Progress on a Carbon Nanotube Field-Effect Transistor Integrated Circuit: State of the Art, Challenges, and Evolution
Abstract
:1. Introduction
2. Current Research Status
2.1. CNTFET Compact Model
2.2. CNTFET Digital Integrated Circuit
2.3. CNTFET Analog Integrated Circuits
2.4. CNTFET Memory
3. Challenges Faced by CNTFET Integrated Circuits
3.1. Challenges in CNTFET Compact Modeling
3.2. Challenges in CNTFET Digital Integrated Circuits
3.3. Challenges in CNTFET Analog Integrated Circuits
3.4. Challenges in CNTFET Memory
4. Corresponding Solutions
4.1. Compact Model Solutions
4.2. Solution for CNTFET Digital Integrated Circuits
4.3. Solution for CNTFET Analog Integrated Circuits
4.4. Solution for CNTFET Memory
5. Future Application Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haensch, W.; Nowak, E.J.; Dennard, R.H.; Solomon, P.M.; Bryant, A.; Dokumaci, O.H.; Kumar, A.; Wang, X.; Johnson, J.B.; Fischetti, M.V. Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 2006, 50, 339–361. [Google Scholar] [CrossRef]
- Dürkop, T.; Getty, S.A.; Cobas, E.; Fuhrer, M.S. Extraordinary Mobility in Semiconducting Carbon Nanotubes. Nano Lett. 2004, 4, 35–39. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Purewal, M.S.; Hong, B.H.; Ravi, A.; Chandra, B.; Hone, J.; Kim, P. Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2007, 98, 186808.1–186808.4. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Huang, Q.; Wang, H.; Chang, S.; He, J. A Numerical Study on Graphene Nanoribbon Heterojunction Dual-Material Gate Tunnel. IEEE Electron Device Lett. 2016, 37, 1354–1357. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Cheng, L.; Gong, Q. Enhanced On-state Current in Barrier-free Carbon Heterojunction Tunneling Field-effect Transistor. In Proceedings of the 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China, 8–11 April 2021; pp. 1–3. [Google Scholar]
- You, Q.; Li, Y.; Zhang, Y.; Wang, Y.; Li, X.; Li, L.; Sun, J.; Gao, C.; Deng, T. High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction. IEEE Sens. J. 2024, 24, 9868–9876. [Google Scholar] [CrossRef]
- Koh, D.; Pyo, S.; Kim, J. All-Inkjet-Printed, Color-Selective Photodetector Array based on Organic Macrocycles-Carbon Nanotube Heterostructures. In Proceedings of the 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 21–25 January 2024; pp. 673–676. [Google Scholar]
- Guo, J.; Javey, A.; Dai, H.; Lundstrom, M. Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. In Proceedings of the IEDM Technical Digest. IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; pp. 703–706. [Google Scholar]
- Javey, A.; Guo, J.; Farmer, D.B.; Wang, Q.; Yenilmez, E.; Gordon, R.G.; Lundstrom, M.; Dai, H. Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays. Nano Lett. 2014, 4, 1319–1322. [Google Scholar] [CrossRef]
- Ravi, T.; Kannan, V. Modeling and performance analysis of ballistic carbon nanotube field effect transistor (CNTFET). In Proceedings of the Recent Advances in Space Technology Services and Climate Change 2010 (RSTS & CC-2010), Chennai, India, 13–15 November 2010; pp. 285–289. [Google Scholar]
- Moghadami, S.; JalaliBidgoli, F.; Ardalan, S. Systematic Approaches for Analysis and Design of Terahertz and Millimeter-Wave Integrated Circuits Using Carbon Nanotube FETs. Can. J. Electr. Comput. Eng. 2016, 39, 92–102. [Google Scholar] [CrossRef]
- Guo, J.; Lundstrom, M.; Datta, S. Performance Projections for Ballistic Carbon Nanotube Field-Effect Transistors. Appl. Phys. Lett. 2002, 80, 3192–3194. [Google Scholar] [CrossRef]
- Raychowdhury, A.; Mukhopadhyay, S.; Roy, K. A Circuit-Compatible Model of Ballistic Carbon Nanotube Field-Effect Transistors, Computer-Aided Design of Integrated Circuits and Systems. IEEE Trans. Electron Devices 2004, 23, 1411–1420. [Google Scholar]
- Dwyer, C.; Cheung, M.; Sorin, D.J. Semi-empirical SPICE models for carbon nanotube FET logic. In Proceedings of the 4th IEEE Conference on Nanotechnology, Munich, Germany, 16–19 August 2004; pp. 386–388. [Google Scholar]
- Natori, K.; Kimura, Y.; Shimizu, T. Characteristics of a Carbon Nanotube Field-Effect Transistor Analyzed as a Ballistic Nanowire Field-Effect Transistor. J. Appl. Phys. 2005, 97, 034306. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Qin, Z.; Zeng, F.; Wang, J.; Ge, C. Study on transport characteristics of CNTFET based on NEGF theory. In Proceedings of the 2011 IEEE International Conference of Electron Devices and Solid-State Circuits, Tianjin, China, 17–18 November 2011. [Google Scholar]
- Farhana, S.; Alam, A.Z.; Khan, S.; Motakabber, S.M. NEGF-based transport phenomena for semiconduncting CNTFET. In Proceedings of the 2015 5th National Symposium on Information Technology: Towards New Smart World, Riyadh, Saudi Arabia, 17–19 February 2015; pp. 1–3. [Google Scholar]
- Deng, J.; Wong, H.S. A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region. IEEE Trans. Electron Devices 2007, 54, 3186–3194. [Google Scholar] [CrossRef]
- Deng, J.; Wong, H.S. A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking. IEEE Trans. Electron Devices 2007, 54, 3195–3205. [Google Scholar] [CrossRef]
- Najari, M.; Frégonèse, S.; Maneux, C.; Mnif, H.; Masmoudi, N.; Zimmer, T. Schottky barrier carbon nanotube transistor: Compact modeling, scaling study, and circuit design applications. IEEE Trans. Electron Devices 2011, 58, 195–205. [Google Scholar] [CrossRef]
- Gelao, G.; Marani, R.; Diana, R.; Perri, A.G. A semiempirical SPICE model for n-type conventional CNTFETs. IEEE Trans. Nanotechnol. 2011, 10, 506–512. [Google Scholar] [CrossRef]
- Wei, L.; Frank, D.J.; Chang, L.; Wong, H.-S.P. Noniterative Compact Modeling for Intrinsic Carbon-Nanotube FETs: Quantum Capacitance and Ballistic Transport. Trans. Electron Devices 2011, 58, 2456–2465. [Google Scholar] [CrossRef]
- Luo, J.; Wei, L.; Lee, C.-S.; Franklin, A.D.; Guan, X.; Pop, E.; Antoniadis, D.A.; Wong, H.-S.P. Compact Model for Carbon Nanotube Field-Effect Transistors Including Nonidealities and Calibrated With Experimental Data Down to 9-nm Gate Length. IEEE Trans. Electron Devices 2013, 60, 1834–1843. [Google Scholar] [CrossRef]
- Lee, C.-S.; Pop, E.; Franklin, A.D.; Haensch, W.; Wong, H.-S.P. A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part I: Intrinsic Elements. Trans. Electron Devices 2015, 62, 3061–3069. [Google Scholar] [CrossRef]
- Lee, C.S.; Pop, E.; Franklin, A.D.; Haensch, W.; Wong, H.S. A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements. Perform. Assess. Des. Optim. Trans. Electron Devices 2015, 62, 3070–3078. [Google Scholar] [CrossRef]
- Hu, X.; Friedman, J. Closed-form model for dual-gate ambipolar CNTFET circuit design. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017. [Google Scholar]
- Mahdi, M.; Hossain, M.; Saha, J.K. Performance Analysis of an Empirical Model of Carbon Nanotube Field Effect Transistor. In Proceedings of the 2018 International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 27–28 December 2018. [Google Scholar]
- Zhang, Y.; Yang, T.; Yang, Y.; Xia, L.; Xu, R. A Small Signal Model for Carbon Nanotube Field-Effect Transistor. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018. [Google Scholar]
- Zhang, Y.; Yang, Y.; Yang, T.; Zhang, Y. A Compact Physical Drain Current Model of Multitube Carbon Nanotube Field Effect Transistor Including Diameter Dispersion Effects. IEEE Trans. Electron Devices 2021, 68, 6571–6579. [Google Scholar] [CrossRef]
- Mothes, S.; Wolf, F.; Schröter, M. Flexible virtual source compact model for fast modeling of new channel materials and device architectures. TechConnect Briefs 2014, 4, 244–248. [Google Scholar]
- Pacheco-Sanchez, A.; Bejenari, I.; Schröter, M. Self-Heating Characterization and Thermal Resistance Modeling in Multitube CNTFETs. IEEE Trans. Electron Devices 2019, 66, 4566–4571. [Google Scholar] [CrossRef]
- Oswal, R.S.; Ghosh, N.; Purohit, R.D.; Monica, R. CNTFET—Based power efficient design of a digital event count comparator. In Proceedings of the 2014 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking, Surat, India, 26–27 December 2014; pp. 1–4. [Google Scholar]
- Jaber, R.A.; Kassem, A.; El-Hajj, A.M.; El-Nimri, L.A.; Haidar, A.M. High-Performance and Energy-Efficient CNFET-Based Designs for Ternary Logic Circuits. IEEE Access 2019, 7, 93871–93886. [Google Scholar] [CrossRef]
- Abdelrahman, C.D.K.; Mohammed, R.; Fouda, M.E.; Said, L.A.; Radwan, A.G. Comparative Study of CNTFET Implementations of 1-trit Multiplier. In Proceedings of the 2020 32nd International Conference on Microelectronics (ICM), Aqaba, Jordan, 14–17 December 2020; pp. 1–4. [Google Scholar]
- Mohammaden, A.; Fouda, M.E.; Said, L.A.; Radwan, A.G. Memristor-CNTFET based Ternary Full Adders. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 562–565. [Google Scholar]
- Parvizi, M.; Ali Zanjani, S.M. An Efficient, Current-Mode Full-Adder Based on Majority Logic in CNFET Technology. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; pp. 301–305. [Google Scholar]
- Puri, A.; Rana, A. Performance analysis of CNTFET based low power operational amplifier in analog circuits for biomedical applications. In Proceedings of the 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 10–11 July 2015; pp. 1–5. [Google Scholar]
- Puttananjegowda, K.; Thomas, S. A CNTFET based Multi-Stage Transimpedance Amplifier for Blood Glucose Monitoring Systems. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 383–388. [Google Scholar]
- Vinod Sarma, A.K.V.; Choudhary, S. A Comparison between MOSFET based and CNTFET based Analog to Digital Converter. In Proceedings of the 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), Bhubaneswar, India, 27–28 July 2018; pp. 2634–2637. [Google Scholar]
- Jogad, S.; Afzal, N.; Loan, S.A. Design and Simulation of Resistor Less Active Filter Using 22-nm CNTFET-Current Conveyor-II. In Proceedings of the 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Bangalore, India, 15–16 November 2019; pp. 1–5. [Google Scholar]
- Singla, P.; Bansal, U. Performance Optimization of Dual supply voltage level shifter using FINFET and CNTFET at 32 nm technology. In Proceedings of the 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 17–18 May 2019; pp. 622–626. [Google Scholar]
- Shailendra, S.R.; Chitra, P.; Ramakrishnan, V.N.; Mimura, H. AC Gain analysis of Multi-stage Common Source Amplifier Using GAA-CNTFET. In Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 5–6 March 2020; pp. 84–87. [Google Scholar]
- Mohita; Newar, T.; Roy, T.; Chowdhury, J.; Das, J.K. Design and stability analysis of CNTFET based SRAM Cell. In Proceedings of the 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 5–6 March 2016; pp. 1–5. [Google Scholar]
- Elangovan, M.; Gunavathi, K. Stability Analysis of 6T CNTFET SRAM Cell for Single and Multiple CNTs. In Proceedings of the 2018 4th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 16–17 March 2018; pp. 63–67. [Google Scholar]
- Shrivastava, A.; Damahe, P.; Kumbhare, V.R.; Majumder, M.K. Designing SRAM Using CMOS and CNTFET at 32 nm Technology. In Proceedings of the 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India, 16–18 December 2019; pp. 284–287. [Google Scholar]
- Chauhan, R.S.; Mehra, R. Performance Enhancement of Data centers by using low power and high speed CNTFET based SRAM Cell. In Proceedings of the 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla, India, 15–17 November 2019; pp. 459–462. [Google Scholar]
- Sachdeva, A.; Sharma, K.; Gupta, L.; Elangovan, M. A CNTFET Based Bit-Line Powered Stable SRAM Design for Low Power Applications. ECS J. Solid State Sci. Technol. 2023, 12, 041006. [Google Scholar] [CrossRef]
- Patil, N.; Lin, A.; Zhang, J.; Wei, H.; Anderson, K.; Wong, H.S. Scalable Carbon Nanotube Computational and Storage Circuits Immune to Metallic and Mispositioned Carbon Nanotubes. IEEE Trans. Nanotechnol. 2011, 10, 744–750. [Google Scholar] [CrossRef]
- Solomon, P.M. Contact resistance to a one-dimensional quasi-ballistic nanotube/wire. IEEE Electron Device Lett. 2011, 32, 246–248. [Google Scholar] [CrossRef]
- Deng, J.; Wong, H.-S.P. Modeling and analysis of planar-gate electrostatic capacitance of 1-D FET with multiple cylindrical conducting channels. IEEE Trans. Electron Devices 2007, 54, 2377–2385. [Google Scholar] [CrossRef]
- Zean, M.; Aziz, A.; Islam, M.; Abir, M.S.M.; Saha, S. CNTFET based multiplexers and magnitude comparator. In Proceedings of the 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017; pp. 48–53. [Google Scholar]
- Aggarwal, A.; Sharma, S. An Overview of DPL, MVL, Ternary Logic And CNTFET Technology for Contribution of Efficient Circuits. In Proceedings of the 2021 International Conference on Simulation, Automation & Smart Manufacturing (SASM), Mathura, India, 20–21 August 2021; pp. 1–7. [Google Scholar]
- Taghavi, A.; Carta, C.; Ellinger, F.; Haferlach, M.; Claus, M.; Schroter, M. A CNTFET amplifier with 5.6 dB gain operating at 460–590 MHz. In Proceedings of the 2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Porto de Galinhas, Brazil, 3–6 November 2015; pp. 1–4. [Google Scholar]
- Crippa, P.; Biagetti, G.; Turchetti, C.; Falaschetti, L.; Mencarelli, D.; Deligeorgis, G.; Pierantoni, L. A High-Gain CNTFET-Based LNA Developed Using a Compact Design-Oriented Device Model. Electronics 2021, 10, 2835. [Google Scholar] [CrossRef]
- Yasir, M.; Alam, N. Systematic design of CNTFET based OTA and Op amp using gm/ID technique. Analog Integr. Circuits Signal Process. 2019, 102, 293–307. [Google Scholar] [CrossRef]
- Peng, B.; Annamalai, M.; Mothes, S.; Schröter, M. Device design and optimization of CNTFETs for high-frequency applications. J. Comput. Electron. 2021, 20, 2492–2500. [Google Scholar] [CrossRef]
- Mehjabin, S.S.; Akib, A.A. Exploring the Prospect of FinFET and CNTFET in Implementation of a Two-Stage Operational Amplifier. In Proceedings of the 2020 11th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 17–19 December 2020; pp. 294–297. [Google Scholar]
- Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S.J. Carbon nanotube electronics and Optoelectronics. Proc. IEEE 2003, 91, 1772–1784. [Google Scholar] [CrossRef]
- Maneux, C.; Goguet, J.; Fregonese, S.; Zimmer, T.; D’Honincthun, H.C.; Galdin-Retailleau, S. Analysis of CNTFET physical compact model. In Proceedings of the International Conference on Design and Test of Integrated Systems in Nanoscale Technology, Tunis, Tunisia, 5–7 September 2006; pp. 40–45. [Google Scholar]
- Ossaimee, M.; Gamal, S.; Kirah, K.; Omar, O. Ballistic transport in Schottky barrier carbon nanotube FETs. Electron. Lett. 2008, 44, 336–337. [Google Scholar] [CrossRef]
- Fregonese, S.; D’Honincthun, H.C.; Goguet, J.; Maneux, C.; Zimmer, T.; Bourgoin, J.-P.; Dollfus, P.; Galdin-Retailleau, S. Computationally efficient physics-based compact CNTFET model for circuit design. IEEE Trans. Electron Devices 2007, 55, 1317–1417. [Google Scholar] [CrossRef]
- Sinha, S.; Balijepalli, A.; Cao, Y. Compact Model of Carbon Nanotube transistor and interconnect. IEEE Trans. Electron Devices 2009, 56, 2332–2342. [Google Scholar] [CrossRef]
- Verma, Y.K.; Mishra, V.; Verma, P.K.; Gupta, S.K. Analytical modelling and electrical characterisation of ZnO based HEMTs. Int. J. Electron. 2019, 106, 707–720. [Google Scholar] [CrossRef]
- Verma, Y.K.; Mishra, V.; Gupta, S.K. A Physics-based analytical model for MgZnO/ZnO HEMT. J. Circuits Syst. Comput. 2020, 29, 2050009. [Google Scholar] [CrossRef]
- Fregonese, S.; Maneux, C.; Zimmer, T. A compact model for dualgate one-dimensional FET Application to carbon-nanotube FETs. IEEE Trans. Electron Devices 2011, 58, 206–215. [Google Scholar] [CrossRef]
- Lundstrom, M. Elementary scattering theory of he Si MOSFET. IEEE Electron Device Lett. 1997, 18, 361–363. [Google Scholar] [CrossRef]
- Michetti, P.; Iannaccone, G. 2010 Analytical model of one-dimensional carbon-based Schottky-barrier transistors. IEEE Trans. Electron Devices 2010, 57, 1616–1627. [Google Scholar] [CrossRef]
- Bejenari, I.; Schroter, M.; Claus, M. Analytical drain current model for non-ballistic Schottky-Barrier CNTFETs. In Proceedings of the 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, 11–14 September 2017; pp. 90–93. [Google Scholar]
- Knoch, J.; Appenzeller, J. Tunneling phenomena in carbon nanotube field-effect transistors. Phys. Status Solid (A) 2008, 205, 679–694. [Google Scholar] [CrossRef]
- Zhu, G.; Zhou, X.; Lee, T.S.; Ang, L.K.; See, G.H.; Lin, S.; Chin, Y.-K.; Pey, K.L. A Compact Model for Undoped Silicon-Nanowire MOSFETs with Schottky-barrier source drain. IEEE Trans. Electron Devices 2009, 56, 1100–1109. [Google Scholar] [CrossRef]
- Amarnath, A.; Feng, S.; Pal, S.; Ajayi, T.; Rovinski, A.; Dreslinski, R.G. A carbon nanotube transistor based RISC-V processor using pass transistor logic. In Proceedings of the 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26 July 2017; pp. 1–6. [Google Scholar]
- Gadgil, S.; Vudadha, C. Design of CNTFET-Based Ternary ALU Using 2:1 Multiplexer Based Approach. IEEE Trans. Nanotechnol. 2020, 19, 661–671. [Google Scholar] [CrossRef]
- Patel, P.; Doddapaneni, N.; Gadgil, S.; Vudadha, C. Design of Area Optimised, Energy Efficient Quaternary Circuits Using CNTFETs. In Proceedings of the 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India, 16–18 December 2019; pp. 280–283. [Google Scholar]
- Yadav, N.; Pandey, N.; Nand, D. Energy Efficient CNTFET based Dual Mode Logic (C-DML) Design. In Proceedings of the 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichirappalli, India,, 5–7 April 2023; pp. 1–6. [Google Scholar]
- Venkataiah, C.; Mallikarjuna Rao, Y.; Manjula Jayamma Rambabu, S.; Linga Murthy, M.K.; Alzubaidi, L.H.; Mishra, S. Performance analysis of 4-bit ternary adder and multiplier using CNTFET for high speed arithmetic circuits. E3S Web Conf. 2023, 391, 01221. [Google Scholar]
- Abbasian, E.; Aminzadeh, A.; Taghipour Anvari, S. GNRFET-and CNTFET-Based Designs of Highly Efficient 22 T Unbalanced Single-Trit Ternary Multiplier Cell. Arab. J. Sci. Eng. 2023, 48, 15337–15352. [Google Scholar] [CrossRef]
- Masud, M.I.; Khan, I.A. CNTFET Based Fully Differential First Order All Pass Filter. Comput. Syst. Sci. Eng. 2023, 44, 2425–2438. [Google Scholar] [CrossRef]
- Ramos-Silva, J.N.; Pacheco-Sánchez, A.; Ramírez-García, E.; Jiménez, D. Multifunctional High-Frequency Circuit Capabilities of Ambipolar Carbon Nanotube FETs. IEEE Trans. Nanotechnol. 2021, 20, 474–480. [Google Scholar] [CrossRef]
- Gielen, G.; Van Rethy, J.; Marin, J.; Shulaker, M.M.; Hills, G.; Wong, H.-S.P.; Mitra, S. Time-Based Sensor Interface Circuits in CMOS and Carbon Nanotube Technologies. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 577–586. [Google Scholar] [CrossRef]
- Ho, R.; Lau, C.; Hills, G.; Shulaker, M.M. Carbon Nanotube CMOS Analog Circuitry. IEEE Trans. Nanotechnol. 2019, 18, 845–848. [Google Scholar] [CrossRef]
- Tamersit, K.; Djeffal, F. Carbon Nanotube Field-Effect Transistor With Vacuum Gate Dielectric for Label-Free Detection of DNA Molecules: A Computational Investigation. IEEE Sens. J. 2019, 19, 9263–9270. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Reddy, M.C.K.; Monica, P.R. Design of CNTFET-Based ternary control unit and memory for a ternary processor. In Proceedings of the 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Vellore, India, 10–12 August 2017; pp. 1–4. [Google Scholar]
- Shreya, S.; Sourav, S. Design, analysis and comparison between CNTFET based ternary SRAM cell and PCRAM cell. In Proceedings of the 2015 Communication, Control and Intelligent Systems (CCIS), Mathura, India, 7–8 November 2015; pp. 347–351. [Google Scholar]
- Spasova, M.; Angelov, G.; Dobrichkov, B.; Gadjeva, E.; Hristov, M. DRAM design based on carbon nanotube field effect transistors. In Proceedings of the 2016 39th International Spring Seminar on Electronics Technology (ISSE), Pilsen, Czech Republic, 18–22 May 2016; pp. 372–377. [Google Scholar]
- Zahoor, F.; Zulkifli, T.Z.A.; Khanday, F.A.; Fida, A.A. Low-power RRAM Device based 1T1R Array Design with CNTFET as Access Device. In Proceedings of the 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, 15–17 October 2019; pp. 280–283. [Google Scholar]
Model Type | Advantages | Disadvantages |
---|---|---|
Non-equilibrium Green’s Function Method | Accurate analytical solutions, in-depth analysis of CNTFET electrical behavior. | Computational complexity, not suitable for large-scale circuit simulations. |
Semi-empirical Compact Models |
|
|
Performance Metric | Description |
---|---|
Power Consumption | Low power is a critical performance metric in digital circuits. |
Speed | High switching speed is crucial for digital circuits. |
Integration Level | Integrating more circuits in a small space is an advantage. |
Logic Gate Delay | Key performance metric, especially in computation and control. |
Multi-value Logic Support | CNTFET may support multi-value logic designs, such as ternary or quaternary. |
Performance Metric | Description |
---|---|
Power Consumption | Analog circuits require low power, typically quantified by power dissipation in milliwatts (mW). |
High-frequency Performance | Crucial for analog circuits in communication and RF applications, measured by transit frequency (f_t) and maximum oscillation frequency (f_{max}). |
Interference Resistance | Analog circuits need to perform well in noisy environments, quantified by signal-to-noise ratio (SNR) in decibels (dB). |
Linear Performance | Good linear performance is essential, especially in signal processing and amplification, measured by compression gain and total harmonic distortion (THD). |
Cross-process Integration | Carbon-based analog circuits need to collaborate with traditional CMOS circuits, measured by integration efficiency and compatibility metrics. |
Sensor Interface Performance | For specific applications, analog circuits may need to provide specific sensor interface performance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Chen, J.; Liao, W.; Zhao, Y.; Jiang, J.; Chen, C. Progress on a Carbon Nanotube Field-Effect Transistor Integrated Circuit: State of the Art, Challenges, and Evolution. Micromachines 2024, 15, 817. https://doi.org/10.3390/mi15070817
Chen Z, Chen J, Liao W, Zhao Y, Jiang J, Chen C. Progress on a Carbon Nanotube Field-Effect Transistor Integrated Circuit: State of the Art, Challenges, and Evolution. Micromachines. 2024; 15(7):817. https://doi.org/10.3390/mi15070817
Chicago/Turabian StyleChen, Zhifeng, Jiming Chen, Wenli Liao, Yuan Zhao, Jianhua Jiang, and Chengying Chen. 2024. "Progress on a Carbon Nanotube Field-Effect Transistor Integrated Circuit: State of the Art, Challenges, and Evolution" Micromachines 15, no. 7: 817. https://doi.org/10.3390/mi15070817
APA StyleChen, Z., Chen, J., Liao, W., Zhao, Y., Jiang, J., & Chen, C. (2024). Progress on a Carbon Nanotube Field-Effect Transistor Integrated Circuit: State of the Art, Challenges, and Evolution. Micromachines, 15(7), 817. https://doi.org/10.3390/mi15070817