the
receptive field and weight of the convolutional kernel based on the local feature information
of targets of different sizes, improving the accuracy and robustness of target detection. The
structure of ODConv is shown in Figure S1c.

2.2.2. Fabrication of Microrobots

Microrobots were manufactured from direct patterning and visual optical systems,
as shown in Figure 4a. The fabrication process of the microrobots was as follows: First,
we took two transparent glass slides with an area of 24 × 24 mm and 20 × 20 mm, and
then double-sided tape (thickness: 100 mm) was sandwiched between them to form a
microchamber. Next, a biocompatible solution was prepared by mixing 50 wt% e-dent
400 and 50 wt% MMP using a Thinky Mixer (Nano Tech, Inc., Daejeon, Republic of Korea)
at a speed of 2000 rpm for 30 min. Once the microchamber was prepared, a syringe was
used to inject the biocompatible solution directly into the microchamber using capillary
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force. Subsequently, the microchamber was placed in a sample box and polymerization
was carried out under ultraviolet light (λ = 365 nm) for 3.2 s. Previous studies [27] have
demonstrated that the curvature of microrobots is maximized when the ratio of the soft layer
to the hard layer is 8:2, resulting in a more stable self-curling structure. Exposed samples
were placed in a culture dish filled with isopropanol (IPA) and covered with aluminum
foil for 2 h. Afterward, the glass slide and tape were taken out, and direct cleaning with
isopropanol was performed to remove the unpolymerized ink. The patterned film remained
on the lid glass. Finally, a few minutes later, the patterned film self-separated and curled
relative to the initial design, as shown in Figure 4d and Supplementary Video S1. When
the oblique film (θ < 90◦) was exposed to proton stimulation (δ+), torque was generated
due to the different lengths along the x-axis and y-axis, resulting in asymmetric folding.
This folding caused the film to form a spiral structure (Figure 4b). Figure 4c illustrates the
simulated rolling phenomenon occurring over time under exposure to proton stimulation
(δ+). Initially, the rolling angle of the film was 0◦ (φ); as time passed, the rolling angle (φ)
increased to 360◦, finally forming a spiral structure. In addition, the air hole in the design
played a crucial role in the generation of the spiral structures. If there were no air holes, the
generated torque would tilt, resulting in the formation of a cylindrical structure.
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Figure 4. The fabrication and the self-curling principle of magnetically controlled microrobots.
(a) The schematic diagram of the light-curing process of the microrobots. (b) The self-curling principle
of the microrobots. (c) The self-curling simulation image of the microrobots. (d) The self-curling
optical microscopic image of the microrobots. Scale bar: 2 mm.

2.2.3. Dataset Making and Evaluation Index of Microrobot

The datasets used in this paper were collected by means of self-selecting cameras and
other equipment, including 1500 pictures of magnetic bodies 3 mm in size, 1500 pictures
of magnetic bodies 1 mm in size, and 3000 datasets of microrobots with a length of 2 mm.
Before training based on the pictures, the image annotation tool Labelimg v3.9 was used
to label the target pictures of different sizes, and the annotated dataset was divided into a
training set and verification set according to the proportion of 8:2 to ensure that the model
could learn all kinds of features. In this paper, the accuracy (precision), recall rate (recall),
and average precision mean (mean average precision) were used as evaluation indicators.
The calculation formulas for these indicators are as follows:

P =
TP

TP + FP
(13)
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R =
TP

TP + FN
(14)

mAP =
∑k

i=1 APi

k
(15)

where TP represents the number of positive samples predicted as positive, FP represents
the number of negative samples predicted as positive, FN represents the number of positive
samples predicted as negative, k represents the number of categories, and APi represents
the average accuracy at time i in the area enclosed by the P-R curve and the x-axis and
y-axis.

The operating system used in this experiment was Windows10, the programming
language used was Python v3.9, the editor used was PyCharm 2023, the deep learning
framework employed was Pytorchv1.13, CUDA version 11.6, the CPU used was Intel (R)
Core (TM) i5-13600KF3.50GHz, and the GPU employed was NVIDIA GeForceRTX3060.

2.2.4. Driving System of Magnetically Controlled Microrobot

The EMA (electrical magnetic actuation) system consisted of three electromagnetic
coils with copper rods, and at the end of each coil, there was a permanent magnet ball
with a diameter of 30 mm. This combination of permanent magnet and electromagnet
components was used for the testing of the programmatical control of 2D and 3D motion
performance of the microrobot in orbit, as shown in Figure 2b. The movable range of the
permanent magnet in the drive system is a cylindrical space with a diameter of 27 cm
and a height of 66 cm. The coil assembly is made of pure aluminum and contains a coil
wound with 350 turns of 1 mm diameter double-layer copper wire. Below the coil is a
freely rotating neodymium–iron–boron (NdFeB) magnetic sphere with a surface magnetic
induction intensity of 5000 Gs. The orientation of the magnetic sphere is controlled by the
magnetic field generated by the electromagnetic coils, thereby controlling the posture of
the microrobot. The electromagnetic coils are powered by an Aideck IT6942A (Luoyang
Hengkai Technology Co., Ltd., Luoyang, China) programmable DC power supply. A
LabVIEW control program monitors the experimental power supply and determines the
output current of each power supply based on the direction of the end effector’s movement
in the triangular structure. By adjusting this, the direction of the magnetic field at the end
is changed to control the orientation of the magnetic sphere. The drive system is controlled
by a NET_AMC3XER V1.1 three-axis motion control card, three C-DR42A stepper motor
drivers, and three fulsun42 stepper motors as power sources. The step angle of the stepper
motor is 1.8◦, the torque is 420 mN·m, and the maximum operating rate is 2000 PPS. The
LabVIEW program manages the operation of the stepper motors. By inputting the motion
coordinates of the end structure on the front panel of the LabVIEW control program, the
LabVIEW control program sends the number of motion pulses and directions for each
motor to the NET_AMC3XER V1.1, which generates the corresponding pulses to the stepper
motor drivers to determine the direction and number of steps. A fully transparent resin
fluid channel, manufactured via UV-cured 3D printing, was placed in the workspace of the
EMA system. A binocular camera was placed below the EMA system to detect and track
the motion of the microrobot.

3. Results
3.1. Microrobot Comparative Experiment

The original YOLOv5 and the improved YOLOv5 were trained and validated using
the same dataset. The specific experimental results are shown in Table 1. As indicated by
Table 1, for the 3 mm magnetic body target, the comparative evaluation results show that
the improved accuracy (precision, P) is 95.81%, an increase of 2.1%, the recall rate (R) is
92.33%, an increase of 2.12%, and the mean average precision (mAP) is 96.8%, an increase
of 1.1%. For the 1 mm magnetic body target, the comparative evaluation results show that
the improved precision (P) is 91.03%, an increase of 1.33%, the recall rate (R) is 90.30%, an
increase of 0.57%, and the mAP is 91.9%, an increase of 2.9%. For the 2 mm microrobot
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target, the comparative evaluation results show that the improved precision (P) is 91.70%,
an increase of 1.5%, the recall rate (R) is 94.30%, an increase of 1.7%, and the mAP is 96.2%,
an increase of 1.7%. Overall, the improved YOLOv5 model proposed in this paper exhibits
superior detection performance compared to the original model. The introduction of C3STR
and ODConv contributes to enhanced detection accuracy for small targets, addressing
the original model’s deficiencies in missed detections and false positives. The average
processing speed is reduced from 1.5 s before improvement to 0.45 s after improvement,
reducing the computation time and meeting real-time detection requirements. The P–R
curve was obtained by using the magnetic bodies with sizes of 3 mm and 1 mm as the
dataset shows in Figure 5a.

Table 1. Comparison of experimental results of evaluation indicators before and after improved YOLOv5.

Index of Evaluation
E Improved YOLOv5

1 mm 3 mm Microrobot (2 mm) 1 mm 3 mm Microrobot (2 mm)

P/% 89.70 93.71 90.20 91.03 95.81 91.70
R/% 89.73 90.21 92.60 90.30 92.33 94.30

mAP/% 89.00 95.70 94.50 91.90 96.80 96.20
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From Figure 5a, it can be seen that the area below the P–R curve of the improved
YOLOv5 model is slightly larger than that of the original YOLOv5 model, indicating that
the improved YOLOv5 model has a higher average precision (AP) than the original model.
The detection process of the microrobot target by YOLOv5 is as follows: First, the camera
captures images of the microrobot and preprocesses them by changing the image size to
the YOLOv5 detection size of 640 × 640 × 3 for subsequent detection. Then, the image
is binarized to reduce the interference from background information. Next, the image is
input into the improved YOLOv5 neural network framework for detection. Finally, after
non-maximum suppression (NMS) processing, detection boxes with low intersection over
union (IOU) values are removed, leaving only the detection box with the maximum IOU
value to achieve the detection of the microrobot. The IOU threshold for this experiment is
set to 0.7 to filter out detection boxes with low IOU values during the detection process,
ensuring that the detection boxes can match the target to the maximum extent, as shown in
Figure 5b.
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3.2. Real-Time Detection and Tracking of Microrobot

In this experiment, an electromagnetic driving method was employed. In order to
achieve the real-time detection and tracking of microrobots, a microrobot detection and
tracking (MDTS) system was designed. The flowchart of the microrobot detection and
tracking system is shown in Figure 2c. Cameras (HDC60, f-4-12 mm 1600 w Pixel, MOKOSE,
Shenzhen, China) were placed at the bottom and side of the workspace, respectively, for
the real-time imaging of microrobots. The video sequence captured by the cameras was
inserted into MDTS, and a series of preprocessing steps were applied to the real-time
video. The video was resized proportionally, centered, and padded with excess parts for
subsequent detection. After the preprocessing, the microrobot weight model trained by the
improved YOLOv5 was loaded into MDTS, and the training process presented in Figure 3a
was followed. The preprocessed video frames were input into the MDTS for detection.
If the system detects the microrobot target, it calculates the centroid coordinates of the
target, transforming them into world coordinates using the target tracking algorithm, and
computes the microrobot’s motion speed in each frame. This process yields the precise
position of the microrobot in the current frame, and the trajectory of the microrobot is
plotted. The blue curve in Figure 6 represents the motion trajectory of the microrobot. If
tracking is not complete, and the camera is still capturing video, the next frame of the
detection and tracking is performed.
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Figure 6. The 2D detection and tracking experiment of the magnetically controlled microrobot based
on YOLOv5. (a) The microrobot moves to target area 1. (b) The microrobot moves to target area 2.
(c) The microrobot moves to target area 3. (d) The microrobot passes through an obstacle with a
height of 1 mm, through two narrow areas, the width of which is 3.5 mm, and moves to target area 1
to simulate the thrombus deposited on the inner wall of blood vessels. In this experiment, the main
diameter of the vascular model was 6 mm and the diameter of the branch was 5 mm. All parameters
simulate the establishment of human hepatic veins. Scale bar: 10 mm.
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In this experiment, a 2D vascular model (Figure S5a) was established according to
the parameters of human hepatic veins [28], with an overall size of 150 mm × 75 mm.
The main diameter was 6 mm, while the bifurcation diameter was 5 mm. Three target
areas, 1, 2, and 3, were set at the top, middle, and bottom ends of the vascular model,
respectively. The pipeline was filled with DI water, as shown in Figure 6. Under the joint
drive of the electromagnetic coil and magnetic ball, the microrobot moved from the leftmost
point of the screen to target area 1. The MDTS system achieved full-process detection
and tracking of the microrobot, with an average detection accuracy of 0.91 and no false
positives or misses. The calculated average speed of the microrobot was 1.3 mm/s. From
the plotted motion trajectory, it can be observed that the movement of the microrobot is
smooth, without sudden shifts caused by excessive magnetic force, as shown in Figure 6a
and Supplementary Video S2. Similarly, when the microrobot moved from the leftmost
point to target area 2, the average detection accuracy was 0.92, and there were no false
positives or misses. The calculated average speed of the microrobot was 1.3 mm/s. The
motion trajectory shows that the microrobot’s movement is still smooth, without sudden
shifts due to the excessive magnetic force (Figure 6b, Supplementary Video S2). When the
microrobot moved from the leftmost point to target area 3, there were no false positives or
misses, as shown in Figure 6c, and Supplementary Video S2. Finally, narrow and obstructed
areas were added to the orbit to simulate thrombosis in the inner wall of blood vessels.
A 3D-printed thrombus model was placed in the pipeline, with a narrow area width of
2.8 mm, much smaller than the normal diameter of the pipeline. The microrobot passed
through the narrow area under electromagnetic drive, slowing down to an average speed
of around 0.3 mm/s. The MDTS system still did not show any false positives or misses.
Supplementary Video S3 shows that the microrobot experienced a brief pause and unstable
motion when passing through the narrow area. The reason for this phenomenon may be
the non-smooth surface of the 3D-printed thrombus model, leading to increased resistance
when the microrobot comes into contact with the thrombus surface. Another possibility is
that the small bubbles (<1 mm) remaining on the inner wall of the track come into contact
with the microrobot, increasing the resistance during the movement. To address this, a
customized transparent track model with thrombosis and obstacles (Figure S5b) was later
developed using epoxy resin photocuring. This reduced the friction resistance on the
surface of the model. The obstacle height was set at 1 mm, while the width of the two
narrow areas was 3.5 mm. The motion process was smooth and good detection accuracy
was obtained, as shown in Figure 6d and Supplementary Video S3.

To achieve the 3D detection and tracking of the microrobot by MDTS, a 3D vascular
model (Figure S5c) was designed with dimensions of 150 mm × 75 mm × 53 mm, a diameter
of 6 mm, and two bifurcations labeled as bifurcation 1 and bifurcation 2 (downward). The
real-time motion images of the microrobot captured by the side and bottom cameras were
input into the MDTS for detection and tracking. The system calculated the 3D position
information of the microrobot and plotted its 3D motion trajectory in the vascular model
(Figure 7, Supplement Video S4). From the real-time 3D trajectory of the microrobot drawn
by MDTS, it can be observed that when the microrobot moved to bifurcation 1, there was a
brief undulating motion. This was because the target area of the microrobot was inclined
downward at bifurcation 1. The distance between the electromagnetic drive end and the
microrobot changed constantly, causing the distance between the microrobot and the end of
the electromagnetic drive system to increase. As a result, the influence of electromagnetic
drive on the microrobot decreased, leading to a brief undulating motion. When the target
area of the microrobot was at bifurcation 2, this phenomenon did not occur. This is because
bifurcation 2 was inclined upward, and as the microrobot moved, the distance between
it and the electromagnetic drive end gradually decreased, always remaining within a
controllable range.
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Figure 7. The 3D detection and tracking experiment of the magnetically controlled microrobot based
on YOLOv5. (a) The microrobot moves to bifurcation 1: the left image is the side and top plane of
the microrobot captured by the camera, and the right image is the 3D trajectory of the microrobot.
(b) The microrobot moves to bifurcation 1: the left image is the side and top plane of the microrobot
captured by the camera, and the right image is the 3D trajectory of the microrobot. Scale bar: 10 mm.

4. Discussion

In this study, we propose a real-time detection and tracking system for magnetically
controlled microrobots based on deep learning. We replace traditional convolution modules
with C3STR modules in the backbone network and introduce the ODConv module during
the feature fusion stage, specifically addressing targets such as microrobots with sizes of less
than 40 pixels. This enriches the extraction of feature information from the upper and lower
images, enhancing the overall feature extraction capability of the network. The improved
YOLOv5 network model achieves an accuracy of 95.81% for recognizing 3 mm magnetic
bodies, representing an improvement of 2.1%. For 1 mm magnetic bodies, the recognition
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accuracy is 91.03%, representing an improvement of 1.33%. The recognition confidence
for magnetically controlled microrobots reaches 0.91, validating the fact that the improved
YOLOv5 network model can achieve real-time detection and recognition throughout all
stages of magnetically controlled microrobots without missing or misidentifying. The
combination of the improved YOLOv5 network model with visual algorithms effectively re-
alizes the real-time detection and tracking of magnetically controlled microrobots. Two- and
three-dimensional tracking experiments were conducted, successfully obtaining position
information, motion trajectories, motion distances, and speed information of microrobots
during the programmable magnetic control process.

During the experiment, challenges arose in the detection and tracking of microrobots
due to interference from lighting and the electromagnetic driving system in the captured
images, especially with one camera positioned at the bottom of the experimental track
(Figure 2b). To address this issue, a 3D-printed white background model with dimensions
of 200 mm × 200 mm was created and placed on top of the experimental track to reduce
interference and enhance detection accuracy. When designing the 3D tracking experiments,
the initially customized 3D vascular model served as a navigation track and was positioned
inside the model. Due to limitations in the light-curing printing equipment, the prepared
inner surface of the track could not achieve absolute smoothness and polishing, resulting
in a relatively poor imaging effect for microrobots. Consequently, we redesigned the
3D vascular model, placing the track inside a transparent groove with dimensions of
150 mm × 75 mm × 53 mm to address the issue of uneven surfaces within the track. When
injecting DI water into the groove, the rapid injection speed led to the swift filling of the
track, preventing residual air from escaping, and resulting in the formation of bubbles. Even
bubbles with a diameter of 1 mm could interfere with the detection of microrobots when
observed by the camera. To address these issues, the solution involved controlled DI water
injection using a modified syringe and allowing the experimental track filled with DI water
to stand for 30 min. This approach maximized the removal of air bubbles within the track,
minimizing their impact on the imaging of the microrobots. Initially, our experimental
design involved placing two cameras parallel to each other at the bottom of the track.
However, due to the imaging range of the cameras being limited to 200 mm × 200 mm, the
captured images displayed an incomplete view of the track. As a solution, adjustments
were made to the camera’s focal length and the distance between the camera and the track.
During the adjustment, it was discovered that to capture the complete track information on
the imaging plane, the track needed to be elevated. However, the movement space of the
entire electromagnetic driving system was limited. Elevating the track would compress
the movement space of the electromagnetic coils, preventing its movement. To address
this issue, the experiment was optimized by placing one camera on the side of the track
and another at the bottom (Figure 2b). This solution resolved the issue of an incomplete
track display in the captured images. During the detection and tracking of microrobots,
no instances of missed detections or false detection were observed, and the calculated
precision of the microrobot’s positions remained satisfactory.

In the future, we plan to introduce obstacles into the 3D vascular model to validate
MDTS for detecting and tracking microrobots in a 3D vascular model with obstacles.
Additionally, we will attempt to provide feedback regarding the microrobot’s position
information calculated by the MDTS to the electromagnetic driving system. This will
enable a real-time adjustment to the microrobot’s movement states, trajectory planning, and
obstacle avoidance. Finally, our research will focus on leveraging deep learning techniques
to enable the real-time detection and tracking of microrobots within the deep tissues of
the human body. By inputting datasets obtained through X-ray or ultrasound imaging
into a deep learning model, our goal is to establish a reliable foundation for the future
application of deep learning in the medical field. This has the potential to revolutionize
medical research and treatment, offering enhanced monitoring capabilities and improved
outcomes for patients.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi15060756/s1, Figure S1: An improved YOLOv5 network
structure module. (a) The internal structure of the swing transformer module, (b) Structure framework
introduction of the C3STR module, (c) Structure framework introduction of the ODConv module;
Figure S2: The schematic diagram illustrates the monocular camera’s imaging principle. Here, D
represents the actual distance from the microrobot to the camera’s optical center, f is the camera’s
focal length, w denotes the actual size of the microrobot, and p corresponds to the pixel size of the
microrobot on the imaging plane; Figure S3: A schematic diagram of the relationship between image
coordinate system and pixel coordinate system; Figure S4: A schematic diagram of the principle of
binocular imaging; Figure S5: The 2D and 3D vascular models for the experiment. (a) The parameter
information of the 2D vascular model. (b) The parameter information of the 2D blood vessel model
with thrombus. (c) The parameter information for the 3D vascular model. Video S1: Microrobot self-
curling optical microscopy images and simulation images. Video S2: Real-time detection and tracking
of two-dimensional motion of microrobot. Video S3: Real-time detection and tracking experiment
of microrobot in obstacle channel. Video S4: Real-time detection and tracking of three-dimensional
motion of microrobot.
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