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Abstract: Newly introduced Photovoltaic (PV) devices, featuring a built-in chip with an illuminating
Light Emitting Diode (LED), have emerged in the commercial market. These devices are touted
for their utility as both low- and high-side power switch drivers and for data acquisition coupling.
However, comprehensive knowledge and experimentation regarding the limitations of these Pho-
tovoltaic Drivers in both switching and signal processing applications remain underexplored. This
paper presents a detailed characterization of a Photovoltaic Driver, focusing on its performance
under resistive and capacitive loads. Additionally, it delineates the device’s constraints when em-
ployed in signal processing. Through the analysis of switching losses across various power switches
(Silicon and Silicon Carbide) in both series and parallel driver configurations, this study assesses
the driver’s efficacy in operating Junction Field-Effect Transistors (JFETs). Findings suggest that
Photovoltaic Drivers offer a low-cost, compact solution for specific applications, such as high-voltage,
low-bandwidth measurements, and low-speed turn-on with fast turn-off power switching scenarios,
including solid-state switches and hot-swap circuits. Moreover, they present a straightforward,
cost-effective method for driving JFETs, simplifying the circuit design and eliminating the need for
an additional negative power source.

Keywords: photovoltaic driver; MOSFET; JFET driver

1. Introduction

Power electronics applications have been dominated for decades by silicon technology
including Silicon Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) and
insulated gate bipolar transistors (IGBTs). Utilizing them in various applications from low
frequency to high frequency circuits required also developing capable fast gate drivers [1].
Because MOSFETs are unipolar devices, they are capable of fast switching, since phenomena
like tail currents (due to stored charge from minority carriers) do not exist [2]. Hence, the
switching rates are determined primarily by the charging and discharging of parasitic
capacitances; therefore, an optimal MOSFET design that reduces these capacitances can
enable high frequency applications [3]. At low voltage applications, such as automotive
systems at 12 V, MOSFETs are featured by low on-state resistance, hence, low conduction
losses. However, as the voltage level increases, the conduction losses increase due to higher
on-state resistance resulting from thicker epitaxial voltage blocking layers. By introducing
wide bandgap (WBG) devices like Silicon Carbide and Gallium Nitride (GaN) devices,
the on-state resistance and switching speeds have achieved significant improvement for a
wider spectrum of applications. Active gate driving [4] with the aid of intelligent control of
switching transients can limit the current and voltage commutation rate and overshoots,
which therefore increases efficiency [5] and mitigates Electromagnetic Interference (EMI)
generation from current–voltage ringing [6] and thermal cycles [7].

Compared with Silicon (Si) MOSFETs, Silicon Carbide (SiC) MOSFETs have a lower
gate charge, therefore enabling low power gate drivers for rapid switching. The challenge
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of driving low-side MOSFETs is simpler compared with high-side ones. Bootstrapped
capacitor gate drivers are usually used, however, to achieve isolation between the drive
signal circuit loop and the power current loop, and an isolated auxiliary power supply is
needed [8]. This brings cost, size and component numbers to the driver design.

Junction Field-Effect Transistor (JFET) devices are designed to handle large power
levels, which necessitates careful consideration of the gate voltage levels and gate current
capabilities. Inadequate gate voltage or insufficient gate current can result in improper
JFET operation, leading to suboptimal performance or even device failure. MOSFETs, JFETs
or IGBTs operate in harsh environments with high voltage transients and noise. Therefore,
proper isolation techniques, such as optocouplers or gate drive transformers, are crucial
to prevent unwanted coupling of noise or transients into the gate driver circuitry, which
could negatively impact JFET performance or compromise its reliability.

In the realm of power electronics, isolated gate drivers play a pivotal role in enhancing
the operational integrity and efficiency of systems employing MOSFETs or IGBTs. These
drivers ensure proper gate control while isolating the control circuitry from high-power
sections, thereby safeguarding against voltage spikes and facilitating precise control.

Figure 1 illustrates different isolated gate driver configurations. Optical isolation
(Figure 1a), i.e., TLP250, and capacitive isolation (Figure 1b), i.e., UCC21520, require
secondary isolated power supplies. They offer fast response times and robustness against
Electromagnetic Interference, making it suitable for both pulsed PWM-operated circuits
and non-pulsed circuits like solid-state switches. Inductive isolation (Figure 1c) utilizes
inductive coupling to transfer pulses across a magnetic barrier, accommodating a broad
range of frequencies primarily for pulsed circuits. Figure 1d,e present innovative drivers
that eliminate the need for a secondary isolated power supply. The Si8751 (Figure 1d)
employs RF carrier techniques, while the TPSI3050 (Figure 1e) integrates a transformer
within the chip, simplifying the design and integration process. These advanced drivers
offer a balance between speed, isolation effectiveness and complexity, making them suitable
for various specific applications.

Optically isolated Photovoltaic Drivers (PVD) provide some advantages over other
isolated driver circuits. They are well suited for applications where the MOSFET requires
isolation, and are therefore suitable for low- and high-side driving. They have small
footprints and can be connected in series and parallel. Unlike capacitive or transformer
isolation which requires continuous AC pulsating feed to sustain the on or off state [9],
in particular, for applications with long on or off durations, the PVD can achieve this by
using a small DC current sufficient to drive its Light Emitting Diode (LED). They also are
able to drive MOSFETs in their linear region for current-limiting purposes or amplification.
Recently, PVDs have gained popularity in isolating power from signal circuits without a
need for extra power rails to achieve signalling and protection triggering [10,11]. They are
able to produce sufficient voltage for the secondary side when their LEDs are biased at
the primary side, which is shown in Figure 2. They are a compact candidate for driving
MOSFETs and IGBTs. Despite the potential of PVDs, comprehensive experimental studies
evaluating their performance under different load conditions are scarce. This study bridges
this gap by providing a detailed characterization of PVDs, emphasizing their suitability for
high-voltage, low-bandwidth measurements and solid-state switching applications. Our
work offers novel insights into the practical deployment of PVDs, contributing significantly
to the existing body of knowledge. This paper experimentally investigates the capability of
PVDs in driving Si MOSFETs, Si IGBTs and SiC MOSFETs (CoolSiC) in addition to their
suitability for sensing circuits. Furthermore, a proposed simple design is proposed for JFET
driving. The aim of the work is multifold and can be articulated as follows:

(1) Experimentally characterizing one off-the-shelf PVD by obtaining the IV curves and
testing it under resistive and capacitive loadings.

(2) Conducting a small signal and large signal frequency excitation to identify its fre-
quency response and its limitation in driving or signalling.
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(3) Testing the PVD driving capability for different resistive and capacitive loads with
different multiple series and parallel PVD configurations.

(4) Performing a double pulse test (DPT) for different power switches driven by multiple
PVDs to assess the switching losses.
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Figure 1. Schematic representation of isolated gate driver configurations: (a) Optical isolation, (b) 

Capacitive isolation, both requiring a secondary isolated power supply, (c) Inductive driver utilizing 

inductive coupling for pulse transfer, (d) RF carrier technique-integrated driver eliminating the need 

for secondary power supply and (e) Transformer-integrated driver also eliminating the need for 
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Figure 1. Schematic representation of isolated gate driver configurations: (a) Optical isolation,
(b) Capacitive isolation, both requiring a secondary isolated power supply, (c) Inductive driver
utilizing inductive coupling for pulse transfer, (d) RF carrier technique-integrated driver eliminating
the need for secondary power supply and (e) Transformer-integrated driver also eliminating the need
for secondary power supply.
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Figure 2. The structure of the VOM1271 Photovoltaic Driver (PVD) showing the primary side with 

the LED and the secondary photovoltaic output. 
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Figure 2. The structure of the VOM1271 Photovoltaic Driver (PVD) showing the primary side with
the LED and the secondary photovoltaic output.

2. Methodology

This section aims to present the methodology adopted in this work to characterize
the PVD and to investigate its applications in signalling and switching applications. There
are few commercially available PVDs. Table 1 lists some selected PVDs which have a
range of short circuit currents and open-circuit voltages. The list is arranged from low
to high short circuit currents. The output voltage could be as low as 8.2 V, suitable for
driving some power switches with a low threshold voltage, and could be as high as 18 V,
which suits the power switches which need to achieve lower on-state resistance. The
switching speed varies, and no common conditions are available. As observed from the
table, the VOM1271 sits in the mid-range of PVD capabilities. The VOM1271 provides an
optimal trade-off between performance parameters such as switching speed and internal
turn-off circuitry, which are critical for both switching and signal processing applications.
Specifically, the VOM1271 features an integrated fast turn-off circuit, which simplifies the
external circuitry required for rapid switching applications. Therefore, in this study, we
have chosen VOM1271 from Vishay [12] as the device under test for characterization. The
experimental setup for characterizing the PVD involved a series of tests under controlled
conditions. The testing procedures included:

Table 1. Examples of PVDs.

Selected One

VO1263A APV3111 APV1122 VOM1271 FDA117 APV1111 ACPL-K308U

Short circuit
current at

IF = 10 mA
9.8 µA 12 µA 14 µA 15 µA 19.15 µA 45 µA 70 µA

Open-Circuit
Voltage at

IF = 10 mA
14.27 V 18 V 8.7 V 8.4 V 13.67 V 8.5 V 8.2 V

Turn-on time

16 µs
(at

CL = 15 pF,
IF = 20 mA)

400 µs
(at

CL = 1000 pF,
IF = 10 mA)

400 µs
(at

CL = 1000 pF,
IF = 10 mA)

53 µs
(at

CL = 200 pF,
IF = 20 mA)

75 µs
(at

CL = 200 pF,
IF = 10 mA)

100 µs
(at

CL = 1000 pF,
IF = 10 mA)

50 µs
(at

CL = 1000 pF,
IF = 10 mA)

Turn-off time 472 µs 40 µs 100 µs 65 µs 201 µs 100 µs 23 µs

Internal
turn-off circuit No Yes Yes Yes Yes Yes Yes

LED forward
voltage at

IF = 10 mA
1.3 V 1.47 V 1.15 V 1.4 V 1.4 V 1.47 V 1.5 V
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IV Characterization: Measuring the current–voltage (IV) characteristics under different
illumination levels.

Frequency Response Tests: Conducting small signal frequency response (SSFR) and
large signal frequency response (LSFR) tests to evaluate the PVD’s bandwidth.

Load Tests: Testing the PVD performance under varying resistive and capacitive loads
to simulate real-world application conditions.

2.1. PVD IV Characterization

PVD VOM1271 is a photovoltaic embedded inside the chip package and can be
illuminated using an embedded LED. The LED is considered as the primary side, while
the photovoltaic output is the secondary side. It is able to generate a voltage and current
at the secondary terminals, respecting some factors like the primary LED current and
secondary side loading. The PVD is provided with an integrated fast turn-off internal
circuit to achieve a fast zero voltage across the secondary terminals, promoting it as a strong
candidate as a driver for power switches as no external turn-off circuity is required. This
feature, combined with a Small Outline Package (SOP4) package, provides designers with
a small footprint, making it a highly integrated isolated gate driver solution for a large
variety of MOSFET/IGBT driver applications. The design of the integrated fast turn-off
internal circuit was not disclosed by the manufacturer. The maximum rated withstanding
isolation voltage is 3750 Vrms, according to UL1577 for the 1 min test, and 707 Vpeak as the
repetitive peak isolation voltage, according to DIN EN 60747-5-5 [13].

The main parameters used to describe the output of a photovoltaic are the open-
circuit voltage (Voc), short circuit current (Isc) and maximum output power (Pmax). These
parameters are determined by tracing the output VI values under different illumination
and loading conditions, as shown in Figure 3a. A typical IV curve of a PV cell is shown
in Figure 3b, which also is expected from the PVD. The illumination is performed by the
internal LED, which should be supplied by a sufficient current.
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Figure 3. IV characterization of the PVD: (a) Circuit diagram for measuring the IV characteristics,
(b) Typical IV curve showing the constant current and constant voltage regions.

The datasheet highlights 50 mA as a maximum for the forward LED current (IF).
Therefore, the 30 mA and 40 mA testing currents are selected for IV characterization.

2.2. Frequency Response

The prospective PVD is to be used in two ways: either as a switching device for,
i.e., power switches like MOSFETs, or using it for a signal transfer and measurement, i.e.,
voltage measurement. Due to the nonlinear nature of the PVD, two methods for frequency
response investigations have been proposed: namely, the small signal frequency response
(SSFR) and the large signal frequency response (LSFR).

The point of the SSFR is to push the PVD into its linear region, which is done by
biasing the PVD LED by IF and injecting a small sine wave signal Vin, as shown in Figure 4,
to modulate IF considering the frequency range from 20 Hz to 1 MHz with Vin(pp) = 0.6 V.
The PVD LED will be biased by a DC source of VB = 5.4 V via a resistor of RB = 120 ohms.
That will modulate IF between 30 and 40 mA. The output frequency response should
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indicate the frequency range that this PVD would accept in its linear region. The point
of the LSFR is to push the PVD to cutoff, and this is done by biasing its PVD LED by
VB = 2.5 V and injecting a large sine wave signal of Vin(pp) = 5 V. The 2.5 V offset here is
important to prevent the PVD LED from having a reverse voltage, which is limited to a
maximum of 5 V [12].
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tation curves.

2.3. Capacitive Loading

MOSFETs and IGBTs are featured by their gate capacitances which require charging
currents for turn-on and discharging currents for turn-off. Similarly, signal processing
circuits like operational amplifiers potentially connected at the PVD output have different
but a smaller range of input capacitances. Figure 5 aims to investigate the time response
(rise time and fall time) of the PVD output when it is loaded by different values of capac-
itors (20 pF, 100 pF , 1 nF and 10 nF). It is worth mentioning that 20 pF and 100 pF are
considerably small values to emulate the power of MOSFET input capacitances; however,
this study would provide a comprehensive study for switching and signalling applications.
The VOM1271 model in Figure 5 included the embedded turn-off circuit.
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The capacitor behaves as a short circuit at the beginning of the charging cycle, therefore
absorbing high currents, leading the PVD to operate in the constant current region when it
supplies Isc. As shown in Figure 5b, constant current will be supplied during the transient
state and ends at steady state where a constant voltage is supplied. The transient time can
be calculated by:

ton = Cout//CLoad ×
Voc

Isc
(1)

where Cout and CLoad are the PVD output capacitance and load capacitance, respectively.

2.4. Resistive Loading

When the PVD is loaded by a resistor, that resistor defines an operating point on the IV
curve, defining a specific voltage and current value at steady state, as shown in Figure 5b.
The selection of a resistor value might push the PVD to work in the constant current region
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or constant voltage region. Low resistive loads draw higher current, leading the PVD to
work in the constant current region; the steady-state load voltage will follow:

VL = RL × IPVD. (2)

Usually, for a MOSFET driving application, a parallel gate-to-source resistor is used to
accelerate the turn-off process [14]. This impacts the operating point of the PVD. The use of
parallel gate-to-source resistors may not be necessary due to the integrated fast turn-off
circuit within the VOM1271 PVD, which effectively manages the turn-off transition.

2.5. Multiple Cells

Some applications require more voltage or current output from the PVD to suit their
operation. Therefore, a set of PVD configurations are proposed here for testing while
capacitive loading only is considered. The configurations under investigation include single,
two and three PVDs in series and similarly in parallel, as shown in Figure 6. The capacitive
load is chosen as 1000 pF and 500 Hz as the switching frequency. The experimental testing
board is shown in Figure 7, and it is worth mentioning that the temperature is at the room
temperature of 25 ◦C.

Micromachines 2024, 15, 832 7 of 18 
 

 

use of parallel gate-to-source resistors may not be necessary due to the integrated fast 

turn-off circuit within the VOM1271 PVD, which effectively manages the turn-off transi-

tion. 

2.5. Multiple Cells 

Some applications require more voltage or current output from the PVD to suit their 

operation. Therefore, a set of PVD configurations are proposed here for testing while ca-

pacitive loading only is considered. The configurations under investigation include single, 

two and three PVDs in series and similarly in parallel, as shown in Figure 6. The capacitive 

load is chosen as 1000 pF and 500 Hz as the switching frequency. The experimental testing 

board is shown in Figure 7, and it is worth mentioning that the temperature is at the room 

temperature of 25 °C. 

RB

CL

Vin

PV

V
O

M
1
2
7
1

RB

CL

PV

V
O

M
1
2
7
1

PV

V
O

M
1
2
7
1

PV

V
O

M
1
2
7
1

Vin

RB

RB

RB

CL

PV

V
O

M
1
2
7
1

PV

V
O

M
1
2
7
1

Vin

RB

RB

CL

PV

V
O

M
1
2
7
1

PV

V
O

M
1
2
7
1

PV

V
O

M
1
2
7
1

Vin

RB

RB

RB

CL

PV

V
O

M
1
2
7
1

PV

V
O

M
1
2
7
1

Vin

RB

VL

VL

VL

VL

VL

(a)

(b)

(c)

(d)

(e)  

Figure 6. Different PVD configurations for testing with capacitive loading: (a) Single, (b) Two in 

series, (c) Three in series, (d) Two in parallel and (e) Three in parallel. 

 

Figure 7. Experimental testing board setup for PVD characterization under different load conditions 

at room temperature (25 °C). 

  

Figure 6. Different PVD configurations for testing with capacitive loading: (a) Single, (b) Two in
series, (c) Three in series, (d) Two in parallel and (e) Three in parallel.

Micromachines 2024, 15, 832 7 of 18 
 

 

use of parallel gate-to-source resistors may not be necessary due to the integrated fast 
turn-off circuit within the VOM1271 PVD, which effectively manages the turn-off transi-
tion. 

2.5. Multiple Cells 
Some applications require more voltage or current output from the PVD to suit their 

operation. Therefore, a set of PVD configurations are proposed here for testing while ca-
pacitive loading only is considered. The configurations under investigation include single, 
two and three PVDs in series and similarly in parallel, as shown in Figure 6. The capacitive 
load is chosen as 1000 pF and 500 Hz as the switching frequency. The experimental testing 
board is shown in Figure 7, and it is worth mentioning that the temperature is at the room 
temperature of 25 °C. 

RB

CL
Vin

PV

VO
M

12
71

RB

CL

PV

VO
M

12
71

PV

VO
M

12
71

PV

VO
M

12
71

Vin

RB

RB

RB

CL

PV

VO
M

12
71

PV

VO
M

12
71

Vin

RB

RB

CL

PV

VO
M

12
71

PV

VO
M

12
71

PV

VO
M

12
71

Vin

RB

RB

RB

CL

PV
VO

M
12

71

PV

VO
M

12
71

Vin

RB

VL

VL

VL

VL

VL

(a)

(b)

(c)

(d)

(e)  
Figure 6. Different PVD configurations for testing with capacitive loading: (a) Single, (b) Two in 
series, (c) Three in series, (d) Two in parallel and (e) Three in parallel. 

 
Figure 7. Experimental testing board setup for PVD characterization under different load conditions 
at room temperature (25 °C). 

  

Figure 7. Experimental testing board setup for PVD characterization under different load conditions
at room temperature (25 ◦C).



Micromachines 2024, 15, 832 8 of 18

2.6. Signalling Application—High Voltage Measurement

The PVD output current Isc is linearly proportional to the PVD’s LED driving current
IF. An analogue signal transfer with isolation would be possible by biasing the PVD to
operate in its linear region and superimposing the driving current with a signal waveform
similar to the SSFR test. Due to its high voltage isolation capability, the PVD is able to
provide high voltage measurement. DC and AC voltage measurements are possible based
on the biasing point. In this test, the PVD will be set to measure a high AC mains voltage
(230 Vrms) at its primary side and transfer an attenuated version to the secondary side.
The PVD LED is biased by a 25 mA current source, as shown in Figure 8. RP and Rs are
selected to be 1M and 10k ohm, respectively. LTSpice has been used to duplicate the test
using the model provided by VISHAY [15].
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2.7. Switching Application—Double Pulse Testing

Clamped DPT is used to assess the switching losses of a power switch at a specific
current value under a specific voltage stress. Also, it is used to assess the capability of a gate
driver to achieve full and fast switching, able to cut off and saturate the power switch. It
will have the same testing condition of LSFR but with only a double pulse. A typical setup
of the Clamped DPT is shown in Figure 9, with an inductance of 2 mH. The freewheeling
diode was a STPSC1206 Schottky Silicon Carbide diode, with a supply voltage (Vs) of
60 V. Micsig differential voltage and current probes were used with a 100 MHz bandwidth
with SIGLENT 100 MHz oscilloscope. The MOSFET gate voltage, VG, is the PVD output
signal. In this paper, the DPT is used to investigate the ability of the PVD in driving
a Si SJ MOSFET, a Si Trench IGBT and a SiC Trench MOSFET. Table 2 shows the three
samples under test. The power devices have been selected to have the same packaging,
close breakdown voltages and similar on-state resistances and threshold voltages. A single
and three PVDs are configured in series and parallel in this test.
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Table 2. Parameters of the selected power switches under test.

IPW90R120C3 IHW20N120R5 IMW120R090M1H

Technology Si SJ Si IGBT Trench SiC Trench
V 900 V 1200 V 1200 V
I 36 A 40 A 26 A

Rds(on) 100 mohm VCE(sat) 1.55 V 90 mohm
Vgs(th) 3 V 5.8 V 4.5 V

Ciss 6800 pF 1340 pF 707 pF
Coss 330 pF 43 pF 39 pF
Crss 8.5 pF 34 pF 4 pF
Qg 270 nC 170 nC 21 nC

Internal Rg 0.9 ohm none 9 ohm
Package TO247 TO247-3 TO247-3

3. Results and Discussion
3.1. PVD IV Characterization

Figure 10 shows the IV and PV curves of the VOM1271 PVD with input currents IF of
30 and 40 mA. The short circuit current Isc is proportional to IF, as expected, since more
illumination on the PV will generate more current. However, the open-circuit voltage Voc is
relatively the same. The output power shown in Figure 10b is delivered to a load on the
secondary side and increases with more IF. The operation region for a PVD is divided into
constant current and constant voltage regions depending on the operating point, which is
determined by the behaviour of the load. The maximum power point shown in Figure 10b
can be achieved if an equivalent impedance at the output is selected to operate at VMPP. For
IF = 30 mA, the equivalent impedance should be about 215 kΩ. Any load resistance below
this value will drive the PVD into the constant current region, while higher values will
drive it to the constant voltage region. For signal processing applications, a linear relation is
preferred between the input IF and the output Isc. Hence, a lower value of resistive loading
would provide a linear gain.
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Figure 10. Experimental IV (a) and PV(b) curves of the VOM1271 PVD at input currents 𝐼𝐹 of 30 

mA and 40 mA. 
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and 40 mA.

For driving power switches like MOSFETs, the low ratings of the short circuit current
Isc in µAs enables a slow turn-on, mitigates the inrush current and enhances the circuit
stability [9]. This will be investigated more in the next sections.

3.2. Frequency Response

The SSFR of the tested PVD is shown in Figure 11a. The gain plot shows a measured
bandwidth of 20 kHz at 3 db below the starting gain value. This denotes that the selected
PVD in this study can be used as an isolated sensor/isolator for AC signals with frequencies
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below the 20 kHz if it operates in its linear region. The LSFR in Figure 11b illustrates that the
maximum usable bandwidth is 2.5 kHz when the PVD is used as a switching device. This
causes a limitation in applications requiring the MOSFETs to be driven at high switching
frequencies. However, it is considered as a low-cost and compact solution for low frequency
high-side switching, and more attention to switching speed will be discussed later.
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Figure 11. Frequency response of the tested PVD: (a) SSFR and (b) LSFR plot showing maximum
usable bandwidth.

Figure 12 shows the PVD switching response when it is unloaded. The input voltage
is a square wave with different frequencies ranging from 1, 500, 1000, 2500 to 10,000 Hz. At
low frequencies, the switching follows the input signal. However, the rise and fall edges
start deforming as the frequency increases. The duty cycle of the input signal is 50% but
the output signal shows a higher duty cycle at higher frequencies until it is totally distorted
at 10 kHz.
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Figure 12. Switching response with no load under different switching frequencies: 1 Hz, 500 Hz,
1000 Hz, 2500 Hz and 10,000 Hz.

By loading the output with a resistive load of 180 kΩ, the duty cycle error is minimized
but the output voltage level decreased, as shown in Figure 13, due to the movement of the
operating point to the constant current region. The negative voltage immunes the circuit
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from signals that might keep the LED biased, and it also contributes to speeding up its
turning-off operation.
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Figure 13. PVD switching response with a 180 kohm loaded output under different switching
frequencies.

3.3. Capacitive Loading

Figure 14a depicts the turn-on transitions from low to high states when driving
different capacitive loads. The capacitor behaves as a short circuit at the start of the
transition, driving the PVD to operate in its constant current region. The transition time
increases with the increase in the load capacitance due to the limited capped current of
the PVD, as shown in Figure 10. The delay is significant for the 1000 pF and 10,000 pF
cases. Figure 14b depicts the turn-off transitions. The built-in turn-off circuit in the PVD
under test shows a sharp transition and a short turn-off time for load capacitances higher
than 1000 pF. This reveals that the compromise of the load capacitance to achieve short
transitions is in the vicinity of 1000 pF. Alternatively, higher current PVD or parallel PVDs
can be used to speed up the turn-on transition.
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Figure 14. The turn-on (a) and turn-off (b) transitions of the PVD while driving a capacitive load.

Recalling Equation (2) and for the no load case, the turn-on transition took 68 µs to
switch the voltage from 0 to 8 V. Given that the Isc = 30 µA, then the output capacitance,
Cout, of the PVD is 255 pF. Moreover, by considering the 1000 pF load capacitance, the
expected turn-on time is calculated as

ton =
Cout//CLoad × Voc

Isc
=

1255 pF × 8
30 µ

= 334.6 µs (3)
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The experimental result was ton = 300 µs. This indicates that this is not suitable
for driving devices in hard switching applications. Switching times should be tens of
nanoseconds for a 1 nF input capacitance [16]. During turn-off, it was observed that there
was a delay until the built-in circuit triggered and discharged the load instantaneously. The
delay period is due to an internal delay caused by an off-state detection.

3.4. Resistive Loading

Recalling Equation (2), low load resistances will drive the PVD output current to
generate the Isc and will drop a lower voltage than Voc. For the turn-on transition shown
in Figure 15a, the 100 kΩ and 180 kΩ cases established a load voltage of 3 V and 5.4 V,
respectively. However, for higher load resistance cases, it will be in the vicinity of 8 V in the
constant voltage region. It is obvious that the load resistance slightly impacts the speed of
the transition, which is about 50 µs. Figure 15b shows the turn-off transition, depicting that
lower load resistances speed up the transition slightly from 160 µs to 110 µs. To achieve a
higher load voltage, a higher load resistance should be selected.
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Figure 15. The turn-on (a) and turn-off (b) transitions of the PVD while driving a resistive load.

When driving the MOSFETs, a gate-to-source resistor below 100 kΩ is recommended
to prevent latch up; however, based on Figure 15, this will drop a lower voltage, which is
probably not enough to drive a MOSFET with a high Vgs(th) into saturation during turn-on.
Furthermore, during turn-off, the no load case depicts a better performance to trigger the
internal turn-off circuit, lowering the turn-off switching losses. Therefore, there is no need
for a parallel gate resistor when using this PVD.

3.5. Multiple Cells

Figure 16 shows the turn-on transition for different PVD configurations driving a
1000 pF load. Figure 16a demonstrates that more PVDs in series generate higher load
voltages but will not improve the transition speed. That is due to the limited supplied
current to the capacitive load. Figure 16b shows how parallel PVDs increase the transition
speed while keeping the same load voltage at 8 V. Figure 16c and d denote the two and
three PVD combinations in series and parallel, respectively, illustrate the achieved speed
and voltage levels. To achieve low turn-on resistance, Rds(on), for MOSFETs with high
Vgs(th), a series configuration is recommended to decrease the conduction losses, while
the parallel configuration achieves a faster turn-on, minimizing the switching losses, in
particular, for the operation of repetitive pulses. However, it is more important to select a
power switch that is compatible with the PVD capability. These power switches should
have low Vgs(th), low input capacitance and a low zero temperature coefficient.
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Figure 16. Different PVD configurations when driving a 1000 pF load—turn-on transition: (a) Series,
(b) Parallel, (c) Two PVDs in series and parallel and (d) Three PVDs in series and parallel.

Figure 17 shows the turn-off transition with different PVD configurations driving a
1000 pF load. It is clear that the parallel configuration provides a faster turn-off transition
than the single or series PVDs. The series configuration, 3S, brings the load voltage to
zero at relatively the same time (apparently slightly faster) compared to the 2S and single
configurations. That is due to the same current flowing through all the series’ PVDs from
the capacitive load when discharging. It is worth mentioning that the different connections
between PVDs might impact the SSFR and LSFR. The faster response due to the parallel
connection will increase the bandwidth of the PVD combination, while the series connection
will not contribute to the bandwidth. In terms of SSFR, it is expected that it would not
bring any impact on the bandwidth as the different PVD combination will just establish
different operating points.
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Figure 17. Different PVD configurations when driving a 1000 pF load—turn-off transition: (a) Series,
(b) Parallel, (c) Two PVDs in series and parallel and (d) Three PVDs in series and parallel.

For applications like solid-state relays (SSR) or solid-state circuit breakers (SSCB),
rapid turn-off is critical [17], hence parallel configuration would be recommended. Slow
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turn-on would be preferred to mitigate the impact of inrush currents; however, precaution
should be considered when selecting the power switch.

3.6. Signalling Application—High Voltage Measurements

Figure 18a shows the LTSpice simulation results where the PVD LED current is
modulated by the input current between 10 mA and 40 mA, which oscillates at 50 Hz. The
output of the PVD across the resistive load is also shown to be between 0.7 V to 3 V. The
experimental results where both AC coupled signals are shown can be seen in Figure 18b.
The peak-to-peak input waveform was 720 V, which is reflected to an output peak-to-peak
voltage of 695 mV.
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Figure 18. High voltage measurements using PVD: (a) LTSpice simulation results with input current
oscillating at 50 Hz, (b) Experimental results with AC coupled signals.

The load line in Figure 4b can be shifted to another operating point by changing the
secondary side load resistor. Keeping the resistor low enough to keep the PVD in the
constant current region would guarantee a linear characteristic between the load voltage
and PVD output current. The optimal point is to select the load voltage to be in the middle
of the constant current region, such that:

RL =
1
2 Vknee

Isc
(4)

where Vknee is the voltage point where the IPVD drops 10% lower than the Isc.
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It is worth mentioning that the fast turn-off circuit in the VOM1271 has no use in
these kinds of applications, and it is worth considering other PVDs like the LH1262 series.
However, for all PVDs, an operating point is required to be established properly to bias
the LED.

3.7. Switching Application—Double Pulse Testing

A sample of voltage and current waveforms while using the PVD to drive different
power switches is shown in Figure 19. The oscillatory high OFF voltage transient is due to
the parasitic inductance in the circuit represented by the device leads and wires, generating
high voltage due to the current change and the oscillation due to the interaction with the
parasitic capacitance. Figure 20 shows the energy loss of different switches during on
and off transitions with numerical listing in Table 3. Generally, the turn-on energy loss
is significantly low for SiC Trench compared with other switches. Due to higher current
capabilities of the 3P configuration, much less energy loss is observed for all switches. The
3P for SiC Trench shows 99.1% better performance against the Si SJ, and 98.9% against
IGBT Trench. This concludes that parallel PVD can be considered to be a strong candidate
for driving low gate charge switches. The off-transition energy loss ranges from 85 to
167 µJ with minor differences between switches and configurations. That is due to the fixed
capability of the turn-off built-in circuity in the chosen PVD.
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Table 3. Numerical energy loss of different switches during on and off transitions.

Eon (µJ) Eoff (µJ)

Single 3S 3P Single 3S 3P

Si SJ 45,720 22,740 11,390 126.14 124.6 85.56

IGBT Trench 40,300 64,840 9190 149.75 167.62 118.9

SiC Trench 486.4 895.44 103 104.26 129.2 118.6

JFETs are power switches that require negative voltage to switch them. Designing a
gate driver that is able to supply a negative voltage and a continuous gate current while
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providing isolation is critical if compactness is necessary. For example, UJ3N120070K3S is a
normally-on SiC JFET from UnitedSiC that can handle 1200 V and has an on-resistance of
70 mΩ. It has a Vgs(th) = −11.5 V and a gate leakage current of 5 µA at 25 ◦C, reaching 20 µA
at 175 ◦C. By recalling the properties and configurability of the PVD under study, it would
be a suitable driver for the JFET. Two PVDs can be connected in series and opposite polarity
to provide the proper driving voltage, as shown in Figure 21. A double pulse testing is
performed with an inductive load of 800 mH. Figure 22 shows the turn-on and turn-off
events during the double pulse testing using two different gate drivers. Figure 22a,b show
when the PVDs are used, while c and d show when a standard gate driver from TikStation
is populated (Figure 7) that uses an optocoupler with an isolated power supply to provide
−18 V and 0 V for switching through a gate resistance of 3Ω. The JFET will be conducting
normally when 0 V is provided on its gate-source terminals. That requires the PVD to be
switched off. Due to the fast turn-off internal circuit in the PVD, this transition to 0 V on
the gate (which turns ON the JFET) will be fast, as shown in Figure 22a, taking 300 ns and
dissipating 256.5 nJ. Turning off the JFET requires the PVD to charge the input capacitance
with a negative charge. As the JFET has an input capacitance of 985 pF, the charging will be
slower, taking 550 µs and dissipating 38.2 mJ, as shown in Figure 22b. The PVD is also able
to maintain the leakage gate current, keeping the switch in its OFF state. Usually, driving
solenoids require a fast turn-on to provide sufficient inrush currents to magnetize their
core and to provide high torque. However, to avoid high voltage spikes while turning off,
a slow off-switching is preferred. Hybrid circuit breaker is another potential application
that requires a fast turn-on to reduce arcing in the mechanical breaker. Therefore, the PVD–
JFET combination is a suitable choice. On the other hand, Figure 22c and d show a fast
turn-on and off transitions of 72 ns and 108 ns, dissipating 612.72 nJ and 14 µJ, respectively.
The appeared oscillation in Figure 22d is due to the fast turn-off response which triggers
oscillation due to the parasitic inductance and capacitances. That has not appeared in
Figure 22b, due the PVD’s slower response.
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Given the experimental results, the significance of delay and rise/fall intervals in
determining the operational efficacy of Photovoltaic Drivers cannot be overstated. The
observed turn-on delays merit a detailed examination, especially in relation to their poten-
tial influence on high-speed switching applications. This analysis is crucial, not only for
understanding the direct implications of these delays on systems requiring precise timing
and synchronization, but also for evaluating the suitability of these drivers in environ-
ments where timing accuracy is critical to ensuring system stability and performance. The
comprehensive assessment underscores the importance of considering these operational
characteristics when selecting Photovoltaic Drivers for applications demanding high-speed
switching capabilities.
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Figure 22. JFET double pulse testing using (a,b) two series PVDs and (c,d) a standard gate driver.

4. Conclusions

This paper focuses on the characterization of a selected PVD, VOM1271. The steady-
state operating point of the PVD output is determined by the value of the resistive load,
while capacitive loading shifts the operating point from short circuit to open voltage
regions. The bandwidth of the PVD is defined based on the application to be 20 kHz for
small signal processing and 2.5 kHz for switching. When using a resistive load greater
than 330 kΩ, the PVD operates in a constant current region and delivers higher voltage to
the load. Conversely, a capacitive load of around 1000 pF or higher causes a delay in the
turn-on operation.

The PVD is a cost-effective option for isolated high voltage sensors when a low power,
isolated power supply provides the biasing current on the primary side. Its low frequency
driving capability is suitable for applications like Anti-lock Braking System (ABS) solenoid
drivers and in-line rectification circuits with low repetitive switching. There is potential
for innovation in developing fully isolated self-powered sensors. The PVD also offers a
fast turn-off, making it an optimal compact solution for solid-state protection devices such
as circuit breakers. However, its slow turn-on characteristics can present challenges and
result in high losses for hard switch power devices. On the other hand, the PVD provides
a simple and affordable solution for driving JFETs, reducing complexity and eliminating
the need for an additional negative power source, although it may pose challenges for
applications that require a fast turn-off.
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